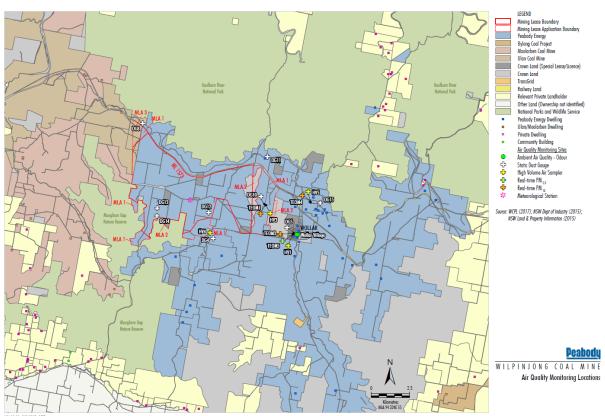
# APPENDIX 3B – AIR QUALITY MONITORING DATA

#### **Summary of Annual Average Dust Deposition**

| EPL 12425 ID No.                                           | 3    | 4    | -    | 6    | -    | 9    | 10   | 11    | 12   | 26   |
|------------------------------------------------------------|------|------|------|------|------|------|------|-------|------|------|
| Monitoring ID No.                                          | DG4  | DG5  | DG7* | DG8  | DG10 | DG11 | DG12 | DG13  | DG14 | DG15 |
| 2011 Annual Average Total Insoluble Matter (g/m²/month)    | 0.40 | 1.13 | 1.22 | 0.94 | 3.02 | 1.30 | 3.73 | 1.95  | 1.88 |      |
| 2012 Annual Average Total Insoluble Matter (g/m²/month)    | 2.80 | 0.73 | 1.52 | 1.03 | 1.19 | 1.41 | 6.52 | 2.38  | 2.18 |      |
| 2013 Annual Average Total Insoluble Matter (g/m²/month)    | 1.20 | 0.60 |      | 1.43 | 2.04 | 1.98 | 3.26 | 1.94  | 1.04 | 1.00 |
| 2014 Annual Average Total Insoluble Matter (g/m²/month)    | 1.68 | 0.83 |      | 1.48 | 3.31 | 1.28 | 3.28 | 2.81  | 1.43 | 0.85 |
| 2015 Annual Average Total Insoluble<br>Matter (g/m²/month) | 0.90 | 0.80 |      | 1.09 | 3.61 | 1.94 | 2.91 | 5.91  | 1.16 | 0.75 |
| 2016 Annual Average Total Insoluble Matter (g/m²/month)    | 1.30 | 1.34 |      | 1.10 | 1.88 | 4.18 | 2.48 | 33.81 | 4.80 | 1.64 |
|                                                            | 1.1  | 1.5  |      | 1.5  | 4.2  | 2.9  | 3.4  | 27.2  | 13.9 | 1.4  |

**Notes:** Green shaded cells indicated internal dust depositional monitoring sites at heritage sites. \*At the end of the 2012 reporting period DG7 was relocated from the Mittaville Property to Araluen Road. Araluen Road is situated to the north east of Wollar Village. The new dust gauge is identified as DG15.

#### Summary of TSP and PM<sub>10</sub> Results


|                                          | Monitoring Locations <sup>#</sup> |             |              |              |            |              |              |  |  |
|------------------------------------------|-----------------------------------|-------------|--------------|--------------|------------|--------------|--------------|--|--|
| EPL 12425 ID No.                         | 13                                | 19          | 20           | 27           | -          | 25           | 28           |  |  |
| Monitoring ID No.                        | HV1                               | HV3         | HV4          | HV5          | TEOM1^     | TEOM3        | TEOM4        |  |  |
|                                          | 2012 Results                      |             |              |              |            |              |              |  |  |
| PM <sub>10</sub> (μg/m³) recorded range* | 2.8 – 21.7                        | -           | 12.0 – 21.8  | **           | 3.4 - 60.3 | **           | **           |  |  |
| PM <sub>10</sub> (μg/m³) annual average  | 9.1                               | -           | 9.7          | **           | 9.7        | **           | **           |  |  |
| TSP (µg/m³) recorded range*              | -                                 | 1.9 – 47.0  | -            | -            | -          | -            | -            |  |  |
| TSP (µg/m³) annual average               | -                                 | 18.8        | -            | -            | -          | -            | -            |  |  |
| 2                                        |                                   |             | 2013 Resu    | lts          |            |              |              |  |  |
| PM10 (µg/m³) recorded range*             | 1.2 – 43.7                        | -           | 2 – 55.1     | 1.8 – 49.8   | 3.0 – 82.5 | 2.4 – 55.6   | 0.7 – 68.9   |  |  |
| PM10 (μg/m³) annual<br>average           | 10.84                             | -           | 12.4         | 15.71        | 18.5       | 13.1         | 16.8         |  |  |
| TSP (µg/m³) recorded range*              | -                                 | 3.1 – 77.6  | =            | =            | ı          | -            | =            |  |  |
| TSP (μg/m³) annual<br>average            | -                                 | 27.45       | -            | -            | -          | -            | -            |  |  |
|                                          |                                   |             | 2014 Resu    | lts          |            |              |              |  |  |
| PM10 (μg/m³) recorded range*             | 1.70 -<br>41.20                   | -           | 1.80 – 37.70 | 2.80 – 47.80 | 1.8-69.5   | 2.65 – 59.12 | 1.18 – 53.96 |  |  |
| PM10 (μg/m³) annual<br>average           | 11.15                             | -           | 11.95        | 14.58        | 17.3       | 13.2         | 13.5         |  |  |
| TSP (μg/m³) recorded range*              | -                                 | 7.20 – 59.0 | -            | -            | -          | -            | -            |  |  |
| TSP (μg/m³) annual average               | -                                 | 23.09       | -            | -            | -          | -            | -            |  |  |
|                                          |                                   |             | 2015 Resu    | lts          |            |              |              |  |  |
| PM10 (μg/m³) recorded range*             | 1.1 – 29.3                        | -           | 1.9 – 40.0   | 1.0 – 35.3   | 2.2 – 87.8 | 1.4 – 78.5   | 0.1 – 77.3   |  |  |
| PM10 (μg/m³) annual<br>average           | 9.99                              | -           | 11.52        | 11.68        | 14.1       | 11.26        | 14.16        |  |  |
| TSP (µg/m³) recorded range*              | -                                 | 3.7 – 68.7  | -            | -            | -          | -            | -            |  |  |
| TSP (μg/m³) annual averag                | -                                 | 22.74       | -            |              | -          | -            | -            |  |  |



#### Summary of TSP and $PM_{10}$ Results cont.

| Monitoring Locations <sup>#</sup> |            |              |            |            |            |            |             |  |
|-----------------------------------|------------|--------------|------------|------------|------------|------------|-------------|--|
| EPL 12425 ID No.                  | 13         | 19           | 20         | 27         | -          | 25         | 28          |  |
| Monitoring ID No.                 | HV1        | HV3          | HV4        | HV5        | TEOM1^     | TEOM3      | TEOM4       |  |
|                                   |            |              | 2016 Resu  | lts        |            |            |             |  |
| PM10 (μg/m³) recorded<br>range*   | 1.5 – 23.0 | -            | 1.8 – 25.2 | 2.5 – 34.2 | 3.3 – 41.7 | 0.4 – 34.4 | 0.0 - 51.11 |  |
| PM10 (μg/m³) annual<br>average    | 9.78       | -            | 11.69      | 13.95      | 15.0       | 10.2       | 11.3        |  |
| TSP (μg/m³) recorded range*       | -          | 3.9 – 82.0   | -          | -          | -          | -          | -           |  |
| TSP (μg/m³) annual<br>average     | -          | 27.59        | -          | -          | -          | -          | -           |  |
|                                   |            |              | 2017 Resu  | lts        |            |            |             |  |
| PM10 (µg/m³) recorded range*      | 2.1 - 28.2 | -            | 4.5 - 69.1 | 5.1 - 55.4 | 2.9 - 86.7 | 0.9 - 52.2 | 0.9 - 50.9  |  |
| PM10 (μg/m³) annual<br>average    | 12.2       | -            | 16.7       | 16.6       | 18.4       | 9.5        | 12.8        |  |
| TSP (μg/m³) recorded range*       | -          | 10.1 - 142.0 | -          | -          | -          | -          | -           |  |
| TSP (µg/m³) annual<br>average     | -          | 38.1         | -          | -          | -          | -          | -           |  |

#### **Air Quality Monitoring Stations**





#### Air Quality Monitoring Stations (Wollar)





# 2017 Ambient Air Quality Monitoring Reports





Accredited for compliance with ISO/IEC 17025 - Testing



Accreditation No. 14184.

# **Peabody Energy**

# Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1<sup>st</sup> January – 31<sup>st</sup> January 2017

Report No.: DAT11654

Report issue date: 28<sup>th</sup> February 2017

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

**Report No: DAT11654** 

**Peabody Energy** 



| Customer Details                  |                                         |  |  |  |
|-----------------------------------|-----------------------------------------|--|--|--|
| Customer Peabody Energy Australia |                                         |  |  |  |
| Contact name                      | Clark Potter                            |  |  |  |
| Address                           | Idress Locked Bag 2005, Mudgee 2850 NSW |  |  |  |
| Email                             | cpotter@peabodyenergy.com               |  |  |  |
| Phone                             | +61 (02) 6370 2527                      |  |  |  |

| Revision History                |          |            |                 |  |  |  |
|---------------------------------|----------|------------|-----------------|--|--|--|
| Revision Report ID Date Analyst |          |            |                 |  |  |  |
| 0                               | DAT11654 | 28/02/2017 | Camila Trindade |  |  |  |

# **Report No: DAT11654**

### **Peabody Energy**



### **Table of Contents**

| (   | Cust | omer I  | Details                     | 2  |
|-----|------|---------|-----------------------------|----|
|     | Revi | sion H  | istory                      | 2  |
| -   | Tabl | e of Co | ontents                     | 3  |
|     | List | of Figu | ires                        | 4  |
|     | List | of Tabl | les                         | 5  |
| 1.0 | )    | Execu   | itive Summary               | 6  |
| 2.0 | )    | Introd  | duction                     | 7  |
| 3.0 | )    | Monit   | toring and Data Collection  | 7  |
|     | 3.1. | Siti    | ng Details                  | 7  |
|     | 3.2. | Мо      | onitored Parameters         | 9  |
|     | 3.3. | Dat     | ta Collection Methods       | 10 |
|     | 3    | .3.1.   | Compliance with Standards   | 11 |
|     | 3    | .3.2.   | Data Acquisition            | 11 |
|     | 3.4. | Dat     | ta Validation and Reporting | 11 |
|     | 3    | .4.1.   | Validation                  | 11 |
|     | 3    | .4.2.   | Reporting                   | 12 |
| 4.0 | )    | Air Qı  | uality Goals                | 13 |
|     | 4.1. | Air     | Quality Summary             | 13 |
| 5.0 | )    | Calibr  | rations and Maintenance     | 14 |
|     | 5.1. | Uni     | its and Uncertainties       | 14 |
|     | 5.2. | Aut     | tomatic Checks              | 15 |
|     | 5.3. | Ma      | intenance                   | 15 |

# Report No: DAT11654

### **Peabody Energy**



| 5.3.1. Calibration & Maintenance Summary Tables       | 515 |
|-------------------------------------------------------|-----|
| 6.0 Results                                           | 17  |
| 6.1. Data Capture                                     | 17  |
| 6.2. Graphic Representations                          | 18  |
| 7.0 Valid Data Exception Tables                       | 23  |
| 8.0 Report Summary                                    | 24  |
| Appendix 1 - Definitions & Abbreviations              | 25  |
| Appendix 2 - Explanation of Exception Table           | 26  |
|                                                       |     |
| List of Figures                                       |     |
| Figure 1: Wilpinjong Mine Monitoring Station Location | 8   |
| Figure 2: NO - 1 hour data                            | 18  |
| Figure 3: NO <sub>2</sub> - 1 hour data               | 19  |
| Figure 4: NO <sub>x</sub> - 1 hour data               | 19  |
| Figure 5: SO <sub>2</sub> - 1 hour data               | 20  |
| Figure 6: H₂S - 1 hour data                           | 20  |
| Figure 7: BTX - 1 hour data                           | 21  |
| Figure 8: WS - 1 hour data                            | 21  |
| Figure 9: Wind Rose                                   | 22  |

# **Report No: DAT11654**

### **Peabody Energy**



### **List of Tables**

| Table 1: Wilpinjong Mine monitoring site location                                                                | 7  |
|------------------------------------------------------------------------------------------------------------------|----|
| Table 2: Parameters measured at the Wilpinjong Mine monitoring station                                           | 9  |
| Table 3: Methods                                                                                                 | 10 |
| Table 4: Wilpinjong Air Quality Goals (NEPM)                                                                     | 13 |
| Table 5: Exceedences Recorded                                                                                    | 13 |
| Table 6: Units and Uncertainties                                                                                 | 14 |
| Table 7: Automatic checks for NO, NO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> , H <sub>2</sub> S and BTX | 15 |
| Table 8: Wilpinjong Wollar Maintenance Table                                                                     | 16 |
| Table 9: Data Capture for Wilpinjong Wollar Station                                                              | 17 |
| Table 10: Wollar Valid Data Exception Table                                                                      | 23 |

**Report No: DAT11654** 

**Peabody Energy** 



### 1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for January 2017. Data capture for the different pollutants is presented in Table 9.

**Report No: DAT11654** 

**Peabody Energy** 



#### 2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1<sup>st</sup> March 2013.

This report presents the data for January 2017.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

### 3.0 Monitoring and Data Collection

#### **3.1.** Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

| Site Name | Geographical Coordinates         | Height Above<br>Sea Level (m) |
|-----------|----------------------------------|-------------------------------|
| Wollar    | Lat: -32.360105 Long: 149.949509 | 366                           |

### **Report No: DAT11654**

**Peabody Energy** 



A siting audit was conducted on 27<sup>th</sup> February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.



Figure 1: Wilpinjong Mine Monitoring Station Location

**Report No: DAT11654** 

**Peabody Energy** 



#### 3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

| Parameter Measured                             | Instrument and Measurement Technique       |  |  |  |
|------------------------------------------------|--------------------------------------------|--|--|--|
| BTX<br>(Benzene, Toluene and <i>p</i> -Xylene) | Synspec GC955 - Gas Chromatography         |  |  |  |
| H₂S                                            | Ecotech EC9852 - fluorescence              |  |  |  |
| NO, NO <sub>2</sub> , NO <sub>x</sub>          | Ecotech EC9841 gas phase chemiluminescence |  |  |  |
| SO <sub>2</sub>                                | Ecotech EC9850 – fluorescence              |  |  |  |
| Wind Speed (horizontal, 10m)                   | Gill Windsonic                             |  |  |  |
| Wind Direction (10m)                           | Gill Windsonic                             |  |  |  |

**Report No: DAT11654** 

### **Peabody Energy**



### 3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

**Table 3: Methods** 

| Parameter<br>Measured                    | Data Collection Methods<br>Used | Description of Method                                                                                                                   |  |  |  |  |
|------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub>    | AS 3580.5.1-2011                | Methods for sampling and analysis of ambient air. Method 5 Determination of oxides of nitrogen – chemiluminescence method               |  |  |  |  |
| 110, 110 <sub>2</sub> , 110 <sub>x</sub> | Ecotech Laboratory<br>Manual    | In-house method 6.1 Oxides of nitrogen by chemiluminescence                                                                             |  |  |  |  |
| SO <sub>2</sub>                          | AS 3580.4.1-2008                | Methods for sampling and analysis of ambient air. Method 4.1:  Determination of sulfur dioxide – Direct reading instrumental method     |  |  |  |  |
| 302                                      | Ecotech Laboratory<br>Manual    | In-house method 6.2 Sulfur dioxide by fluorescence                                                                                      |  |  |  |  |
| H <sub>2</sub> S                         | Ecotech Laboratory<br>Manual    | In-house method 6.5 Hydrogen sulfide by fluorescence                                                                                    |  |  |  |  |
| ВТХ                                      | Manufacturer's<br>Instructions  | Gas Chromatography Synspec CG955 Series Manual                                                                                          |  |  |  |  |
| Vector Wind<br>Speed                     | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |  |  |  |
| (Horizontal)                             | Ecotech Laboratory<br>Manual    | In-house method 8.1 Wind speed (Horizontal) by anemometer                                                                               |  |  |  |  |
| Vector Wind                              | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |  |  |  |
| Direction                                | Ecotech Laboratory<br>Manual    | In-house method 8.3 Wind direction by anemometer                                                                                        |  |  |  |  |

**Report No: DAT11654** 

**Peabody Energy** 



#### 3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

 Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.

#### 3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis<sup>TM</sup> version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

#### 3.4. Data Validation and Reporting

#### 3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

**Report No: DAT11654** 

#### **Peabody Energy**



#### 3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report Jan-17.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

**Report No: DAT11654** 

**Peabody Energy** 



### 4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

| Parameter       | Time Period | Exceedence<br>Level | Units | Maximum allowable exceedences |
|-----------------|-------------|---------------------|-------|-------------------------------|
| NO <sub>2</sub> | 1 year      | 30                  | ppb   | None                          |
| NO <sub>2</sub> | 1 hour      | 120                 | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 hour      | 200                 | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 day       | 80                  | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 year      | 20                  | ppb   | None                          |

#### 4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

| Parameter       | Time Period | Value of Exceedence | Date of Exceedence |
|-----------------|-------------|---------------------|--------------------|
| NO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 day       | -                   | -                  |

**Report No: DAT11654** 

**Peabody Energy** 



#### 5.0 Calibrations and Maintenance

#### 5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

**Table 6: Units and Uncertainties** 

| Parameter                                         | Units | Resolution | Uncertainty                                                           | Measurement<br>Range <sup>1</sup>                |  |
|---------------------------------------------------|-------|------------|-----------------------------------------------------------------------|--------------------------------------------------|--|
| NO, NO <sub>x</sub><br>(EC9841)                   | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                          | 0 ppb to 500 ppb                                 |  |
| NO <sub>2</sub> (EC9841)                          | ppm   | 1 ppb      | ± 16 ppb<br>K factor of 2.01                                          | 0 ppb to 500 ppb                                 |  |
| SO₂ (EC9850)                                      | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                          | 0 ppb to 500 ppb                                 |  |
| H₂S                                               | ppm   | 1 ppb      | 15.2% of reading or ± 19 ppb, whichever is greater  K factor of 2     | 0 ppb to 500 ppb                                 |  |
| Benzene,<br>Toluene and <i>p-</i><br>Xylene (BTX) | ppb   | 0.03 ppb   | 15.1% of reading or 3.8ppb, whichever is greater  K factor of 2       | 0 ppb to 300 ppb                                 |  |
| Vector Wind<br>Speed                              | m/s   | 0.1 m/s    | ±0.01 m/s or 2.0% of reading, whichever is greater (K factor of 1.96) | 0 m/s to 60 m/s                                  |  |
| Vector Wind<br>Direction                          | Deg   | 1 deg      | ±2 deg<br>K factor of 2.11                                            | 0 deg to 360 deg<br>Starting threshold:<br>0 m/s |  |

 $<sup>^{1}</sup>$  Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO<sub>2</sub> and NO<sub>x</sub> by EC 9841 and SO<sub>2</sub> by EC9850 are calculated based on a measurement range of 0-125 ppb.

**Report No: DAT11654** 

**Peabody Energy** 



#### 5.2. Automatic Checks

Automatic span and zero calibration checks run every night for NO, NO<sub>2</sub>, NO<sub>x</sub> and SO<sub>2</sub>, every  $2^{nd}$  night for H<sub>2</sub>S and weekly for BTX.

Background checks run each night for SO<sub>2</sub> and H<sub>2</sub>S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S and BTX

| Parameter                             | Span / Zero cycle time<br>(approximate)  | Background cycle time<br>(approximate) |  |
|---------------------------------------|------------------------------------------|----------------------------------------|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 00:45 to 01:40 every day                 | N/A                                    |  |
| SO <sub>2</sub>                       | 00:45 to 01:40 every day                 | 23:45 to 23:50 every day               |  |
| H₂S                                   | 01:35 to 02:35 every 2 <sup>nd</sup> day | 23:45 to 23:50 every day               |  |
| ВТХ                                   | 02:45 to 04:45 every 7 <sup>th</sup> day | N/A                                    |  |

#### 5.3. Maintenance

Scheduled monthly maintenance was performed 25-27<sup>th</sup> January.

#### 5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

**Report No: DAT11654** 

### **Peabody Energy**



Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

**Table 8: Wilpinjong Wollar Maintenance Table** 

| Parameter                             | Date of Last<br>Maintenance        | Maintenance Type | Date of Last<br>Calibration | Calibration<br>Cycle |
|---------------------------------------|------------------------------------|------------------|-----------------------------|----------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 27/01/2017                         | Monthly          | 27/01/2017                  | Monthly              |
| SO <sub>2</sub>                       | SO <sub>2</sub> 25/01/2017 Monthly |                  | 25/01/2017                  | Monthly              |
| H <sub>2</sub> S                      | 25/01/2017                         | Monthly          | 25/01/2017                  | Monthly              |
| BTX 27/01/2017 Monthly                |                                    | Monthly          | 27/01/2017                  | Yearly               |
| Wind Speed                            | 25/01/2017                         | Monthly          | 21/05/2015                  | 2-Yearly             |
| Wind Direction                        | 25/01/2017                         | Monthly          | 21/05/2015                  | 2-Yearly             |

### **Report No: DAT11654**

**Peabody Energy** 



#### 6.0 Results

#### 6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for December 2016. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

**Table 9: Data Capture for Wilpinjong Wollar Station** 

| Parameter                             | Data Capture % |
|---------------------------------------|----------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 95.6           |
| SO <sub>2</sub>                       | 95.1           |
| H₂S                                   | 95.7           |
| Benzene                               | 88.0           |
| Toluene                               | 84.7           |
| <i>p</i> -Xylene                      | 15.1           |
| WS, WD                                | 99.0           |

### **Report No: DAT11654**

**Peabody Energy** 



### 6.2. Graphic Representations

Validated 5 minute data for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

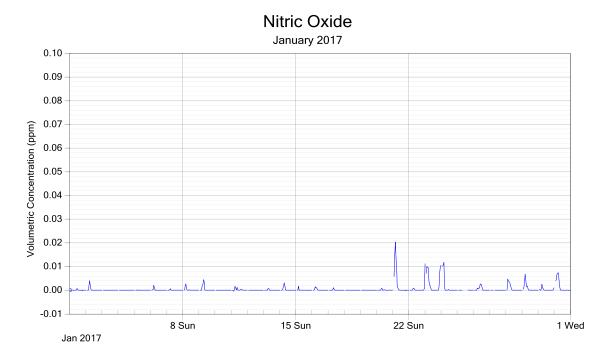



Figure 2: NO - 1 hour data

### **Report No: DAT11654**

**Peabody Energy** 



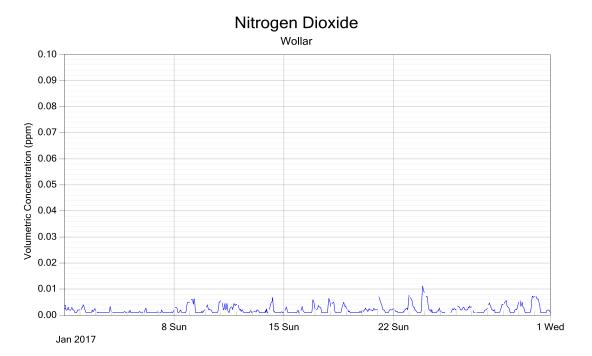



Figure 3: NO<sub>2</sub> - 1 hour data

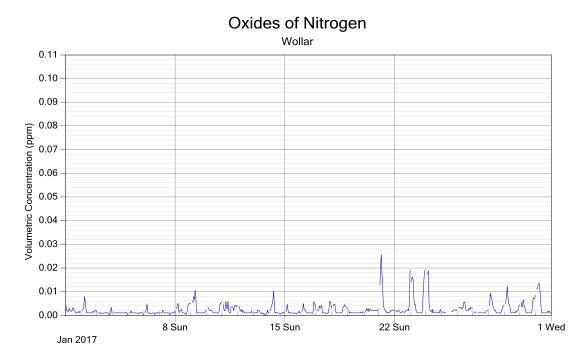



Figure 4: NO<sub>X</sub> - 1 hour data

### **Report No: DAT11654**

**Peabody Energy** 



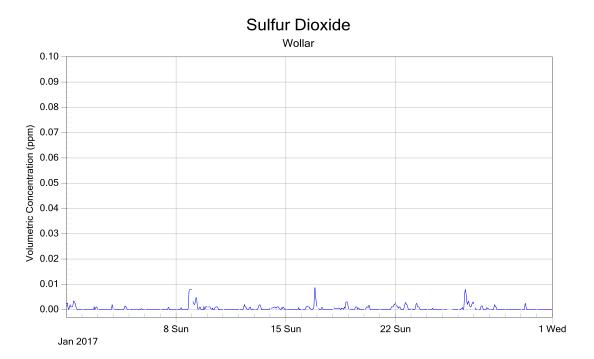



Figure 5: SO<sub>2</sub> - 1 hour data

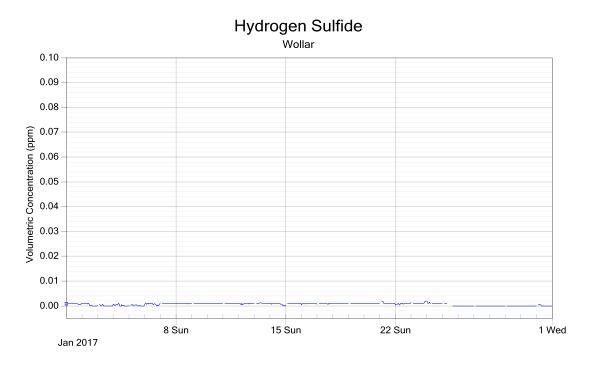



Figure 6: H<sub>2</sub>S - 1 hour data

### **Report No: DAT11654**

**Peabody Energy** 



### Benzene, Toluene and p-Xylene

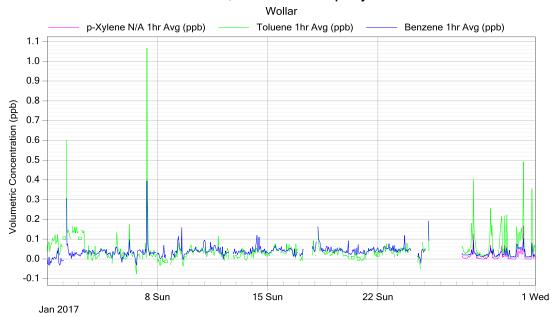



Figure 7: BTX - 1 hour data

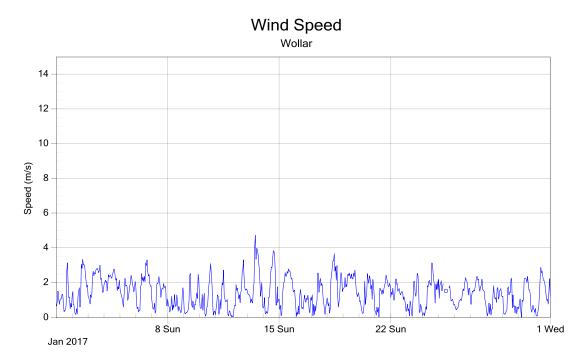



Figure 8: WS - 1 hour data

# **Report No: DAT11654**

**Peabody Energy** 



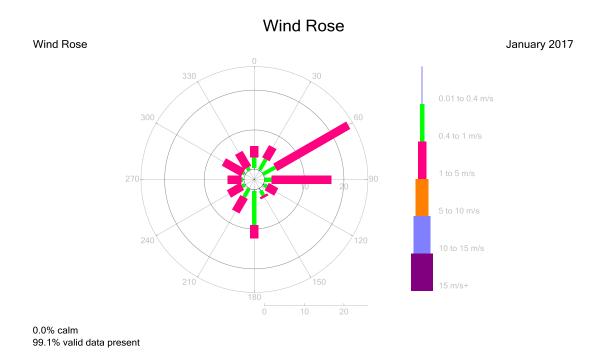



Figure 9: Wind Rose

**Report No: DAT11654** 

**Peabody Energy** 



# 7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

**Table 10: Wollar Valid Data Exception Table** 

| Start Date          | End Date            | Reason                                                           | Change<br>Details                     | User<br>Name | Change<br>Date |
|---------------------|---------------------|------------------------------------------------------------------|---------------------------------------|--------------|----------------|
| 1/01/2017<br>0:00   | 25/01/2017<br>7:20  | Data outside of calibration tolerance                            | ХуІ                                   | СТ           | 28/02/2017     |
| 2/01/2017<br>1:00   | 24/01/2017<br>19:20 | Data intermittent was not detected by the analyser               | Ben, Tol                              | СТ           | 28/02/2017     |
| 8/01/2017<br>14:05  | 24/01/2017<br>13:00 | Intermittent instrument out of operation mode                    | Ben, Tol                              | СТ           | 28/02/2017     |
| 24/01/2017<br>7:35  | 24/01/2017<br>8:05  | Brief power interruption and subsequent instrument stabilisation | All parameters                        | СТ           | 28/02/2017     |
| 25/01/2017<br>7:55  | 25/01/2017<br>16:00 | Scheduled 6 monthly maintenance - replaced BTX analyser          | All parameters                        | СТ           | 27/02/2017     |
| 25/01/2017<br>16:05 | 27/01/2017<br>7:25  | Continued maintenance. Subsequent instrument stabilisation       | Ben, Tol, Xyl                         | СТ           | 28/02/2017     |
| 27/01/2017<br>6:20  | 27/01/2017<br>17:25 | Cont. 6 monthly maintenance                                      | NO, NO <sub>2</sub> , NO <sub>X</sub> | СТ           | 28/02/2017     |

**Report No: DAT11654** 

**Peabody Energy** 



### 8.0 Report Summary

The data capture for Wollar was below 95% for some measured parameters.

Please refer to Data Capture Percentage Table 9 on page 17 for details, and Table 10 on page 23 for valid data exceptions.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.



**Report No: DAT11654** 

**Peabody Energy** 



# **Appendix 1 - Definitions & Abbreviations**

BTX Benzene, Toluene and *p*-Xylene

H<sub>2</sub>S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO<sub>2</sub> Nitrogen dioxide

NO<sub>x</sub> Oxides of nitrogen

ppb Parts per billion

SO<sub>2</sub> Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

**Report No: DAT11654** 

**Peabody Energy** 



### **Appendix 2 - Explanation of Exception Table**

**Automatic background check** refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

**Calibration check outside tolerance** refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

**Commissioning** refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

**Data transmission error** refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

**Equipment malfunction/instrument fault** refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

**Gap in data/data not available** refers to a period of time when either data has been lost or could not be collected.

**Instrument Alarm** refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

**Instrument out of service** refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

**Linear offset or multiplier** refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

**Report No: DAT11654** 

#### **Peabody Energy**



**Logger error** refers to when an error occurs and instrument readings are not correctly recorded by the logger.

**Maintenance** refers to a period of time when the logger / instrument was switched off due to maintenance.

**Overnight span/zero out of tolerance** refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

**Power Interruption** refers to no power to the station therefore no data was collected at this time.

**Remote Calibration** refers to when a technician remotely connects to the station and manually performs a span check.

**Static offset or multiplier** refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

**Warm up after power interruption** refers to the startup period of an instrument after power has been restored.



Accredited for compliance with ISO/IEC 17025 - Testing



Accreditation No. 14184.

# **Peabody Energy**

# Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1<sup>st</sup> February – 28<sup>th</sup> February 2017

Report No.: DAT11723

Report issue date: 28th March 2017

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

**Report No: DAT11723** 

**Peabody Energy** 



| Customer Details         |                                  |  |
|--------------------------|----------------------------------|--|
| Customer                 | Peabody Energy Australia         |  |
| Contact name             | Clark Potter                     |  |
| Address                  | Locked Bag 2005, Mudgee 2850 NSW |  |
| Email                    | cpotter@peabodyenergy.com        |  |
| Phone +61 (02) 6370 2527 |                                  |  |

| Revision History |           |            |               |
|------------------|-----------|------------|---------------|
| Revision         | Report ID | Date       | Analyst       |
| 0                | DAT11723  | 28/03/2017 | Robyn Edwards |

Report by:

Robyn EDWARDS

REdwards

Approved Signatory:

Jon ALEXANDER

# **Report No: DAT11723**

### **Peabody Energy**



### **Table of Contents**

| (   | Cust | omer I  | Details                     | 2  |
|-----|------|---------|-----------------------------|----|
|     | Revi | sion H  | istory                      | 2  |
| -   | Tabl | e of Co | ontents                     | 3  |
|     | List | of Figu | ires                        | 4  |
|     | List | of Tabl | les                         | 5  |
| 1.0 | )    | Execu   | itive Summary               | 6  |
| 2.0 | )    | Introd  | duction                     | 7  |
| 3.0 | )    | Monit   | toring and Data Collection  | 7  |
|     | 3.1. | Siti    | ng Details                  | 7  |
|     | 3.2. | Мо      | onitored Parameters         | 9  |
|     | 3.3. | Dat     | ta Collection Methods       | 10 |
|     | 3    | .3.1.   | Compliance with Standards   | 11 |
|     | 3    | .3.2.   | Data Acquisition            | 11 |
|     | 3.4. | Dat     | ta Validation and Reporting | 11 |
|     | 3    | .4.1.   | Validation                  | 11 |
|     | 3    | .4.2.   | Reporting                   | 12 |
| 4.0 | )    | Air Qı  | uality Goals                | 13 |
|     | 4.1. | Air     | Quality Summary             | 13 |
| 5.0 | )    | Calibr  | rations and Maintenance     | 14 |
|     | 5.1. | Uni     | its and Uncertainties       | 14 |
|     | 5.2. | Aut     | tomatic Checks              | 15 |
|     | 5.3. | Ma      | intenance                   | 15 |

# **Report No: DAT11723**

### **Peabody Energy**



| 5.3.1. Calib                      | oration & Maintenance Summary Tables | 15 |
|-----------------------------------|--------------------------------------|----|
| 6.0 Results                       |                                      | 17 |
| 6.1. Data Cap                     | ture                                 | 17 |
| 6.2. Graphic F                    | Representations                      | 18 |
| 7.0 Valid Data                    | Exception Tables                     | 23 |
| 8.0 Report Sum                    | nmary                                | 24 |
| Appendix 1 - Defin                | itions & Abbreviations               | 25 |
| Appendix 2 - Expla                | nation of Exception Table            | 26 |
|                                   |                                      |    |
| List of Figures                   |                                      |    |
| Figure 1: Wilpinjor               | ng Mine Monitoring Station Location  | 8  |
| Figure 2: NO - 1 ho               | ur data                              | 18 |
| Figure 3: NO <sub>2</sub> - 1 ho  | our data                             | 19 |
| Figure 4: NO <sub>x</sub> - 1 ho  | our data                             | 19 |
| Figure 5: SO <sub>2</sub> - 1 ho  | ur data                              | 20 |
| Figure 6: H <sub>2</sub> S - 1 ho | ur data                              | 20 |
| Figure 7: BTX - 1 ho              | our data                             | 21 |
| Figure 8: WS - 1 ho               | ur data                              | 21 |
| Figure 9: Wind Rose               | e                                    | 22 |

# **Report No: DAT11723**

## **Peabody Energy**



## **List of Tables**

| Table 1: Wilpinjong Mine monitoring site location                                                                | 7  |
|------------------------------------------------------------------------------------------------------------------|----|
| Table 2: Parameters measured at the Wilpinjong Mine monitoring station                                           | 9  |
| Table 3: Methods                                                                                                 | 10 |
| Table 4: Wilpinjong Air Quality Goals (NEPM)                                                                     | 13 |
| Table 5: Exceedences Recorded                                                                                    | 13 |
| Table 6: Units and Uncertainties                                                                                 | 14 |
| Table 7: Automatic checks for NO, NO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> , H <sub>2</sub> S and BTX | 15 |
| Table 8: Wilpinjong Wollar Maintenance Table                                                                     | 16 |
| Table 9: Data Capture for Wilpinjong Wollar Station                                                              | 17 |
| Table 10: Wollar Valid Data Exception Table                                                                      | 23 |

**Report No: DAT11723** 

**Peabody Energy** 



## 1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for February 2017. Data capture for the different pollutants is presented in Table 9.

**Report No: DAT11723** 

**Peabody Energy** 



#### 2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1<sup>st</sup> March 2013.

This report presents the data for February 2017.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

## 3.0 Monitoring and Data Collection

#### **3.1.** Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

| Site Name | Geographical Coordinates         | Height Above<br>Sea Level (m) |  |
|-----------|----------------------------------|-------------------------------|--|
| Wollar    | Lat: -32.360105 Long: 149.949509 | 366                           |  |

**Report No: DAT11723** 

**Peabody Energy** 



A siting audit was conducted on 27<sup>th</sup> February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.



Figure 1: Wilpinjong Mine Monitoring Station Location

**Report No: DAT11723** 

**Peabody Energy** 



#### 3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

| Parameter Measured                          | Instrument and Measurement Technique       |
|---------------------------------------------|--------------------------------------------|
| BTX (Benzene, Toluene and <i>p</i> -Xylene) | Synspec GC955 - Gas Chromatography         |
| H₂S                                         | Ecotech EC9852 - fluorescence              |
| NO, NO <sub>2</sub> , NO <sub>x</sub>       | Ecotech EC9841 gas phase chemiluminescence |
| SO <sub>2</sub>                             | Ecotech EC9850 – fluorescence              |
| Wind Speed (horizontal, 10m)                | Gill Windsonic                             |
| Wind Direction (10m)                        | Gill Windsonic                             |

**Report No: DAT11723** 

## **Peabody Energy**



#### 3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

**Table 3: Methods** 

| Parameter<br>Measured                                     | Data Collection Methods<br>Used | Description of Method                                                                                                                   |
|-----------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| AS 3580.5.1-2011<br>NO, NO <sub>2</sub> , NO <sub>x</sub> |                                 | Methods for sampling and analysis of ambient air. Method 5.1:  Determination of oxides of nitrogen – chemiluminescence method           |
| 110, 110 <sub>2</sub> , 110 <sub>x</sub>                  | Ecotech Laboratory<br>Manual    | In-house method 6.1 Oxides of nitrogen by chemiluminescence                                                                             |
| SO <sub>2</sub>                                           | AS 3580.4.1-2008                | Methods for sampling and analysis of ambient air. Method 4.1:  Determination of sulfur dioxide – Direct reading instrumental method     |
| 302                                                       | Ecotech Laboratory<br>Manual    | In-house method 6.2 Sulfur dioxide by fluorescence                                                                                      |
| H <sub>2</sub> S                                          | Ecotech Laboratory<br>Manual    | In-house method 6.5 Hydrogen sulfide by fluorescence                                                                                    |
| ВТХ                                                       | Manufacturer's<br>Instructions  | Gas Chromatography Synspec CG955 Series Manual                                                                                          |
| Vector Wind<br>Speed                                      | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |
| (Horizontal)                                              | Ecotech Laboratory<br>Manual    | In-house method 8.1 Wind speed (Horizontal) by anemometer                                                                               |
| AS 3580.14-2014<br>Vector Wind                            |                                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |
| Direction                                                 | Ecotech Laboratory<br>Manual    | In-house method 8.3 Wind direction by anemometer                                                                                        |

**Report No: DAT11723** 

**Peabody Energy** 



#### 3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

• Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.

#### 3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis<sup>TM</sup> version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

#### 3.4. Data Validation and Reporting

#### 3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

**Report No: DAT11723** 

#### **Peabody Energy**



#### 3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report Feb-17.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

**Report No: DAT11723** 

**Peabody Energy** 



# 4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

| Parameter       | Time Period                | Exceedence<br>Level | Units        | Maximum allowable exceedences |
|-----------------|----------------------------|---------------------|--------------|-------------------------------|
| NO <sub>2</sub> | 1 year                     | 30                  | ppb          | None                          |
| NO <sub>2</sub> | 1 hour 120 ppb 1 day a yea |                     | 1 day a year |                               |
| SO <sub>2</sub> | 1 hour                     | 200                 | ppb          | 1 day a year                  |
| SO <sub>2</sub> | 1 day                      | 80                  | ppb          | 1 day a year                  |
| SO <sub>2</sub> | 1 year                     | 20                  | ppb          | None                          |

#### 4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

| Parameter       | Time Period | Value of Exceedence | Date of Exceedence |
|-----------------|-------------|---------------------|--------------------|
| NO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 day       | -                   | -                  |

**Report No: DAT11723** 

**Peabody Energy** 



#### 5.0 Calibrations and Maintenance

#### 5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

**Table 6: Units and Uncertainties** 

| Parameter                                          | Units | Resolution | Uncertainty                                                                   | Measurement<br>Range <sup>1</sup>                |
|----------------------------------------------------|-------|------------|-------------------------------------------------------------------------------|--------------------------------------------------|
| NO, NO <sub>x</sub><br>(EC9841)                    | ppm   | 1 ppb      | ± 14 ppb K factor of 2.01  0 ppb to 5                                         |                                                  |
| NO <sub>2</sub> (EC9841)                           | ppm   | 1 ppb      | ± 16 ppb<br>K factor of 2.01 0 ppb to 500                                     |                                                  |
| SO <sub>2</sub> (EC9850)                           | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                                  | 0 ppb to 500 ppb                                 |
| H₂S                                                | ppm   | 1 ppb      | 15.2% of reading or ± 19 ppb, whichever is greater 0 ppb to 500 K factor of 2 |                                                  |
| Benzene,<br>Toluene and <i>p</i> -<br>Xylene (BTX) | ppb   | 0.03 ppb   | 15.1% of reading or 3.8ppb, whichever is greater K factor of 2                | 0 ppb to 300 ppb                                 |
| Vector Wind<br>Speed                               | m/s   | 0.1 m/s    | ±0.01 m/s or 2.0% of reading, whichever is greater (K factor of 1.96)         | 0 m/s to 60 m/s                                  |
| Vector Wind<br>Direction                           | Deg   | 1 deg      | ±2 deg<br>K factor of 2.11                                                    | 0 deg to 360 deg<br>Starting threshold:<br>0 m/s |

<sup>&</sup>lt;sup>1</sup> Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO<sub>2</sub> and NO<sub>x</sub> by EC 9841 and SO<sub>2</sub> by EC9850 are calculated based on a measurement range of 0-125 ppb.

**Report No: DAT11723** 

**Peabody Energy** 



#### 5.2. Automatic Checks

Automatic span and zero calibration checks run every night for NO, NO<sub>2</sub>, NO<sub>x</sub> and SO<sub>2</sub>, every  $2^{nd}$  night for H<sub>2</sub>S and weekly for BTX.

Background checks run each night for SO<sub>2</sub> and H<sub>2</sub>S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S and BTX

| Parameter                             | Span / Zero cycle time<br>(approximate)  | Background cycle time<br>(approximate) |
|---------------------------------------|------------------------------------------|----------------------------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 00:45 to 01:25 every day                 | N/A                                    |
| SO <sub>2</sub>                       | 00:45 to 01:25 every day                 | 23:45 to 23:50 every day               |
| H₂S                                   | 01:35 to 02:35 every 2 <sup>nd</sup> day | 23:45 to 23:50 every day               |
| BTX                                   | 02:45 to 05:10 every 7 <sup>th</sup> day | N/A                                    |

#### 5.3. Maintenance

Scheduled monthly maintenance was performed on 27<sup>th</sup> February.

#### 5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

**Report No: DAT11723** 

## **Peabody Energy**



Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

**Table 8: Wilpinjong Wollar Maintenance Table** 

| Parameter                             | Date of Last<br>Maintenance | Maintenance Type | Date of Last<br>Calibration | Calibration<br>Cycle |
|---------------------------------------|-----------------------------|------------------|-----------------------------|----------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 27/02/2017                  | Monthly          | 27/02/2017                  | Monthly              |
| SO <sub>2</sub>                       | 27/02/2017                  | Monthly          | 27/02/2017                  | Monthly              |
| H <sub>2</sub> S                      | 27/02/2017                  | Monthly          | 27/02/2017                  | Monthly              |
| ВТХ                                   | 27/02/2017                  | Monthly          | 27/01/2017                  | Yearly               |
| Wind Speed                            | 27/02/2017                  | Monthly          | 21/05/2015                  | 2-Yearly             |
| Wind Direction                        | 27/02/2017                  | Monthly          | 21/05/2015                  | 2-Yearly             |

# **Report No: DAT11723**

**Peabody Energy** 



#### 6.0 Results

#### 6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for February 2017. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

**Table 9: Data Capture for Wilpinjong Wollar Station** 

| Parameter                             | Data Capture % |
|---------------------------------------|----------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 95.5           |
| SO <sub>2</sub>                       | 95.2           |
| H₂S                                   | 95.3           |
| Benzene                               | 96.1           |
| Toluene                               | 96.1           |
| <i>p</i> -Xylene                      | 96.1           |
| WS, WD                                | 98.8           |

**Report No: DAT11723** 

**Peabody Energy** 



## 6.2. Graphic Representations

Validated 5 minute data for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

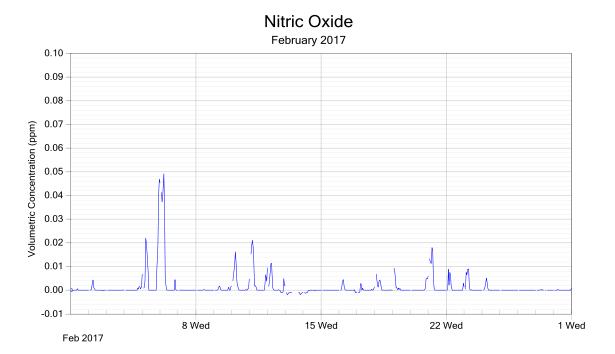



Figure 2: NO - 1 hour data

**Report No: DAT11723** 

**Peabody Energy** 



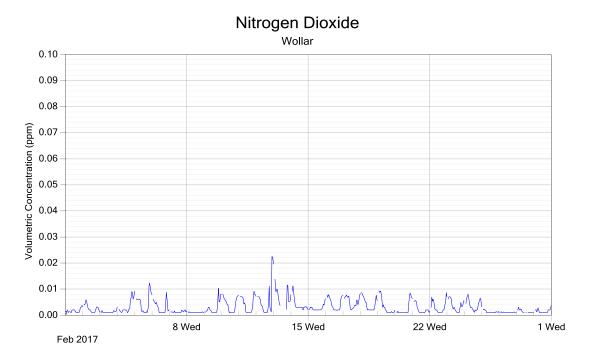



Figure 3: NO<sub>2</sub> - 1 hour data

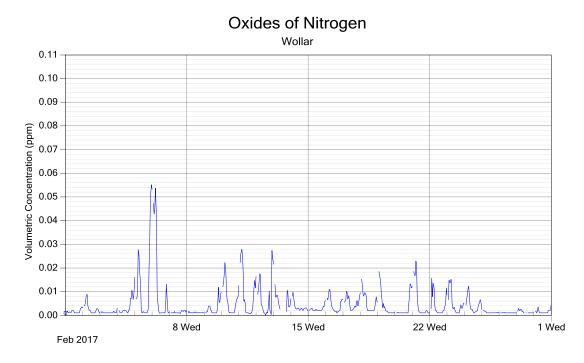



Figure 4: NO<sub>X</sub> - 1 hour data

**Report No: DAT11723** 

**Peabody Energy** 



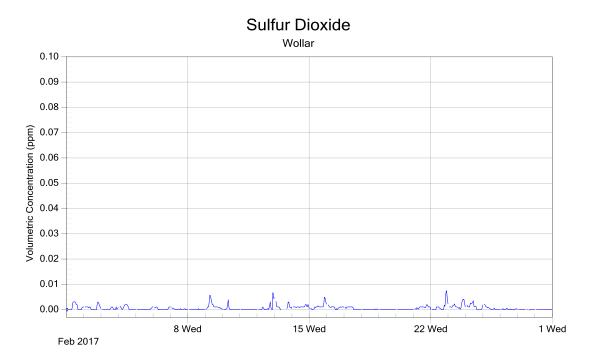



Figure 5: SO<sub>2</sub> - 1 hour data

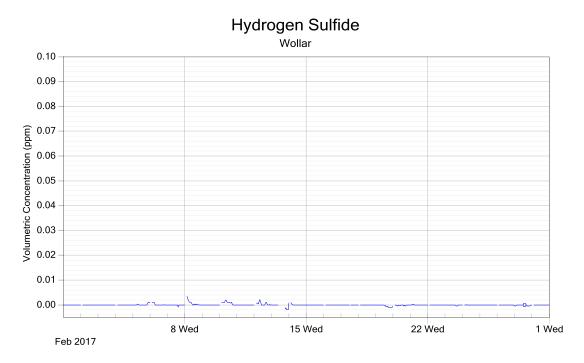



Figure 6: H<sub>2</sub>S - 1 hour data

**Report No: DAT11723** 

**Peabody Energy** 



## Benzene, Toluene and p-Xylene

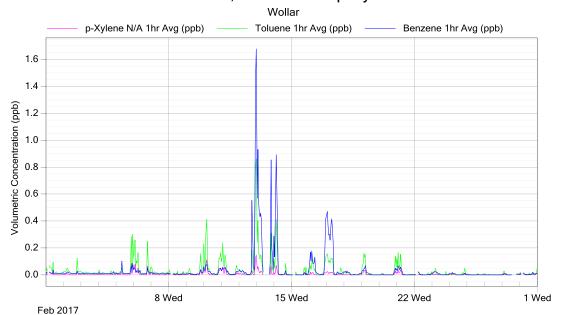



Figure 7: BTX - 1 hour data

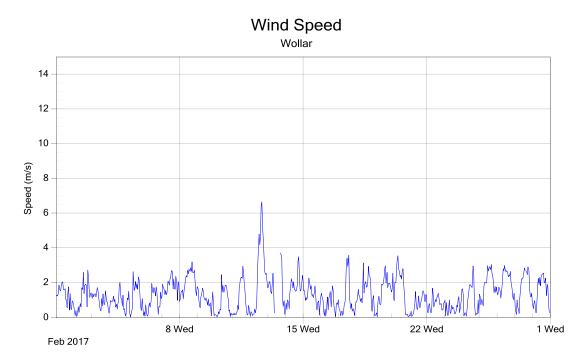



Figure 8: WS - 1 hour data

# **Report No: DAT11723**

**Peabody Energy** 



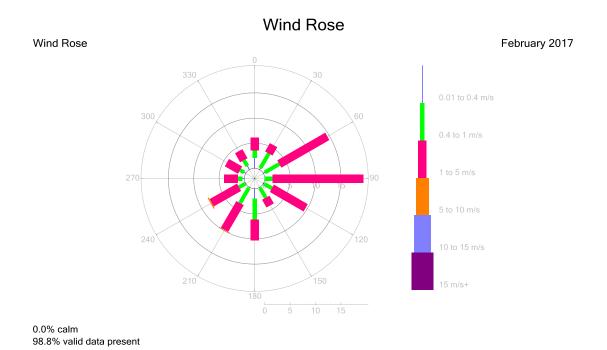



Figure 9: Wind Rose

**Report No: DAT11723** 

**Peabody Energy** 



# 7.0 Valid Data Exception Tables

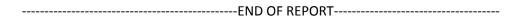
The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

**Table 10: Wollar Valid Data Exception Table** 

| Start Date          | End Date            | Reason                                                                       | Change<br>Details | User<br>Name | Change<br>Date |
|---------------------|---------------------|------------------------------------------------------------------------------|-------------------|--------------|----------------|
| 07/02/2017<br>14:55 | 17/02/2017<br>14:05 | Intermittent brief power interruptions and instrument stabilisation          | All parameters    | RE           | 27/03/2017     |
| 13/02/2017<br>09:50 | 13/02/2017<br>18:25 | Power interruption and subsequent instrument stabilisation                   | All parameters    | RE           | 27/03/2017     |
| 27/02/2017<br>11:50 | 27/02/2017<br>19:30 | Scheduled monthly maintenance and stabilisation – intermittent data affected | All parameters    | RE           | 27/03/2017     |

**Report No: DAT11723** 

**Peabody Energy** 




## 8.0 Report Summary

The data capture for Wollar was above 95% for the reporting month.

Please refer to Data Capture Percentage Table 9 on page 17 for details, and Table 10 on page 23 for valid data exceptions.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.



**Report No: DAT11723** 

**Peabody Energy** 



# **Appendix 1 - Definitions & Abbreviations**

BTX Benzene, Toluene and *p*-Xylene

H<sub>2</sub>S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO<sub>2</sub> Nitrogen dioxide

NO<sub>x</sub> Oxides of nitrogen

ppb Parts per billion

SO<sub>2</sub> Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

**Report No: DAT11723** 

**Peabody Energy** 



## **Appendix 2 - Explanation of Exception Table**

**Automatic background check** refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

**Calibration check outside tolerance** refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

**Commissioning** refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

**Data transmission error** refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

**Equipment malfunction/instrument fault** refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

**Gap in data/data not available** refers to a period of time when either data has been lost or could not be collected.

**Instrument Alarm** refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

**Instrument out of service** refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

**Linear offset or multiplier** refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

**Report No: DAT11723** 

#### **Peabody Energy**



**Logger error** refers to when an error occurs and instrument readings are not correctly recorded by the logger.

**Maintenance** refers to a period of time when the logger / instrument was switched off due to maintenance.

**Overnight span/zero out of tolerance** refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

**Power Interruption** refers to no power to the station therefore no data was collected at this time.

**Remote Calibration** refers to when a technician remotely connects to the station and manually performs a span check.

**Static offset or multiplier** refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

**Warm up after power interruption** refers to the startup period of an instrument after power has been restored.



Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation
No. 14184.



# **Peabody Energy**

# Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1<sup>st</sup> March – 31<sup>st</sup> March 2017

Report No.: DAT11841

Report issue date: 28th April 2017

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

**Report No: DAT11723** 

**Peabody Energy** 



|              | Customer Details                 |  |  |
|--------------|----------------------------------|--|--|
| Customer     | Peabody Energy Australia         |  |  |
| Contact name | Clark Potter                     |  |  |
| Address      | Locked Bag 2005, Mudgee 2850 NSW |  |  |
| Email        | cpotter@peabodyenergy.com        |  |  |
| Phone        | +61 (02) 6370 2527               |  |  |

| Revision History |           |            |               |  |
|------------------|-----------|------------|---------------|--|
| Revision         | Report ID | Date       | Analyst       |  |
| 0                | DAT11841  | 28/04/2017 | Robyn Edwards |  |

Report by:

Robyn EDWARDS

REdwards

Approved Signatory:

Jon ALEXANDER

# **Report No: DAT11723**

## **Peabody Energy**



## **Table of Contents**

|    | Cust | tomer    | Details                     | 2    |
|----|------|----------|-----------------------------|------|
|    | Revi | ision H  | istory                      | 2    |
|    | Tabl | le of Co | ontents                     | 3    |
|    | List | of Figu  | ıres                        | 4    |
|    | List | of Tabl  | les                         | 5    |
| 1. | .0   | Execu    | ıtive Summary               | 6    |
| 2. | .0   | Intro    | duction                     | 7    |
| 3. | .0   | Moni     | toring and Data Collection  | 7    |
|    | 3.1. | Siti     | ing Details                 | 7    |
|    | 3.2. | Мо       | onitored Parameters         | 9    |
|    | 3.3. | Dat      | ta Collection Methods       | . 10 |
|    | 3    | .3.1.    | Compliance with Standards   | . 11 |
|    | 3    | .3.2.    | Data Acquisition            | . 11 |
|    | 3.4. | Dat      | ta Validation and Reporting | . 11 |
|    | 3    | .4.1.    | Validation                  | . 11 |
|    | 3    | .4.2.    | Reporting                   | . 12 |
| 4. | .0   | Air Qı   | uality Goals                | .13  |
|    | 4.1. | Air      | Quality Summary             | . 13 |
| 5. | .0   | Calibr   | rations and Maintenance     | .14  |
|    | 5.1. | Uni      | its and Uncertainties       | . 14 |
|    | 5.2. | Aut      | tomatic Checks              | . 15 |
|    | 5.3. | Ma       | nintenance                  | . 15 |

# Report No: DAT11723

## **Peabody Energy**



| 5.3.1. Calibration & Maintenance Summary Tables       | 15 |
|-------------------------------------------------------|----|
| 6.0 Results                                           | 17 |
| 6.1. Data Capture                                     | 17 |
| 6.2. Graphic Representations                          | 18 |
| 7.0 Valid Data Exception Tables                       | 23 |
| 8.0 Report Summary                                    | 24 |
| Appendix 1 - Definitions & Abbreviations              | 25 |
| Appendix 2 - Explanation of Exception Table           | 26 |
|                                                       |    |
| List of Figures                                       |    |
| Figure 1: Wilpinjong Mine Monitoring Station Location | 8  |
| Figure 2: NO - 1 hour data                            | 18 |
| Figure 3: NO <sub>2</sub> - 1 hour data               | 19 |
| Figure 4: NO <sub>x</sub> - 1 hour data               | 19 |
| Figure 5: SO <sub>2</sub> - 1 hour data               | 20 |
| Figure 6: H₂S - 1 hour data                           | 20 |
| Figure 7: BTX - 1 hour data                           | 21 |
| Figure 8: WS - 1 hour data                            | 21 |
| Figure 9: Wind Rose                                   | 22 |

# **Report No: DAT11723**

## **Peabody Energy**



## **List of Tables**

| Table 1: Wilpinjong Mine monitoring site location                                                                | 7  |
|------------------------------------------------------------------------------------------------------------------|----|
| Table 2: Parameters measured at the Wilpinjong Mine monitoring station                                           | 9  |
| Table 3: Methods                                                                                                 | 10 |
| Table 4: Wilpinjong Air Quality Goals (NEPM)                                                                     | 13 |
| Table 5: Exceedences Recorded                                                                                    | 13 |
| Table 6: Units and Uncertainties                                                                                 | 14 |
| Table 7: Automatic checks for NO, NO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> , H <sub>2</sub> S and BTX | 15 |
| Table 8: Wilpinjong Wollar Maintenance Table                                                                     | 16 |
| Table 9: Data Capture for Wilpinjong Wollar Station                                                              | 17 |
| Table 10: Wollar Valid Data Exception Table                                                                      | 23 |

**Report No: DAT11723** 

**Peabody Energy** 



## 1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO,  $NO_2$ ,  $NO_x$ ,  $SO_2$ ,  $H_2S$ , Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for March 2017. Data capture for the different pollutants is presented in Table 9.

**Report No: DAT11723** 

**Peabody Energy** 



#### 2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1<sup>st</sup> March 2013.

This report presents the data for March 2017.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

## 3.0 Monitoring and Data Collection

#### **3.1.** Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

| Site Name | Geographical Coordinates         | Height Above<br>Sea Level (m) |
|-----------|----------------------------------|-------------------------------|
| Wollar    | Lat: -32.360105 Long: 149.949509 | 366                           |

## **Report No: DAT11723**

**Peabody Energy** 



A siting audit was conducted on 27<sup>th</sup> February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.



Figure 1: Wilpinjong Mine Monitoring Station Location

**Report No: DAT11723** 

**Peabody Energy** 



#### 3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

| Parameter Measured                             | Instrument and Measurement Technique       |  |  |
|------------------------------------------------|--------------------------------------------|--|--|
| BTX<br>(Benzene, Toluene and <i>p</i> -Xylene) | Synspec GC955 - Gas Chromatography         |  |  |
| H₂S                                            | Ecotech EC9852 - fluorescence              |  |  |
| NO, NO <sub>2</sub> , NO <sub>x</sub>          | Ecotech EC9841 gas phase chemiluminescence |  |  |
| SO <sub>2</sub>                                | Ecotech EC9850 – fluorescence              |  |  |
| Wind Speed (horizontal, 10m)                   | Gill Windsonic                             |  |  |
| Wind Direction (10m)                           | Gill Windsonic                             |  |  |

**Report No: DAT11723** 

## **Peabody Energy**



#### 3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

**Table 3: Methods** 

| Parameter<br>Measured                    | Data Collection Methods<br>Used | Description of Method                                                                                                                   |  |  |
|------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub>    | AS 3580.5.1-2011                | Methods for sampling and analysis of ambient air. Method 5.1:  Determination of oxides of nitrogen – chemiluminescence method           |  |  |
| 110, 110 <sub>2</sub> , 110 <sub>x</sub> | Ecotech Laboratory<br>Manual    | In-house method 6.1 Oxides of nitrogen by chemiluminescence                                                                             |  |  |
| SO <sub>2</sub>                          | AS 3580.4.1-2008                | Methods for sampling and analysis of ambient air. Method 4.1:  Determination of sulfur dioxide – Direct reading instrumental method     |  |  |
| 302                                      | Ecotech Laboratory<br>Manual    | In-house method 6.2 Sulfur dioxide by fluorescence                                                                                      |  |  |
| H <sub>2</sub> S                         | Ecotech Laboratory<br>Manual    | In-house method 6.5 Hydrogen sulfide by fluorescence                                                                                    |  |  |
| ВТХ                                      | Manufacturer's<br>Instructions  | Gas Chromatography Synspec CG955 Series Manual                                                                                          |  |  |
| Vector Wind<br>Speed                     | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |  |
| (Horizontal)                             | Ecotech Laboratory<br>Manual    | In-house method 8.1 Wind speed (Horizontal) by anemometer                                                                               |  |  |
| Vector Wind                              | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |  |
| Direction                                | Ecotech Laboratory<br>Manual    | In-house method 8.3 Wind direction by anemometer                                                                                        |  |  |

**Report No: DAT11723** 

**Peabody Energy** 



#### 3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

• Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.

#### 3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis<sup>TM</sup> version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

#### 3.4. Data Validation and Reporting

#### 3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

**Report No: DAT11723** 

#### **Peabody Energy**



#### 3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report Mar-17.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

**Report No: DAT11723** 

**Peabody Energy** 



# 4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

| Parameter       | Time Period | Exceedence<br>Level | Units | Maximum allowable exceedences |
|-----------------|-------------|---------------------|-------|-------------------------------|
| NO <sub>2</sub> | 1 year      | 30                  | ppb   | None                          |
| NO <sub>2</sub> | 1 hour      | 120                 | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 hour      | 200                 | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 day       | 80                  | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 year      | 20                  | ppb   | None                          |

#### 4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

| Parameter       | Time Period | Value of Exceedence | Date of Exceedence |
|-----------------|-------------|---------------------|--------------------|
| NO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 day       | -                   | -                  |

**Report No: DAT11723** 

**Peabody Energy** 



#### 5.0 Calibrations and Maintenance

#### 5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

**Table 6: Units and Uncertainties** 

| Parameter                                          | Units | Resolution | Uncertainty                                                                | Measurement<br>Range <sup>1</sup>                |
|----------------------------------------------------|-------|------------|----------------------------------------------------------------------------|--------------------------------------------------|
| NO, NO <sub>x</sub><br>(EC9841)                    | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                               | 0 ppb to 500 ppb                                 |
| NO <sub>2</sub> (EC9841)                           | ppm   | 1 ppb      | ± 16 ppb<br>K factor of 2.01                                               | 0 ppb to 500 ppb                                 |
| SO <sub>2</sub> (EC9850)                           | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                               | 0 ppb to 500 ppb                                 |
| H <sub>2</sub> S                                   | ppm   | 1 ppb      | 15.2% of reading or ± 19 ppb, whichever is greater  K factor of 2          | 0 ppb to 500 ppb                                 |
| Benzene,<br>Toluene and <i>p</i> -<br>Xylene (BTX) | ppb   | 0.03 ppb   | 15.1% of reading or 3.8ppb, whichever is greater  K factor of 2            | 0 ppb to 300 ppb                                 |
| Vector Wind<br>Speed                               | m/s   | 0.1 m/s    | $\pm 0.01$ m/s or 2.0% of reading, whichever is greater (K factor of 1.96) | 0 m/s to 60 m/s                                  |
| Vector Wind<br>Direction                           | Deg   | 1 deg      | ±2 deg<br>K factor of 2.11                                                 | 0 deg to 360 deg<br>Starting threshold:<br>0 m/s |

 $<sup>^{1}</sup>$  Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO<sub>2</sub> and NO<sub>x</sub> by EC 9841 and SO<sub>2</sub> by EC9850 are calculated based on a measurement range of 0-125 ppb.

**Report No: DAT11723** 

**Peabody Energy** 



#### 5.2. Automatic Checks

Automatic span and zero calibration checks run every night for NO, NO<sub>2</sub>, NO<sub>x</sub> and SO<sub>2</sub>, every  $2^{nd}$  night for H<sub>2</sub>S and weekly for BTX.

Background checks run each night for SO<sub>2</sub> and H<sub>2</sub>S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S and BTX

| Parameter                             | Span / Zero cycle time<br>(approximate)  | Background cycle time<br>(approximate) |  |
|---------------------------------------|------------------------------------------|----------------------------------------|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 00:45 to 01:25 every day                 | N/A                                    |  |
| SO <sub>2</sub>                       | 00:45 to 01:25 every day                 | 23:45 to 23:50 every day               |  |
| H₂S                                   | 01:35 to 02:35 every 2 <sup>nd</sup> day | 23:45 to 23:50 every day               |  |
| ВТХ                                   | 02:45 to 05:10 every day                 | N/A                                    |  |

#### **5.3.** Maintenance

Scheduled monthly maintenance was performed on  $14^{th}$  March. An additional remote calibration was performed on  $19^{th}$  March on the  $NO_x$  analyser, and a further unscheduled site visit was made on  $24^{th}$  March to resolve issues with the  $H_2S$  converter.

#### 5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

# **Report No: DAT11723**

#### **Peabody Energy**



Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

**Table 8: Wilpinjong Wollar Maintenance Table** 

| Parameter                             | Date of Last<br>Maintenance | Maintenance Type | Date of Last<br>Calibration | Calibration<br>Cycle |
|---------------------------------------|-----------------------------|------------------|-----------------------------|----------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 19/03/2017                  | Unscheduled      | 19/03/2017                  | Monthly              |
| SO <sub>2</sub>                       | 14/03/2017                  | Monthly          | 27/02/2017                  | Monthly              |
| H <sub>2</sub> S                      | 24/03/2017                  | Unscheduled      | 24/03/2017 <sup>2</sup>     | Monthly              |
| ВТХ                                   | 27/02/2017                  | Monthly          | 27/01/2017                  | Yearly               |
| Wind Speed                            | 14/03/2017                  | Monthly          | 21/05/2015                  | 2-Yearly             |
| Wind Direction                        | 14/03/2017                  | Monthly          | 21/05/2015                  | 2-Yearly             |

<sup>&</sup>lt;sup>2</sup> Calibration to be confirmed

## **Report No: DAT11723**

**Peabody Energy** 



#### 6.0 Results

#### 6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for March 2017. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

**Table 9: Data Capture for Wilpinjong Wollar Station** 

| Parameter                             | Data Capture % |
|---------------------------------------|----------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 95.4           |
| SO <sub>2</sub>                       | 95.2           |
| H₂S                                   | 92.5           |
| Benzene                               | 88.2           |
| Toluene                               | 88.2           |
| <i>p</i> -Xylene                      | 88.2           |
| WS, WD                                | 99.0           |

**Report No: DAT11723** 

**Peabody Energy** 



## 6.2. Graphic Representations

Validated 5 minute data for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

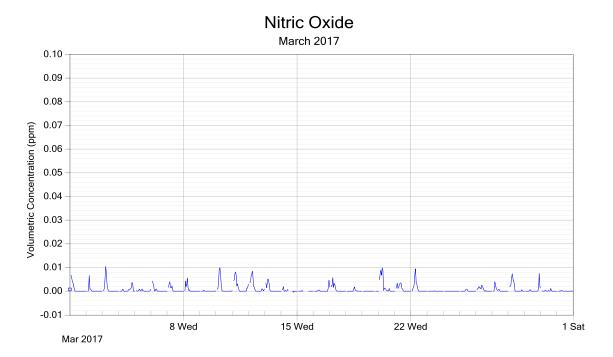



Figure 2: NO - 1 hour data

## **Report No: DAT11723**



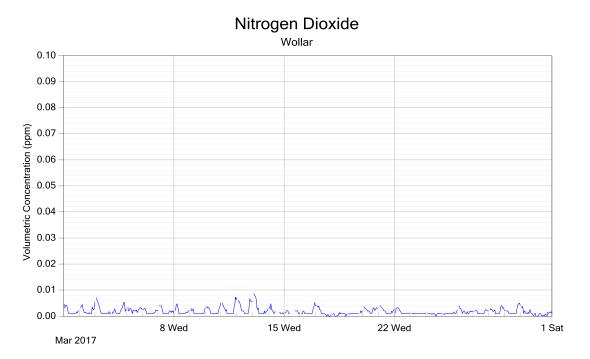



Figure 3: NO<sub>2</sub> - 1 hour data

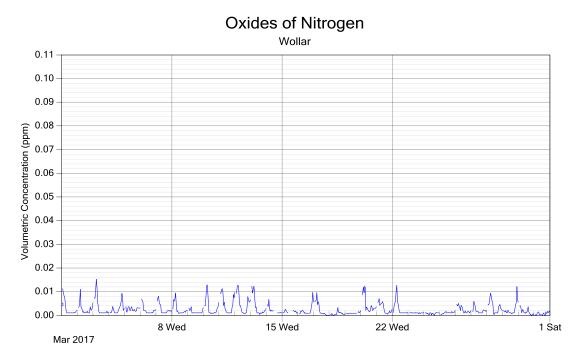



Figure 4: NO<sub>X</sub> - 1 hour data

**Report No: DAT11723** 



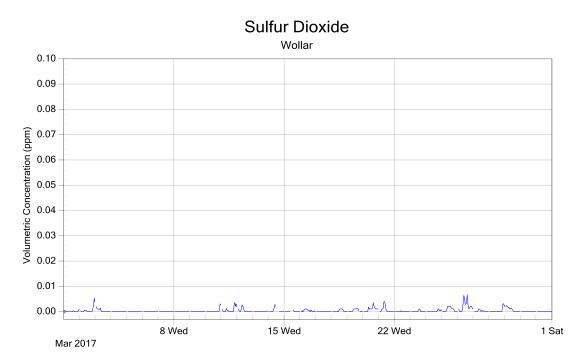



Figure 5: SO<sub>2</sub> - 1 hour data

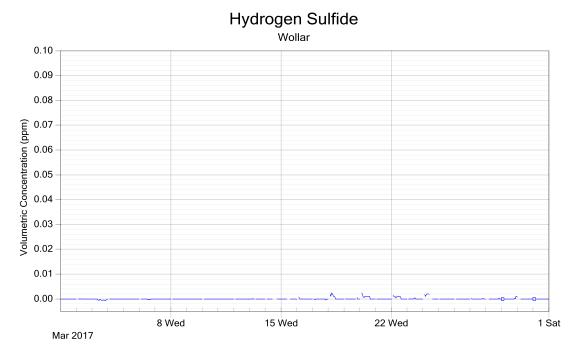



Figure 6: H<sub>2</sub>S - 1 hour data

**Report No: DAT11723** 

**Peabody Energy** 



#### Benzene, Toluene and p-Xylene

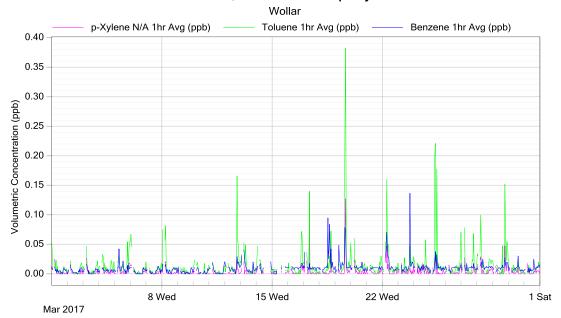



Figure 7: BTX - 1 hour data

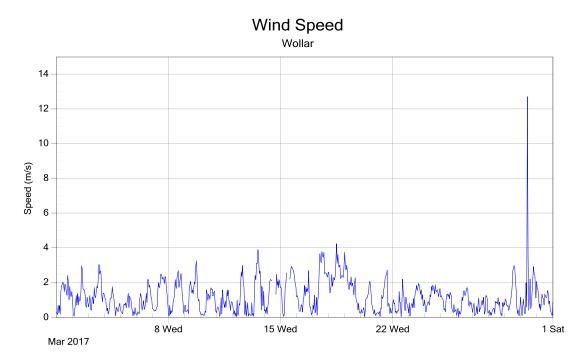



Figure 8: WS - 1 hour data

# **Report No: DAT11723**



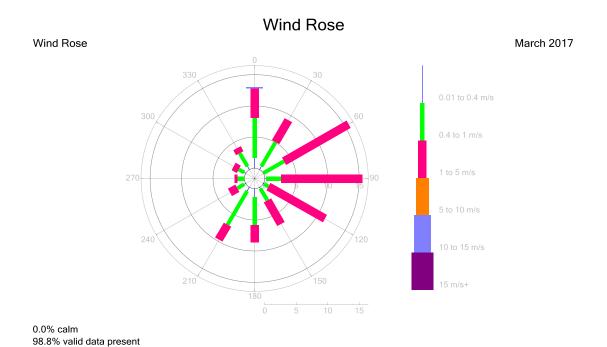



Figure 9: Wind Rose

**Report No: DAT11723** 

**Peabody Energy** 



# 7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

**Table 10: Wollar Valid Data Exception Table** 

| Start Date          | End Date            | Reason                                                                                                       | Change<br>Details                     | User<br>Name | Change<br>Date |
|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|----------------|
| 10/03/2017<br>13:35 | 10/03/2017<br>13:55 | Power interruption                                                                                           | втх                                   | RE           | 24/04/2017     |
| 13/03/2017<br>08:50 | 14/03/2017<br>17:30 | Intermittent short H <sub>2</sub> S instrument power interruption and stabilisation                          | H₂S, BTX, WS<br>& WD                  | RE           | 24/04/2017     |
| 13/03/2017<br>09:05 | 14/03/2017<br>17:45 | Automatic instrument checks following short H <sub>2</sub> S instrument power interruption and stabilisation | SO <sub>2</sub> & H <sub>2</sub> S    | RE           | 24/04/2017     |
| 14/03/2017<br>12:15 | 14/03/2017<br>16:35 | Scheduled monthly maintenance – intermittent data affected                                                   | All parameters                        | RE           | 24/04/2017     |
| 14/03/2017<br>16:35 | 15/03/2017<br>19:20 | Instrument intermittently in service mode                                                                    | втх                                   | RE           | 24/04/2017     |
| 15/03/2017<br>06:15 | 15/03/2017<br>19:15 | Continued scheduled maintenance – intermittent data affected                                                 | All parameters                        | RE           | 24/04/2017     |
| 15/03/2017<br>16:25 | 19/03/2017<br>19:00 | Static multiplier of +1.06 applied to correct overnight span values  NO, NO <sub>2</sub> , NO <sub>X</sub>   |                                       | RE           | 24/04/2017     |
| 15/03/2017<br>16:25 | 31/03/2017<br>23:55 | Static offset of +0.002ppm applied to correct zero baseline                                                  | NO <sub>2</sub> & NO <sub>x</sub>     | RE           | 24/04/2017     |
| 16/03/2017<br>00:45 | 27/03/2017<br>01:25 | Intermittent data affected by overnight calibration cycles on NO <sub>x</sub> and SO <sub>2</sub> analyser   | H₂S                                   | RE           | 24/04/2017     |
| 19/03/2017<br>19:05 | 19/03/2017<br>19:45 | Unscheduled maintenance – calibrations performed remotely to correct spans                                   | NO, NO <sub>2</sub> , NO <sub>X</sub> | RE           | 24/04/2017     |
| 24/03/2017<br>10:45 | 24/03/2017<br>14:40 | Unscheduled maintenance due to absence of overnight spans                                                    | H₂S                                   | RE           | 24/04/2017     |

**Report No: DAT11723** 

**Peabody Energy** 



| Start Date          | End Date            | Reason                                                    | Change<br>Details | User<br>Name | Change<br>Date |
|---------------------|---------------------|-----------------------------------------------------------|-------------------|--------------|----------------|
| 28/03/2017<br>02:45 | 30/03/2017<br>04:40 | Data affected daily during BTX overnight calibration span | H <sub>2</sub> S  | RE           | 24/04/2017     |

## 8.0 Report Summary

The data capture for Wollar was above 95% for the reporting month; with the exception of  $H_2S$ , and BTX.

Please refer to Data Capture Percentage Table 9 on page 17 for details, and Table 10 on page 23 for valid data exceptions.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

------END OF REPORT-----

**Report No: DAT11723** 

**Peabody Energy** 



# **Appendix 1 - Definitions & Abbreviations**

BTX Benzene, Toluene and *p*-Xylene

H<sub>2</sub>S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO<sub>2</sub> Nitrogen dioxide

NO<sub>x</sub> Oxides of nitrogen

ppb Parts per billion

SO<sub>2</sub> Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

**Report No: DAT11723** 

**Peabody Energy** 



## **Appendix 2 - Explanation of Exception Table**

**Automatic background check** refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

**Calibration check outside tolerance** refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

**Commissioning** refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

**Data transmission error** refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

**Equipment malfunction/instrument fault** refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

**Gap in data/data not available** refers to a period of time when either data has been lost or could not be collected.

**Instrument Alarm** refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

**Instrument out of service** refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

**Linear offset or multiplier** refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

**Report No: DAT11723** 

#### **Peabody Energy**



**Logger error** refers to when an error occurs and instrument readings are not correctly recorded by the logger.

**Maintenance** refers to a period of time when the logger / instrument was switched off due to maintenance.

**Overnight span/zero out of tolerance** refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

**Power Interruption** refers to no power to the station therefore no data was collected at this time.

**Remote Calibration** refers to when a technician remotely connects to the station and manually performs a span check.

**Static offset or multiplier** refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.



Accredited for compliance with ISO/IEC 17025 - Testing



Accreditation No. 14184.

# **Peabody Energy**

# **Wilpinjong Coal** Wollar

**Ambient Air Quality Monitoring** Validated Report

1<sup>st</sup> April – 30<sup>th</sup> April 2017

Report No.: DAT11956

Report issue date: 26<sup>th</sup> May 2017

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

**Report No: DAT11956** 

**Peabody Energy** 



|                                                                                                     | Customer Details |  |  |  |
|-----------------------------------------------------------------------------------------------------|------------------|--|--|--|
| Customer Peabody Energy Australia                                                                   |                  |  |  |  |
| Contact name Clark Potter                                                                           |                  |  |  |  |
| Address Locked Bag 2005, Mudgee 2850 NSW  Email cpotter@peabodyenergy.com  Phone +61 (02) 6370 2527 |                  |  |  |  |

| Revision History   |          |            |               |  |  |
|--------------------|----------|------------|---------------|--|--|
| Revision Report ID |          | Date       | Analyst       |  |  |
| 0                  | DAT11956 | 26/05/2017 | Robyn Edwards |  |  |

Report by:

Robyn EDWARDS

REdwards

Approved Signatory:

Jon ALEXANDER

# **Report No: DAT11956**

## **Peabody Energy**



## **Table of Contents**

|    | Cust | tomer    | Details                     | 2    |
|----|------|----------|-----------------------------|------|
|    | Revi | ision H  | istory                      | 2    |
|    | Tabl | le of Co | ontents                     | 3    |
|    | List | of Figu  | ıres                        | 4    |
|    | List | of Tab   | les                         | 5    |
| 1. | 0    | Execu    | ıtive Summary               | 6    |
| 2. | 0    | Intro    | duction                     | 7    |
| 3. | 0    | Moni     | toring and Data Collection  | 7    |
|    | 3.1. | Siti     | ing Details                 | 7    |
|    | 3.2. | Mo       | onitored Parameters         | 9    |
|    | 3.3. | Dat      | ta Collection Methods       | . 10 |
|    | 3    | .3.1.    | Compliance with Standards   | . 11 |
|    | 3    | .3.2.    | Data Acquisition            | . 11 |
|    | 3.4. | Dat      | ta Validation and Reporting | . 11 |
|    | 3    | .4.1.    | Validation                  | . 11 |
|    | 3    | .4.2.    | Reporting                   | . 12 |
| 4. | 0    | Air Q    | uality Goals                | .13  |
|    | 4.1. | Air      | Quality Summary             | . 13 |
| 5. | 0    | Calib    | rations and Maintenance     | .14  |
|    | 5.1. | Un       | its and Uncertainties       | . 14 |
|    | 5.2. | Aut      | tomatic Checks              | . 15 |
|    | 5.3. | Ma       | nintenance                  | . 15 |

# **Report No: DAT11956**



| 5.3.1. Calibration & Maintenance Summary Tables       | 15 |
|-------------------------------------------------------|----|
| 6.0 Results                                           | 17 |
| 6.1. Data Capture                                     | 17 |
| 6.2. Graphic Representations                          | 18 |
| 7.0 Valid Data Exception Tables                       | 23 |
| 8.0 Report Summary                                    | 23 |
| Appendix 1 - Definitions & Abbreviations              | 25 |
| Appendix 2 - Explanation of Exception Table           | 26 |
|                                                       |    |
| List of Figures                                       |    |
| Figure 1: Wilpinjong Mine Monitoring Station Location | 8  |
| Figure 2: NO - 1 hour data                            | 18 |
| Figure 3: NO <sub>2</sub> - 1 hour data               | 19 |
| Figure 4: NO <sub>x</sub> - 1 hour data               | 19 |
| Figure 5: SO <sub>2</sub> - 1 hour data               | 20 |
| Figure 6: H <sub>2</sub> S - 1 hour data              | 20 |
| Figure 7: BTX - 1 hour data                           | 21 |
| Figure 8: WS - 1 hour data                            | 21 |
| Figure 9: Wind Pose                                   | 22 |

# **Report No: DAT11956**

## **Peabody Energy**



## **List of Tables**

| Table 1: Wilpinjong Mine monitoring site location                                                                | 7          |
|------------------------------------------------------------------------------------------------------------------|------------|
| Table 2: Parameters measured at the Wilpinjong Mine monitoring station                                           | <u>S</u>   |
| Table 3: Methods                                                                                                 | 10         |
| Table 4: Wilpinjong Air Quality Goals (NEPM)                                                                     | 13         |
| Table 5: Exceedences Recorded                                                                                    | 13         |
| Table 6: Units and Uncertainties                                                                                 | 14         |
| Table 7: Automatic checks for NO, NO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> , H <sub>2</sub> S and BTX | 15         |
| Table 8: Wilpinjong Wollar Maintenance Table                                                                     | 16         |
| Table 9: Data Capture for Wilpinjong Wollar Station                                                              | 17         |
| Table 10: Wollar Valid Data Exception Table                                                                      | <b>2</b> 3 |

**Report No: DAT11956** 

**Peabody Energy** 



#### 1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for April 2017. Data capture for the different pollutants is presented in Table 9.

**Report No: DAT11956** 

**Peabody Energy** 



#### 2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1<sup>st</sup> March 2013.

This report presents the data for April 2017.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

## 3.0 Monitoring and Data Collection

#### **3.1.** Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

| Site Name | Geographical Coordinates         | Height Above<br>Sea Level (m) |
|-----------|----------------------------------|-------------------------------|
| Wollar    | Lat: -32.360105 Long: 149.949509 | 366                           |

**Report No: DAT11956** 

**Peabody Energy** 



A siting audit was conducted on 27<sup>th</sup> February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.



Figure 1: Wilpinjong Mine Monitoring Station Location

**Report No: DAT11956** 

**Peabody Energy** 



#### 3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

| Parameter Measured                          | Instrument and Measurement Technique       |
|---------------------------------------------|--------------------------------------------|
| BTX (Benzene, Toluene and <i>p</i> -Xylene) | Synspec GC955 - Gas Chromatography         |
| H₂S                                         | Ecotech EC9852 - fluorescence              |
| NO, NO <sub>2</sub> , NO <sub>x</sub>       | Ecotech EC9841 gas phase chemiluminescence |
| SO <sub>2</sub>                             | Ecotech EC9850 – fluorescence              |
| Wind Speed (horizontal, 10m)                | Gill Windsonic                             |
| Wind Direction (10m)                        | Gill Windsonic                             |

**Report No: DAT11956** 

**Peabody Energy** 



#### 3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

**Table 3: Methods** 

| Parameter<br>Measured                    | Data Collection Methods<br>Used | Description of Method                                                                                                                   |  |
|------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub>    | AS 3580.5.1-2011                | Methods for sampling and analysis of ambient air. Method 5.1:  Determination of oxides of nitrogen – chemiluminescence method           |  |
| 110, 110 <sub>2</sub> , 110 <sub>x</sub> | Ecotech Laboratory<br>Manual    | In-house method 6.1 Oxides of nitrogen by chemiluminescence                                                                             |  |
| SO <sub>2</sub>                          | AS 3580.4.1-2008                | Methods for sampling and analysis of ambient air. Method 4.1:  Determination of sulfur dioxide – Direct reading instrumental method     |  |
| 302                                      | Ecotech Laboratory<br>Manual    | In-house method 6.2 Sulfur dioxide by fluorescence                                                                                      |  |
| H <sub>2</sub> S                         | Ecotech Laboratory<br>Manual    | In-house method 6.5 Hydrogen sulfide by fluorescence                                                                                    |  |
| ВТХ                                      | Manufacturer's<br>Instructions  | Gas Chromatography Synspec CG955 Series Manual                                                                                          |  |
| Vector Wind<br>Speed                     | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications  |  |
| (Horizontal) Ecotech Laboratory In-hous  |                                 | In-house method 8.1 Wind speed (Horizontal) by anemometer                                                                               |  |
| Vector Wind                              | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |
| Direction                                | Ecotech Laboratory<br>Manual    | In-house method 8.3 Wind direction by anemometer                                                                                        |  |

**Report No: DAT11956** 

**Peabody Energy** 



#### 3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

 Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.

#### 3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis<sup>TM</sup> version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

#### 3.4. Data Validation and Reporting

#### 3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

**Report No: DAT11956** 

#### **Peabody Energy**



#### 3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report Apr-17.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

**Report No: DAT11956** 

**Peabody Energy** 



## 4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

| Parameter       | Time Period | Exceedence<br>Level | Units | Maximum allowable exceedences |  |
|-----------------|-------------|---------------------|-------|-------------------------------|--|
| NO <sub>2</sub> | 1 year      | 30                  | ppb   | None                          |  |
| NO <sub>2</sub> | 1 hour      | 120                 | ppb   | 1 day a year                  |  |
| SO <sub>2</sub> | 1 hour      | 200                 | ppb   | 1 day a year                  |  |
| SO <sub>2</sub> | 1 day       | 80                  | ppb   | 1 day a year                  |  |
| SO <sub>2</sub> | 1 year      | 20                  | ppb   | None                          |  |

#### 4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

| Parameter       | Time Period | Value of Exceedence | Date of Exceedence |
|-----------------|-------------|---------------------|--------------------|
| NO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 day       | -                   | -                  |

**Report No: DAT11956** 

**Peabody Energy** 



#### 5.0 Calibrations and Maintenance

#### 5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

**Table 6: Units and Uncertainties** 

| Parameter                                          | Units | Resolution | Uncertainty                                                                | Measurement<br>Range <sup>1</sup>                |
|----------------------------------------------------|-------|------------|----------------------------------------------------------------------------|--------------------------------------------------|
| NO, NO <sub>x</sub><br>(EC9841)                    | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                               | 0 ppb to 500 ppb                                 |
| NO <sub>2</sub> (EC9841)                           | ppm   | 1 ppb      | ± 16 ppb<br>K factor of 2.01                                               | 0 ppb to 500 ppb                                 |
| SO <sub>2</sub> (EC9850)                           | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01 0 ppb to 50                                   |                                                  |
| H <sub>2</sub> S                                   | ppm   | 1 ppb      | 15.2% of reading or ± 19 ppb, whichever is greater  K factor of 2          | 0 ppb to 500 ppb                                 |
| Benzene,<br>Toluene and <i>p</i> -<br>Xylene (BTX) | ppb   | 0.03 ppb   | 15.1% of reading or 3.8ppb, whichever is greater  K factor of 2            | 0 ppb to 300 ppb                                 |
| Vector Wind<br>Speed                               | m/s   | 0.1 m/s    | $\pm 0.01$ m/s or 2.0% of reading, whichever is greater (K factor of 1.96) | 0 m/s to 60 m/s                                  |
| Vector Wind<br>Direction                           | Deg   | 1 deg      | ±2 deg<br>K factor of 2.11                                                 | 0 deg to 360 deg<br>Starting threshold:<br>0 m/s |

 $<sup>^{1}</sup>$  Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO<sub>2</sub> and NO<sub>x</sub> by EC 9841 and SO<sub>2</sub> by EC9850 are calculated based on a measurement range of 0-125 ppb.

**Report No: DAT11956** 

**Peabody Energy** 



#### 5.2. Automatic Checks

Automatic span and zero calibration checks run every night for NO, NO<sub>2</sub>, NO<sub>x</sub> and SO<sub>2</sub>, every  $2^{nd}$  night for H<sub>2</sub>S and weekly for BTX.

Background checks run each night for SO<sub>2</sub> and H<sub>2</sub>S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S and BTX

| Parameter                             | Span / Zero cycle time<br>(approximate)  | Background cycle time<br>(approximate) |
|---------------------------------------|------------------------------------------|----------------------------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 00:45 to 01:25 every day                 | N/A                                    |
| SO <sub>2</sub>                       | 00:45 to 01:25 every day                 | 23:45 to 23:50 every day               |
| H <sub>2</sub> S                      | 01:35 to 02:35 every 2 <sup>nd</sup> day | 23:45 to 23:50 every day               |
| BTX                                   | 02:45 to 05:10 every day                 | N/A                                    |

#### 5.3. Maintenance

Scheduled monthly maintenance was performed on 18<sup>th</sup> and 19<sup>th</sup> April 2017.

#### 5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

**Report No: DAT11956** 



**Table 8: Wilpinjong Wollar Maintenance Table** 

| Parameter                             | Date of Last<br>Maintenance | Maintenance Type | Date of Last<br>Calibration | Calibration<br>Cycle |
|---------------------------------------|-----------------------------|------------------|-----------------------------|----------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 19/04/2017                  | Monthly          | 19/04/2017                  | Monthly              |
| SO <sub>2</sub>                       | 19/04/2017                  | Monthly          | 19/04/2017                  | Monthly              |
| H <sub>2</sub> S                      | 19/04/2017                  | Monthly          | 19/04/2017                  | Monthly              |
| ВТХ                                   | 27/02/2017                  | Monthly          | 27/01/2017                  | Yearly               |
| Wind Sensor                           | 19/04/2017                  | Monthly          | 21/05/2015                  | 2-Yearly             |

## **Report No: DAT11956**

#### **Peabody Energy**



#### 6.0 Results

#### 6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for April 2017. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

**Table 9: Data Capture for Wilpinjong Wollar Station** 

| Parameter                             | Data Capture % |  |
|---------------------------------------|----------------|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 93.5           |  |
| SO <sub>2</sub>                       | 95.0           |  |
| H₂S                                   | 83.9           |  |
| Benzene                               | 90.3           |  |
| Toluene                               | 90.3           |  |
| <i>p</i> -Xylene                      | 90.3           |  |
| WS, WD                                | 98.6           |  |

**Report No: DAT11956** 

**Peabody Energy** 



## 6.2. Graphic Representations

Validated 5 minute data for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

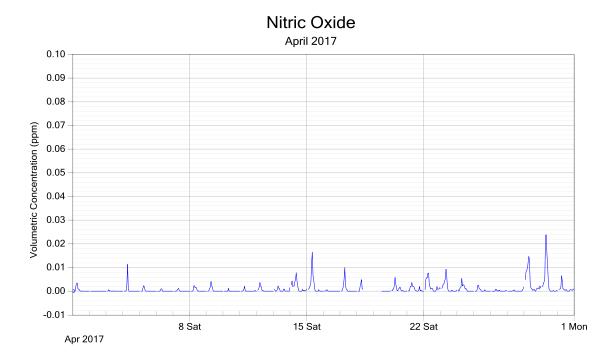



Figure 2: NO - 1 hour data

## **Report No: DAT11956**



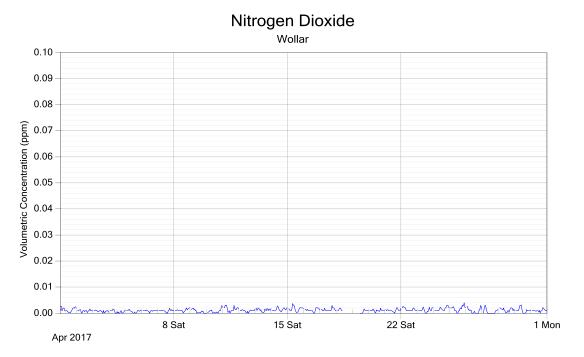



Figure 3: NO<sub>2</sub> - 1 hour data

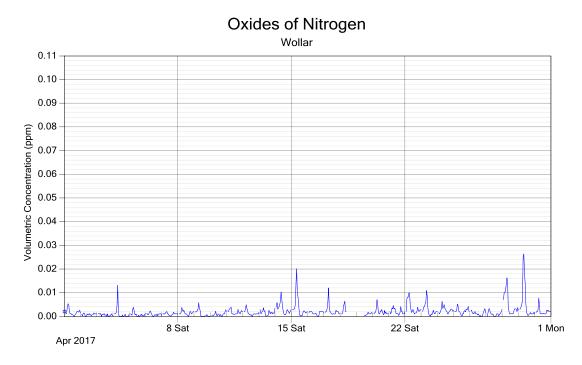



Figure 4: NO<sub>X</sub> - 1 hour data

## **Report No: DAT11956**



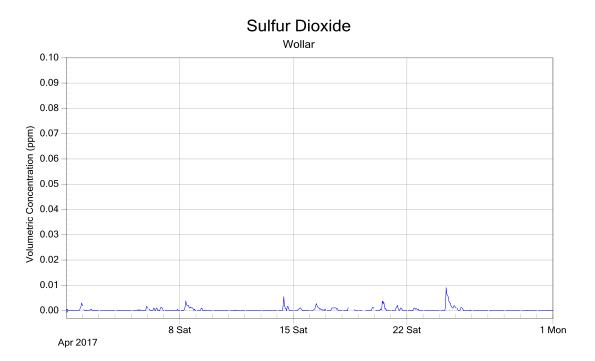



Figure 5: SO<sub>2</sub> - 1 hour data

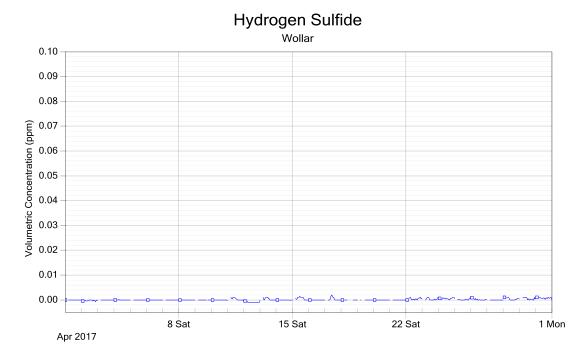



Figure 6: H<sub>2</sub>S - 1 hour data

## **Report No: DAT11956**

**Peabody Energy** 



## Benzene, Toluene and p-Xylene

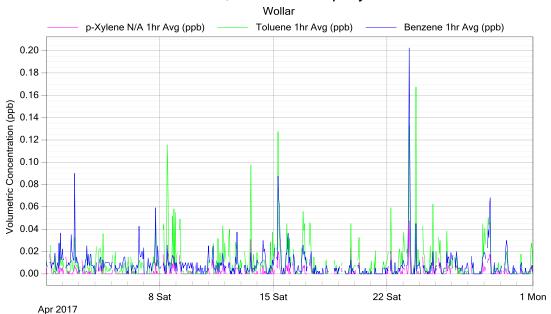



Figure 7: BTX - 1 hour data

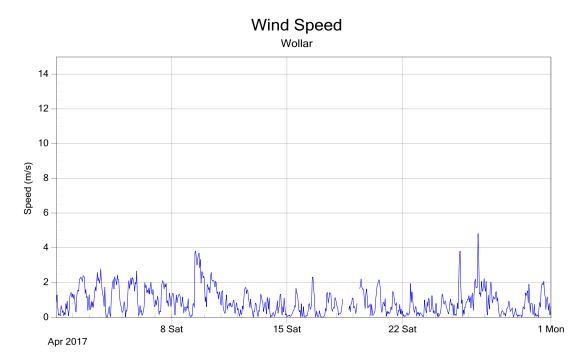



Figure 8: WS - 1 hour data

# **Report No: DAT11956**



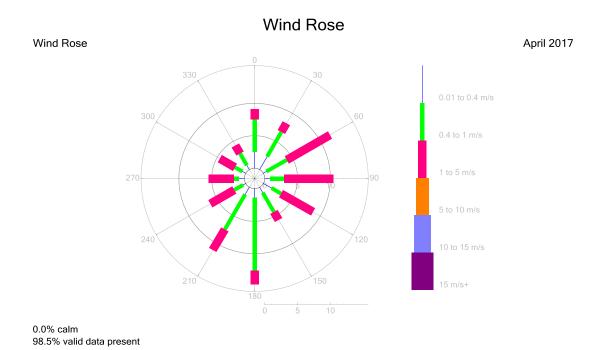



Figure 9: Wind Rose

**Report No: DAT11956** 

**Peabody Energy** 



# 7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

**Table 10: Wollar Valid Data Exception Table** 

| Start Date          | End Date            | Reason Change<br>Details                                                                      |                                                     | User<br>Name | Change<br>Date |
|---------------------|---------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------|----------------|
| 01/04/2017<br>00:00 | 18/04/2017<br>10:35 | Static offset of +0.002ppm applied to correct zero baseline                                   | NO <sub>2</sub> & NO <sub>x</sub>                   | RE           | 24/04/2017     |
| 01/04/2017<br>00:45 | 30/04/2017<br>01:25 | Data affected by overnight calibration cycles on NO <sub>x</sub> and SO <sub>2</sub> analyser | H₂S                                                 | RE           | 25/05/2017     |
| 01/04/2017<br>02:45 | 30/04/2017<br>04:40 | Data affected daily during BTX overnight calibration span                                     | H <sub>2</sub> S                                    | RE           | 25/05/2017     |
| 09/04/2017<br>18:05 | 09/04/2017<br>18:30 | Short power interruption and stabilisation                                                    | H <sub>2</sub> S, SO <sub>2</sub> , BTX,<br>WS & WD |              | 25/05/2017     |
| 18/04/2017<br>10:40 | 18/04/2017<br>17:50 | Scheduled monthly maintenance                                                                 | All parameters                                      | RE           | 25/05/2017     |
| 18/04/2017<br>17:55 | 19/04/2017<br>07:00 | Instrument left in 'out of service' mode overnight                                            | NO, NO <sub>2</sub> , NO <sub>X</sub>               | RE           | 25/05/2017     |
| 19/04/2017<br>07:05 | 19/04/2017<br>11:40 | Continued scheduled maintenance – intermittent data affected                                  | All parameters                                      | RE           | 25/05/2017     |

# 8.0 Report Summary

The data capture for Wollar was below 95% for the reporting month; with the exception of  $SO_2$  and wind speed and direction.

Please refer to Data Capture Percentage Table 9 for details; and Table 10 for valid data exceptions.

**Report No: DAT11956** 

**Peabody Energy** 



| Measurement of a number of parameters in this report does not comply with applicable      |
|-------------------------------------------------------------------------------------------|
| standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to |
| section 3.3.1 for details.                                                                |
| END OF REPORT                                                                             |

**Report No: DAT11956** 

**Peabody Energy** 



# **Appendix 1 - Definitions & Abbreviations**

BTX Benzene, Toluene and *p*-Xylene

H<sub>2</sub>S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO<sub>2</sub> Nitrogen dioxide

NO<sub>x</sub> Oxides of nitrogen

ppb Parts per billion

SO<sub>2</sub> Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

**Report No: DAT11956** 

**Peabody Energy** 



### **Appendix 2 - Explanation of Exception Table**

**Automatic background check** refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

**Calibration check outside tolerance** refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

**Commissioning** refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

**Data affected by environmental conditions – wind speed / wind speed gust spike** refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

**Data transmission error** refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

**Equipment malfunction/instrument fault** refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

**Gap in data/data not available** refers to a period of time when either data has been lost or could not be collected.

**Instrument Alarm** refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

**Instrument out of service** refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

**Linear offset or multiplier** refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

**Report No: DAT11956** 

#### **Peabody Energy**



**Logger error** refers to when an error occurs and instrument readings are not correctly recorded by the logger.

**Maintenance** refers to a period of time when the logger / instrument was switched off due to maintenance.

**Overnight span/zero out of tolerance** refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

**Power Interruption** refers to no power to the station therefore no data was collected at this time.

**Remote Calibration** refers to when a technician remotely connects to the station and manually performs a span check.

**Static offset or multiplier** refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

**Warm up after power interruption** refers to the startup period of an instrument after power has been restored.



Accredited for compliance with ISO/IEC 17025 - Testing



Accreditation No. 14184.

# **Peabody Energy**

# Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

 $1^{st}$  May  $-31^{st}$  May 2017

Report No.: DAT12058

Report issue date: 28th June 2017

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

**Report No: DAT12058** 

**Peabody Energy** 



| Customer Details                         |                                   |  |  |  |  |
|------------------------------------------|-----------------------------------|--|--|--|--|
| Customer                                 | Customer Peabody Energy Australia |  |  |  |  |
| Contact name Clark Potter                |                                   |  |  |  |  |
| Address Locked Bag 2005, Mudgee 2850 NSW |                                   |  |  |  |  |
| Email <u>cpotter@peabodyenergy.com</u>   |                                   |  |  |  |  |
| Phone +61 (02) 6370 2527                 |                                   |  |  |  |  |

| Revision History |           |            |               |  |  |
|------------------|-----------|------------|---------------|--|--|
| Revision         | Report ID | Date       | Analyst       |  |  |
| 0                | DAT12058  | 28/06/2017 | Robyn Edwards |  |  |

Report by:

Robyn EDWARDS

REdwards

Approved Signatory:

Jon ALEXANDER

# Report No: DAT12058

### **Peabody Energy**



### **Table of Contents**

|    | Cust | tomer    | Details                     | 2  |
|----|------|----------|-----------------------------|----|
|    | Revi | ision H  | istory                      | 2  |
|    | Tabl | le of Co | ontents                     | 3  |
|    | List | of Figu  | ıres                        | 4  |
|    | List | of Tabl  | les                         | 5  |
| 1. | 0    | Execu    | ıtive Summary               | 6  |
| 2. | 0    | Intro    | duction                     | 7  |
| 3. | 0    | Moni     | toring and Data Collection  | 7  |
|    | 3.1. | Siti     | ng Details                  | 7  |
|    | 3.2. | Мо       | onitored Parameters         | 9  |
|    | 3.3. | Dat      | ta Collection Methods       | 10 |
|    | 3    | .3.1.    | Compliance with Standards   | 11 |
|    | 3    | .3.2.    | Data Acquisition            | 11 |
|    | 3.4. | Dat      | ta Validation and Reporting | 11 |
|    | 3    | .4.1.    | Validation                  | 11 |
|    | 3    | .4.2.    | Reporting                   | 12 |
| 4. | 0    | Air Qı   | uality Goals                | 13 |
|    | 4.1. | Air      | Quality Summary             | 13 |
| 5. | 0    | Calibr   | rations and Maintenance     | 14 |
|    | 5.1. | Uni      | its and Uncertainties       | 14 |
|    | 5.2. | Aut      | tomatic Checks              | 15 |
|    | 5.3. | Ma       | iintenance                  | 15 |

# Report No: DAT12058

### **Peabody Energy**



| 5.3.1. Calibration & Maintenance Summary Tables       | 15 |
|-------------------------------------------------------|----|
| 6.0 Results                                           | 17 |
| 6.1. Data Capture                                     | 17 |
| 6.2. Graphic Representations                          | 18 |
| 7.0 Valid Data Exception Tables                       | 23 |
| 8.0 Report Summary                                    | 24 |
| Appendix 1 - Definitions & Abbreviations              | 25 |
| Appendix 2 - Explanation of Exception Table           | 26 |
|                                                       |    |
| List of Figures                                       |    |
| Figure 1: Wilpinjong Mine Monitoring Station Location | 8  |
| Figure 2: NO - 1 hour data                            | 18 |
| Figure 3: NO <sub>2</sub> - 1 hour data               | 19 |
| Figure 4: NO <sub>x</sub> - 1 hour data               | 19 |
| Figure 5: SO <sub>2</sub> - 1 hour data               | 20 |
| Figure 6: H <sub>2</sub> S - 1 hour data              | 20 |
| Figure 7: BTX - 1 hour data                           | 21 |
| Figure 8: WS - 1 hour data                            | 21 |
| Figure 9: Wind Rose                                   | 22 |

# Report No: DAT12058

### **Peabody Energy**



### **List of Tables**

| Table 1: Wilpinjong Mine monitoring site location                                                                | 7  |
|------------------------------------------------------------------------------------------------------------------|----|
| Table 2: Parameters measured at the Wilpinjong Mine monitoring station                                           | 9  |
| Table 3: Methods                                                                                                 | 10 |
| Table 4: Wilpinjong Air Quality Goals (NEPM)                                                                     | 13 |
| Table 5: Exceedences Recorded                                                                                    | 13 |
| Table 6: Units and Uncertainties                                                                                 | 14 |
| Table 7: Automatic checks for NO, NO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> , H <sub>2</sub> S and BTX | 15 |
| Table 8: Wilpinjong Wollar Maintenance Table                                                                     | 16 |
| Table 9: Data Capture for Wilpinjong Wollar Station                                                              | 17 |
| Table 10: Wollar Valid Data Exception Table                                                                      | 23 |

**Report No: DAT12058** 

**Peabody Energy** 



### 1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for May 2017. Data capture for the different pollutants is presented in Table 9.

**Report No: DAT12058** 

**Peabody Energy** 



#### 2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1<sup>st</sup> March 2013.

This report presents the data for May 2017.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

### 3.0 Monitoring and Data Collection

### **3.1.** Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

| Site Name | Geographical Coordinates         | es Height Above<br>Sea Level (m) |  |
|-----------|----------------------------------|----------------------------------|--|
| Wollar    | Lat: -32.360105 Long: 149.949509 | 366                              |  |

### **Report No: DAT12058**

**Peabody Energy** 



A siting audit was conducted on 27<sup>th</sup> February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.



Figure 1: Wilpinjong Mine Monitoring Station Location

**Report No: DAT12058** 

**Peabody Energy** 



#### 3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

| Parameter Measured                             | Instrument and Measurement Technique       |  |  |
|------------------------------------------------|--------------------------------------------|--|--|
| BTX<br>(Benzene, Toluene and <i>p</i> -Xylene) | Synspec GC955 - Gas Chromatography         |  |  |
| H₂S                                            | Ecotech EC9852 - fluorescence              |  |  |
| NO, NO <sub>2</sub> , NO <sub>x</sub>          | Ecotech EC9841 gas phase chemiluminescence |  |  |
| SO <sub>2</sub>                                | Ecotech EC9850 – fluorescence              |  |  |
| Wind Speed (horizontal, 10m)                   | Gill Windsonic                             |  |  |
| Wind Direction (10m)                           | Gill Windsonic                             |  |  |

**Report No: DAT12058** 

### **Peabody Energy**



### 3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

**Table 3: Methods** 

| Parameter<br>Measured                                 | Data Collection Methods<br>Used | Description of Method                                                                                                                   |  |
|-------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub>                 | AS 3580.5.1-2011                | Methods for sampling and analysis of ambient air. Method 5.1:  Determination of oxides of nitrogen – chemiluminescence method           |  |
| 110, 1102, 110                                        | Ecotech Laboratory<br>Manual    | In-house method 6.1 Oxides of nitrogen by chemiluminescence                                                                             |  |
| SO <sub>2</sub>                                       | AS 3580.4.1-2008                | Methods for sampling and analysis of ambient air. Method 4.1:  Determination of sulfur dioxide – Direct reading instrumental method     |  |
| 332                                                   | Ecotech Laboratory<br>Manual    | In-house method 6.2 Sulfur dioxide by fluorescence                                                                                      |  |
| H₂S                                                   | Ecotech Laboratory<br>Manual    | In-house method 6.5 Hydrogen sulfide by fluorescence                                                                                    |  |
| втх                                                   | Manufacturer's<br>Instructions  | Gas Chromatography Synspec CG955 Series Manual                                                                                          |  |
| Vector Wind AS 3580.14-2014 Meteorological monitoring |                                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |
| (Horizontal)                                          | Ecotech Laboratory<br>Manual    | In-house method 8.1 Wind speed (Horizontal) by anemometer                                                                               |  |
| Vector Wind<br>Direction                              | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |
| Direction                                             | Ecotech Laboratory<br>Manual    | In-house method 8.3 Wind direction by anemometer                                                                                        |  |

**Report No: DAT12058** 

**Peabody Energy** 



#### 3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

 Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.

#### 3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis<sup>TM</sup> version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

#### 3.4. Data Validation and Reporting

#### 3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five-minute data.

**Report No: DAT12058** 

#### **Peabody Energy**



#### 3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report May-17.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five-minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

**Report No: DAT12058** 

**Peabody Energy** 



# 4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

| Parameter       | Time Period | Exceedence<br>Level | Units | Maximum allowable exceedences |
|-----------------|-------------|---------------------|-------|-------------------------------|
| NO <sub>2</sub> | 1 year      | 30                  | ppb   | None                          |
| NO <sub>2</sub> | 1 hour      | 120                 | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 hour      | 200                 | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 day       | 80                  | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 year      | 20                  | ppb   | None                          |

### 4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

**Table 5: Exceedences Recorded** 

| Parameter       | Time Period | Value of Exceedence | Date of Exceedence |
|-----------------|-------------|---------------------|--------------------|
| NO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 day       | -                   | -                  |

**Report No: DAT12058** 

**Peabody Energy** 



### 5.0 Calibrations and Maintenance

#### 5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

**Table 6: Units and Uncertainties** 

| Parameter                                          | Units | Resolution | Uncertainty                                                                | Measurement<br>Range <sup>1</sup>                |
|----------------------------------------------------|-------|------------|----------------------------------------------------------------------------|--------------------------------------------------|
| NO, NO <sub>x</sub><br>(EC9841)                    | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                               | 0 ppb to 500 ppb                                 |
| NO <sub>2</sub> (EC9841)                           | ppm   | 1 ppb      | ± 16 ppb<br>K factor of 2.01                                               | 0 ppb to 500 ppb                                 |
| SO <sub>2</sub> (EC9850)                           | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                               | 0 ppb to 500 ppb                                 |
| H₂S                                                | ppm   | 1 ppb      | 15.2% of reading or ± 19 ppb, whichever is greater  K factor of 2          | 0 ppb to 500 ppb                                 |
| Benzene,<br>Toluene and <i>p</i> -<br>Xylene (BTX) | ppb   | 0.03 ppb   | 15.1% of reading or 3.8ppb, whichever is greater  K factor of 2            | 0 ppb to 300 ppb                                 |
| Vector Wind<br>Speed                               | m/s   | 0.1 m/s    | $\pm 0.01$ m/s or 2.0% of reading, whichever is greater (K factor of 1.96) | 0 m/s to 60 m/s                                  |
| Vector Wind<br>Direction                           | Deg   | 1 deg      | ±2 deg<br>K factor of 2.11                                                 | 0 deg to 360 deg<br>Starting threshold:<br>0 m/s |

 $<sup>^{1}</sup>$  Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO<sub>2</sub> and NO<sub>x</sub> by EC 9841 and SO<sub>2</sub> by EC9850 are calculated based on a measurement range of 0-125 ppb.

**Report No: DAT12058** 

**Peabody Energy** 



#### 5.2. Automatic Checks

Automatic span and zero calibration checks run every night for NO, NO<sub>2</sub>, NO<sub>x</sub> and SO<sub>2</sub>, every  $2^{nd}$  night for H<sub>2</sub>S and daily for BTX.

Background checks run each night for SO<sub>2</sub> and H<sub>2</sub>S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S and BTX

| Parameter                             | Span / Zero cycle time<br>(approximate)  | Background cycle time<br>(approximate) |
|---------------------------------------|------------------------------------------|----------------------------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 00:45 to 01:25 every day                 | N/A                                    |
| SO <sub>2</sub>                       | 00:45 to 01:25 every day                 | 23:45 to 23:50 every day               |
| H <sub>2</sub> S                      | 01:35 to 02:35 every 2 <sup>nd</sup> day | 23:45 to 23:50 every day               |
| BTX                                   | 02:45 to 05:10 every day                 | N/A                                    |

#### 5.3. Maintenance

Scheduled monthly maintenance was performed on 22/05/2017.

#### 5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

**Report No: DAT12058** 

**Peabody Energy** 



### **Table 8: Wilpinjong Wollar Maintenance Table**

| Parameter                             | Date of Last<br>Maintenance | Maintenance Type | Date of Last<br>Calibration | Calibration<br>Cycle |
|---------------------------------------|-----------------------------|------------------|-----------------------------|----------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 29/05/2017                  | Unscheduled      | 23/05/2017                  | Monthly              |
| SO <sub>2</sub>                       | 29/05/2017                  | Unscheduled      | 22/05/2017                  | Monthly              |
| H₂S                                   | 29/05/2017                  | Unscheduled      | 29/05/2017                  | Monthly              |
| ВТХ                                   | 22/05/2017                  | 3 Monthly        | 27/01/2017                  | Yearly               |
| Wind Sensor                           | 22/05/2017                  | 3 Monthly        | 21/05/2015                  | 2 Yearly             |

### **Report No: DAT12058**

**Peabody Energy** 



#### 6.0 Results

#### 6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5-minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for May 2017. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

**Table 9: Data Capture for Wilpinjong Wollar Station** 

| Parameter                             | Data Capture % |
|---------------------------------------|----------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 95.2           |
| SO <sub>2</sub>                       | 94.7           |
| H₂S                                   | 83.8           |
| Benzene                               | 79.4           |
| Toluene                               | 79.4           |
| <i>p</i> -Xylene                      | 79.4           |
| WS, WD                                | 98.3           |

**Report No: DAT12058** 

**Peabody Energy** 



### 6.2. Graphic Representations

Validated 5 minute data for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

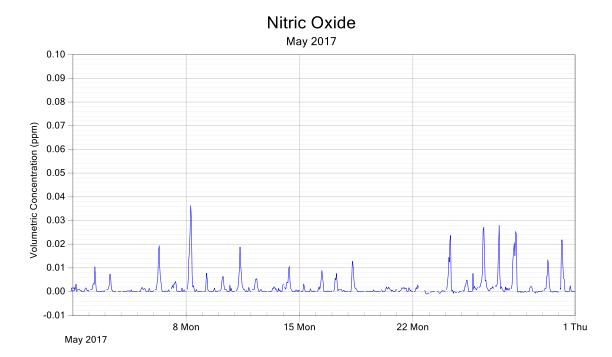



Figure 2: NO - 1 hour data

# **Report No: DAT12058**

**Peabody Energy** 



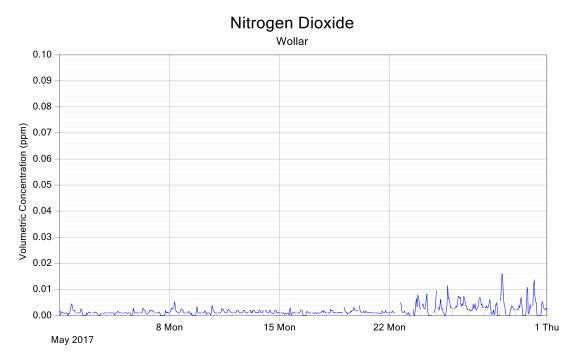



Figure 3: NO<sub>2</sub> - 1 hour data

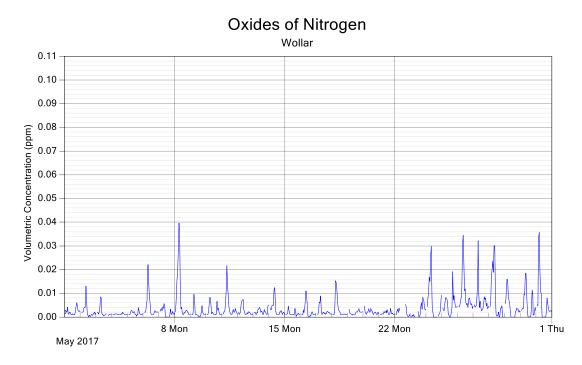



Figure 4: NO<sub>X</sub> - 1 hour data

### **Report No: DAT12058**

**Peabody Energy** 



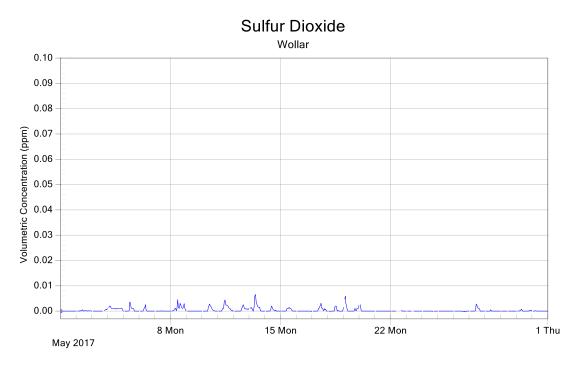



Figure 5: SO<sub>2</sub> - 1 hour data

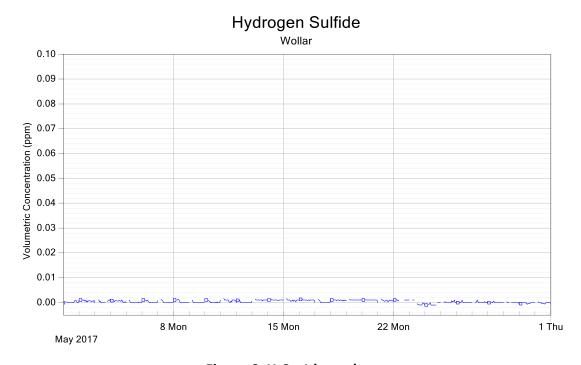



Figure 6: H<sub>2</sub>S - 1 hour data

# **Report No: DAT12058**

**Peabody Energy** 



### Benzene, Toluene and p-Xylene

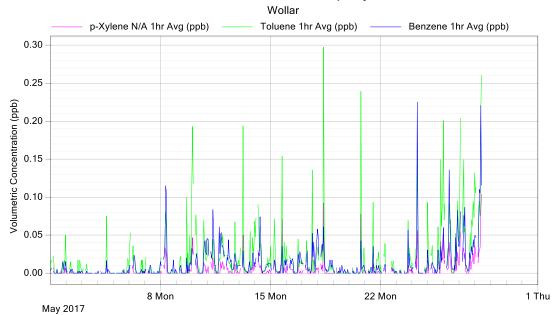



Figure 7: BTX - 1 hour data

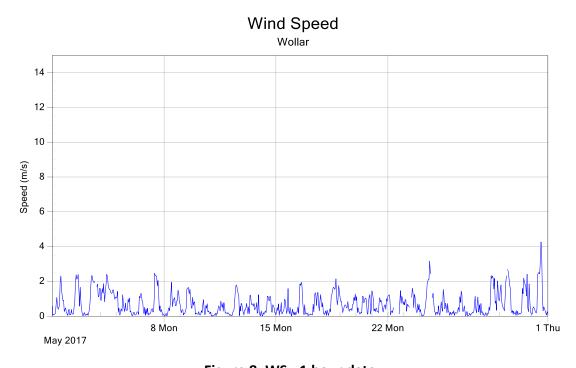



Figure 8: WS - 1 hour data

# **Report No: DAT12058**

**Peabody Energy** 



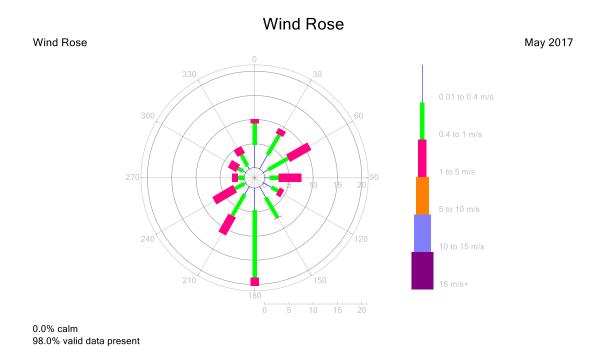



Figure 9: Wind Rose

**Report No: DAT12058** 

**Peabody Energy** 



# 7.0 Valid Data Exception Tables

The table below detail all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

**Table 10: Wollar Valid Data Exception Table** 

| Start Date          | End Date            | Reason                                                                                                  | Change<br>Details | User<br>Name | Change<br>Date |
|---------------------|---------------------|---------------------------------------------------------------------------------------------------------|-------------------|--------------|----------------|
| 01/05/2017<br>02:45 | 31/05/2017<br>04:40 | Data affected daily during BTX overnight calibration span                                               | H₂S               | RE           | 23/06/2017     |
| 03/05/2017<br>17:10 | 03/05/2017<br>19:05 | Short power interruption and stabilisation                                                              | All parameters    | RE           | 23/06/2017     |
| 22/05/2017<br>09:20 | 22/05/2017<br>16:25 | Scheduled maintenance – monthly tasks All performed and NO <sub>x</sub> analyser replacement parameters |                   | RE           | 23/06/2017     |
| 23/05/2017<br>09:25 | 23/05/2017<br>12:10 | Unscheduled maintenance – resolved raised H₂S issues All parameters R                                   |                   | RE           | 23/06/2017     |
| 24/05/2017<br>18:00 | 24/05/2017<br>18:35 | Unscheduled maintenance – remote connection checks following maintenance                                | All parameters    | RE           | 23/06/2017     |
| 28/05/2017<br>11:15 | 31/05/2017<br>23:55 | Instrument fault – Synspec oven failure                                                                 | втх               | RE           | 23/06/2017     |
| 28/05/2017<br>15:15 | 28/05/2017<br>15:40 | Short power interruption                                                                                | втх               | RE           | 23/06/2017     |
| 29/05/2017<br>10:35 | 29/05/2017<br>11:40 | Unscheduled maintenance – resolve further issues with H₂S analyser                                      | All parameters    | RE           | 23/06/2017     |

**Report No: DAT12058** 

**Peabody Energy** 



### 8.0 Report Summary

The data capture for Wollar was below 95% for the reporting month; with the exception of  $NO_x$  and wind speed and direction.

Please refer to Data Capture Percentage Table 9 for details; and Table 10 for valid data exceptions.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

**Report No: DAT12058** 

**Peabody Energy** 



# **Appendix 1 - Definitions & Abbreviations**

BTX Benzene, Toluene and *p*-Xylene

H<sub>2</sub>S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO<sub>2</sub> Nitrogen dioxide

NO<sub>x</sub> Oxides of nitrogen

ppb Parts per billion

SO<sub>2</sub> Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

**Report No: DAT12058** 

**Peabody Energy** 



### **Appendix 2 - Explanation of Exception Table**

**Automatic background check** refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

**Calibration check outside tolerance** refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

**Commissioning** refers to the initial setup and calibration of the instrument when it is first installed. For some instruments, there may be a stabilisation period before normal operation commences.

**Data affected by environmental conditions – wind speed / wind speed gust spike** refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

**Data transmission error** refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

**Equipment malfunction/instrument fault** refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

**Gap in data/data not available** refers to a period of time when either data has been lost or could not be collected.

**Instrument Alarm** refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

**Instrument out of service** refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

**Linear offset or multiplier** refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

**Report No: DAT12058** 

#### **Peabody Energy**



**Logger error** refers to when an error occurs and instrument readings are not correctly recorded by the logger.

**Maintenance** refers to a period of time when the logger / instrument was switched off due to maintenance.

**Overnight span/zero out of tolerance** refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

**Power Interruption** refers to no power to the station therefore no data was collected at this time.

**Remote Calibration** refers to when a technician remotely connects to the station and manually performs a span check.

**Static offset or multiplier** refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

**Warm up after power interruption** refers to the start-up period of an instrument after power has been restored.



Accredited for compliance with ISO/IEC 17025 - Testing



Accreditation No. 14184.

# **Peabody Energy**

# Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1<sup>st</sup> June – 30<sup>th</sup> June 2017

Report No.: DAT12176

Report issue date: 28th July 2017

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

**Report No: DAT12176** 

**Peabody Energy** 



| Customer Details                  |                                  |  |
|-----------------------------------|----------------------------------|--|
| Customer Peabody Energy Australia |                                  |  |
| Contact name                      | Clark Potter                     |  |
| Address                           | Locked Bag 2005, Mudgee 2850 NSW |  |
| Email                             | cpotter@peabodyenergy.com        |  |
| Phone                             | +61 (02) 6370 2527               |  |

| Revision History |           |            |               |  |
|------------------|-----------|------------|---------------|--|
| Revision         | Report ID | Date       | Analyst       |  |
| 0                | DAT12176  | 28/07/2017 | Robyn Edwards |  |

Report by:

Robyn EDWARDS

Redwords

Approved Signatory:

Jon ALEXANDER

# **Report No: DAT12176**

### **Peabody Energy**



### **Table of Contents**

|    | Cust | tomer    | Details                     | 2    |
|----|------|----------|-----------------------------|------|
|    | Revi | ision H  | istory                      | 2    |
|    | Tabl | le of Co | ontents                     | 3    |
|    | List | of Figu  | ıres                        | 4    |
|    | List | of Tabl  | les                         | 5    |
| 1. | 0    | Execu    | ıtive Summary               | 6    |
| 2. | 0    | Intro    | duction                     | 7    |
| 3. | 0    | Moni     | toring and Data Collection  | 7    |
|    | 3.1. | Siti     | ng Details                  | 7    |
|    | 3.2. | Мо       | onitored Parameters         | 9    |
|    | 3.3. | Dat      | ta Collection Methods       | . 10 |
|    | 3    | 3.3.1.   | Compliance with Standards   | .11  |
|    | 3    | 3.3.2.   | Data Acquisition            | . 11 |
|    | 3.4. | Dat      | ta Validation and Reporting | .11  |
|    | 3    | 3.4.1.   | Validation                  | . 11 |
|    | 3    | 3.4.2.   | Reporting                   | .12  |
| 4. | 0    | Air Qı   | uality Goals                | 13   |
|    | 4.1. | Air      | Quality Summary             | . 13 |
| 5. | 0    | Calibr   | rations and Maintenance     | 14   |
|    | 5.1. | Uni      | its and Uncertainties       | . 14 |
|    | 5.2. | Aut      | tomatic Checks              | . 15 |
|    | 5.3. | Ma       | iintenance                  | . 15 |

# **Report No: DAT12176**

### **Peabody Energy**



| 5.3.1. Calibration & Maintenance Summary Tables       | 15 |
|-------------------------------------------------------|----|
| 6.0 Results                                           | 17 |
| 6.1. Data Capture                                     | 17 |
| 6.2. Graphic Representations                          | 18 |
| 7.0 Valid Data Exception Tables                       | 23 |
| 8.0 Report Summary                                    | 24 |
| Appendix 1 - Definitions & Abbreviations              | 25 |
| Appendix 2 - Explanation of Exception Table           | 26 |
|                                                       |    |
| List of Figures                                       |    |
| Figure 1: Wilpinjong Mine Monitoring Station Location | 8  |
| Figure 2: NO 1-hour averaged data                     | 18 |
| Figure 3: NO <sub>2</sub> 1-hour averaged data        | 19 |
| Figure 4: NO <sub>X</sub> 1-hour averaged data        | 19 |
| Figure 5: SO <sub>2</sub> 1-hour averaged data        | 20 |
| Figure 6: H₂S 1-hour averaged data                    | 20 |
| Figure 7: BTX 1-hour averaged data                    | 21 |
| Figure 8: WS 1-hour averaged data                     | 21 |
| Figure 9: Wind Rose                                   | 22 |

# **Report No: DAT12176**

## **Peabody Energy**



## **List of Tables**

| Table 1: Wilpinjong Mine monitoring site location                                                                | 7  |
|------------------------------------------------------------------------------------------------------------------|----|
| Table 2: Parameters measured at the Wilpinjong Mine monitoring station                                           | S  |
| Table 3: Methods                                                                                                 | 10 |
| Table 4: Wilpinjong Air Quality Goals (NEPM)                                                                     | 13 |
| Table 5: Exceedences Recorded                                                                                    | 13 |
| Table 6: Units and Uncertainties                                                                                 | 14 |
| Table 7: Automatic checks for NO, NO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> , H <sub>2</sub> S and BTX | 15 |
| Table 8: Wilpinjong Wollar Maintenance Table                                                                     | 16 |
| Table 9: Data Capture for Wilpinjong Wollar Station                                                              | 17 |
| Table 10: Wollar Valid Data Exception Table                                                                      | 23 |

**Report No: DAT12176** 

**Peabody Energy** 



## 1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for June 2017. Data capture for the different pollutants is presented in Table 9.

**Report No: DAT12176** 

**Peabody Energy** 



#### 2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1<sup>st</sup> March 2013.

This report presents the data for June 2017.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

## 3.0 Monitoring and Data Collection

#### **3.1.** Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

| Site Name | Geographical Coordinates         | Height Above<br>Sea Level (m) |
|-----------|----------------------------------|-------------------------------|
| Wollar    | Lat: -32.360105 Long: 149.949509 | 366                           |

**Report No: DAT12176** 

**Peabody Energy** 



A siting audit was conducted on 27<sup>th</sup> February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.



Figure 1: Wilpinjong Mine Monitoring Station Location

**Report No: DAT12176** 

**Peabody Energy** 



#### 3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

| Parameter Measured                             | Instrument and Measurement Technique       |
|------------------------------------------------|--------------------------------------------|
| BTX<br>(Benzene, Toluene and <i>p</i> -Xylene) | Synspec GC955 - Gas Chromatography         |
| H₂S                                            | Ecotech EC9852 - fluorescence              |
| NO, NO <sub>2</sub> , NO <sub>x</sub>          | Ecotech EC9841 gas phase chemiluminescence |
| SO <sub>2</sub>                                | Ecotech EC9850 – fluorescence              |
| Wind Speed (horizontal, 10m)                   | Gill Windsonic                             |
| Wind Direction (10m)                           | Gill Windsonic                             |

**Report No: DAT12176** 

#### **Peabody Energy**



#### 3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

**Table 3: Methods** 

| Parameter<br>Measured                 | Data Collection Methods<br>Used | Description of Method                                                                                                                   |
|---------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | AS 3580.5.1-2011                | Methods for sampling and analysis of ambient air. Method 5.1:  Determination of oxides of nitrogen – chemiluminescence method           |
|                                       | Ecotech Laboratory<br>Manual    | In-house method 6.1 Oxides of nitrogen by chemiluminescence                                                                             |
| SO <sub>2</sub>                       | AS 3580.4.1-2008                | Methods for sampling and analysis of ambient air. Method 4.1:  Determination of sulfur dioxide – Direct reading instrumental method     |
|                                       | Ecotech Laboratory<br>Manual    | In-house method 6.2 Sulfur dioxide by fluorescence                                                                                      |
| H₂S                                   | Ecotech Laboratory<br>Manual    | In-house method 6.5 Hydrogen sulfide by fluorescence                                                                                    |
| втх                                   | Manufacturer's<br>Instructions  | Gas Chromatography Synspec CG955 Series Manual                                                                                          |
| Vector Wind<br>Speed                  | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |
| (Horizontal)                          | Ecotech Laboratory<br>Manual    | In-house method 8.1 Wind speed (Horizontal) by anemometer                                                                               |
| Vector Wind<br>Direction              | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |
| Direction                             | Ecotech Laboratory<br>Manual    | In-house method 8.3 Wind direction by anemometer                                                                                        |

**Report No: DAT12176** 

**Peabody Energy** 



#### 3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

 Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.

#### 3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis<sup>TM</sup> version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5-minute intervals.

#### 3.4. Data Validation and Reporting

#### 3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five-minute data.

**Report No: DAT12176** 

#### **Peabody Energy**



#### 3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report Jun-17.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5-minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five-minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One-hour averages are calculated based on a clock hour. One-day averages are calculated based on calendar days.

**Report No: DAT12176** 

**Peabody Energy** 



## 4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

| Parameter       | Time Period | Exceedence<br>Level | Units | Maximum allowable exceedences |
|-----------------|-------------|---------------------|-------|-------------------------------|
| NO <sub>2</sub> | 1 year      | 30                  | ppb   | None                          |
| NO <sub>2</sub> | 1 hour      | 120                 | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 hour      | 200                 | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 day       | 80                  | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 year      | 20                  | ppb   | None                          |

## 4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

| Parameter       | Time Period | Value of Exceedence | Date of Exceedence |
|-----------------|-------------|---------------------|--------------------|
| NO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 day       | -                   | -                  |

**Report No: DAT12176** 

**Peabody Energy** 



#### 5.0 Calibrations and Maintenance

#### 5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

**Table 6: Units and Uncertainties** 

| Parameter                                          | Units | Resolution | Uncertainty                                                           | Measurement<br>Range <sup>1</sup>                |
|----------------------------------------------------|-------|------------|-----------------------------------------------------------------------|--------------------------------------------------|
| NO, NO <sub>x</sub><br>(EC9841)                    | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                          | 0 ppb to 500 ppb                                 |
| NO <sub>2</sub> (EC9841)                           | ppm   | 1 ppb      | ± 16 ppb<br>K factor of 2.01                                          | 0 ppb to 500 ppb                                 |
| SO <sub>2</sub> (EC9850)                           | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01 0 ppb to 500                             |                                                  |
| H <sub>2</sub> S                                   | ppm   | 1 ppb      | 15.2% of reading or ± 19 ppb, whichever is greater  K factor of 2     | 0 ppb to 500 ppb                                 |
| Benzene,<br>Toluene and <i>p</i> -<br>Xylene (BTX) | ppb   | 0.03 ppb   | 15.1% of reading or 3.8ppb, whichever is greater  K factor of 2       | 0 ppb to 300 ppb                                 |
| Vector Wind<br>Speed                               | m/s   | 0.1 m/s    | ±0.01 m/s or 2.0% of reading, whichever is greater (K factor of 1.96) | 0 m/s to 60 m/s                                  |
| Vector Wind<br>Direction                           | Deg   | 1 deg      | ±2 deg<br>K factor of 2.11                                            | 0 deg to 360 deg<br>Starting threshold:<br>0 m/s |

 $<sup>^{1}</sup>$  Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO<sub>2</sub> and NO<sub>x</sub> by EC 9841 and SO<sub>2</sub> by EC9850 are calculated based on a measurement range of 0-125 ppb.

**Report No: DAT12176** 

**Peabody Energy** 



#### 5.2. Automatic Checks

Automatic span and zero calibration checks run every night for NO, NO<sub>2</sub>, NO<sub>x</sub> and SO<sub>2</sub>, every  $2^{nd}$  night for H<sub>2</sub>S and daily for BTX.

Background checks run each night for SO<sub>2</sub> and H<sub>2</sub>S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S and BTX

| Parameter                             | Span / Zero cycle time<br>(approximate)  | Background cycle time<br>(approximate) |
|---------------------------------------|------------------------------------------|----------------------------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 00:45 to 01:25 every day                 | N/A                                    |
| SO <sub>2</sub>                       | 00:45 to 01:25 every day                 | 23:45 to 23:50 every day               |
| H <sub>2</sub> S                      | 01:35 to 02:35 every 2 <sup>nd</sup> day | 23:45 to 23:50 every day               |
| BTX                                   | 02:45 to 05:10 every day                 | N/A                                    |

#### 5.3. Maintenance

Scheduled monthly maintenance was performed on 21/06/2017.

Two unscheduled visits were made on 15/06/2017 to remove the BTX analyser, and on 26/06/2017 to change the gas regulator on the gas bottle following a raised fault for incomplete calibration cycles.

#### 5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

**Report No: DAT12176** 

#### **Peabody Energy**



Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

**Table 8: Wilpinjong Wollar Maintenance Table** 

| Parameter                             | Date of Last<br>Maintenance | Maintenance Type    | Date of Last<br>Calibration | Calibration<br>Cycle |
|---------------------------------------|-----------------------------|---------------------|-----------------------------|----------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 26/06/2017                  | Unscheduled         | 26/06/2017                  | Monthly              |
| SO <sub>2</sub>                       | 26/06/2017                  | Unscheduled         | 26/06/2017                  | Monthly              |
| H₂S                                   | 21/06/2017                  | Monthly             | 26/06/2017                  | Monthly              |
| ВТХ                                   | 15/06/2017                  | Removed for repairs | 27/01/2017                  | Yearly               |
| Wind Sensor                           | 21/06/2017                  | Monthly             | 21/05/2015                  | 2-yearly             |

## **Report No: DAT12176**

**Peabody Energy** 



#### 6.0 Results

#### 6.1. Data Capture

Data capture is based on 1-hour averages, calculated from 5-minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for June 2017. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

**Table 9: Data Capture for Wilpinjong Wollar Station** 

| Parameter                             | Data Capture % |
|---------------------------------------|----------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 95.0           |
| SO <sub>2</sub>                       | 94.9           |
| H₂S                                   | 92.1           |
| Benzene                               | 0.0            |
| Toluene                               | 0.0            |
| <i>p</i> -Xylene                      | 0.0            |
| WS, WD                                | 98.4           |

**Report No: DAT12176** 

**Peabody Energy** 



## 6.2. Graphic Representations

Validated 5-minute data for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

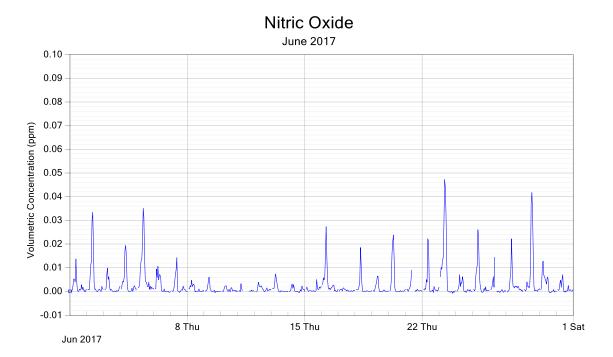



Figure 2: NO 1-hour averaged data

## **Report No: DAT12176**

**Peabody Energy** 



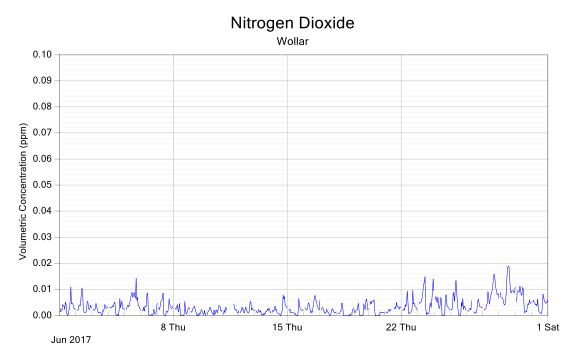



Figure 3: NO<sub>2</sub> 1-hour averaged data

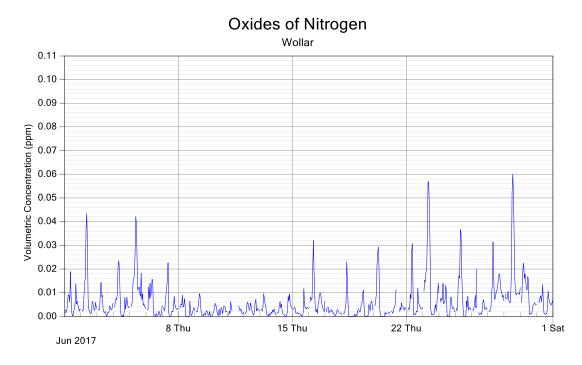



Figure 4: NO<sub>X</sub> 1-hour averaged data

## **Report No: DAT12176**

**Peabody Energy** 



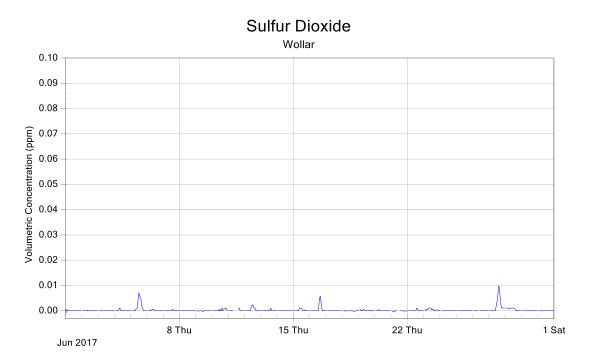



Figure 5: SO<sub>2</sub> 1-hour averaged data

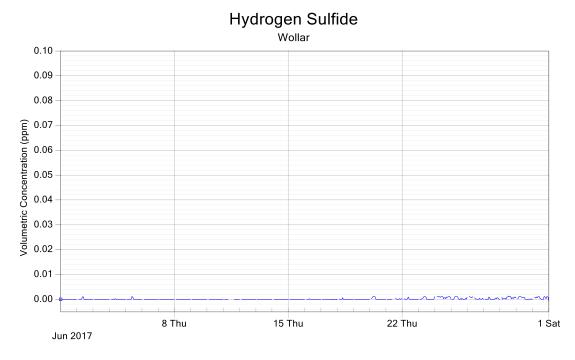



Figure 6: H<sub>2</sub>S 1-hour averaged data

**Report No: DAT12176** 

**Peabody Energy** 



#### Benzene, Toluene and p-Xylene



Figure 7: BTX 1-hour averaged data

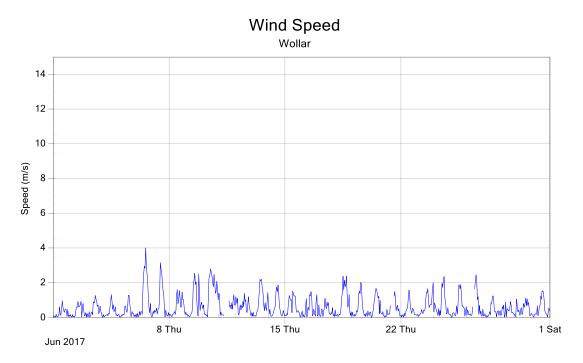



Figure 8: WS 1-hour averaged data

# **Report No: DAT12176**

**Peabody Energy** 



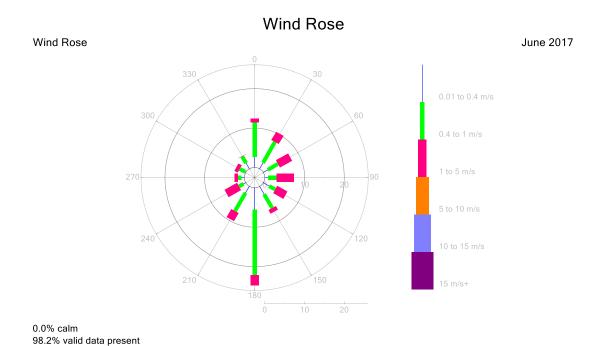



Figure 9: Wind Rose

**Report No: DAT12176** 

**Peabody Energy** 



# 7.0 Valid Data Exception Tables

The table below detail all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

**Table 10: Wollar Valid Data Exception Table** 

| Start Date          | End Date            | Reason                                                                                                                                | Change<br>Details                     | User<br>Name | Change<br>Date |
|---------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|----------------|
| 1/06/2017<br>0:00   | 30/06/2017<br>23:55 | Instrument fault - Synspec oven failed, did not restore following power interruption on 11/06/2017 & removed for repair on 15/06/2017 | втх                                   | RE           | 20/07/2017     |
| 7/06/2017<br>1:30   | 11/06/2017<br>7:55  | Linear multiplier applied to correct span<br>values where A= 1.07 and B= 1.15                                                         | NO, NO <sub>2</sub> , NO <sub>x</sub> | СТ           | 28/07/2017     |
| 11/06/2017<br>8:00  | 11/06/2017<br>16:15 | Power interruption and stabilisation                                                                                                  | All parameters                        | RE           | 20/07/2017     |
| 15/06/2017<br>1:30  | 26/06/2017<br>9:25  | Overnight spans out of tolerance due to gas bottle regulator fault                                                                    | NO, NO <sub>2</sub> , NO <sub>x</sub> | RE           | 20/07/2017     |
| 21/06/2017<br>10:00 | 21/06/2017<br>13:25 | Scheduled maintenance – monthly tasks performed                                                                                       | All parameters                        | RE           | 20/07/2017     |
| 21/06/2017<br>13:35 | 1/07/2017<br>0:00   | Static offset of 0.001ppm to correct baseline                                                                                         | H₂S                                   | СТ           | 28/07/2017     |
| 26/06/2017<br>9:30  | 26/06/2017<br>11:05 | Unscheduled maintenance – resolved raised span/zero fault                                                                             | All parameters                        | RE           | 20/07/2017     |

**Report No: DAT12176** 

**Peabody Energy** 



## 8.0 Report Summary

The data capture for Wollar was below 95% for the reporting month; with the exception of  $NO_X$ , wind speed and direction.

Please refer to Data Capture Percentage Table 9 for details; and Table 10 for valid data exceptions.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

**Report No: DAT12176** 

**Peabody Energy** 



# **Appendix 1 - Definitions & Abbreviations**

BTX Benzene, Toluene and *p*-Xylene

H<sub>2</sub>S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO<sub>2</sub> Nitrogen dioxide

NO<sub>x</sub> Oxides of nitrogen

ppb Parts per billion

SO<sub>2</sub> Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

**Report No: DAT12176** 

**Peabody Energy** 



#### **Appendix 2 - Explanation of Exception Table**

**Automatic background check** refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero-signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

**Calibration check outside tolerance** refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

**Commissioning** refers to the initial setup and calibration of the instrument when it is first installed. For some instruments, there may be a stabilisation period before normal operation commences.

**Data affected by environmental conditions – wind speed / wind speed gust spike** refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

**Data transmission error** refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

**Equipment malfunction/instrument fault** refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

**Gap in data/data not available** refers to a period of time when either data has been lost or could not be collected.

**Instrument Alarm** refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

**Instrument out of service** refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

**Linear offset or multiplier** refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

**Report No: DAT12176** 

#### **Peabody Energy**



**Logger error** refers to when an error occurs and instrument readings are not correctly recorded by the logger.

**Maintenance** refers to a period of time when the logger / instrument was switched off due to maintenance.

**Overnight span/zero out of tolerance** refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

**Power Interruption** refers to no power to the station therefore no data was collected at this time.

**Remote Calibration** refers to when a technician remotely connects to the station and manually performs a span check.

**Static offset or multiplier** refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

**Warm up after power interruption** refers to the start-up period of an instrument after power has been restored.



Accredited for compliance with ISO/IEC 17025 - Testing



Accreditation No. 14184.

# **Peabody Energy**

# Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1<sup>st</sup> July – 31<sup>st</sup> July 2017

Report No.: DAT12282

Report issue date: 30<sup>th</sup> August 2017

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

**Report No: DAT12282** 

**Peabody Energy** 



|              | Customer Details                 |  |  |
|--------------|----------------------------------|--|--|
| Customer     | Peabody Energy Australia         |  |  |
| Contact name | Clark Potter                     |  |  |
| Address      | Locked Bag 2005, Mudgee 2850 NSW |  |  |
| Email        | cpotter@peabodyenergy.com        |  |  |
| Phone        | +61 (02) 6370 2527               |  |  |

| Revision History |           |            |                 |
|------------------|-----------|------------|-----------------|
| Revision         | Report ID | Date       | Analyst         |
| 0                | DAT12282  | 30/08/2017 | Camila Trindade |

Camillan Hinshole Report by Camila Trindade

Approved by Jon Alexander

# Report No: DAT12282

## **Peabody Energy**



## **Table of Contents**

| 1.0  | Execut  | tive Summary6                              |
|------|---------|--------------------------------------------|
| 2.0  | Introd  | uction7                                    |
| 3.0  | Monit   | oring and Data Collection7                 |
| 3.1. | Sitir   | ng Details7                                |
| 3.2. | Mor     | nitored Parameters9                        |
| 3.3. | Data    | a Collection Methods10                     |
| 3    | .3.1.   | Compliance with Standards11                |
| 3    | .3.2.   | Data Acquisition                           |
| 3.4. | Data    | a Validation and Reporting11               |
| 3    | .4.1.   | Validation11                               |
| 3    | .4.2.   | Reporting12                                |
| 4.0  | Air Qu  | ality Goals13                              |
| 4.1. | Air (   | Quality Summary13                          |
| 5.0  | Calibra | ations and Maintenance14                   |
| 5.1. | Unit    | ts and Uncertainties14                     |
| 5.2. | Auto    | omatic Checks15                            |
| 5.3. | Mai     | ntenance                                   |
| 5    | .3.1.   | Calibration & Maintenance Summary Tables16 |
| 6.0  | Result  | s17                                        |
| 6.1. | Data    | a Capture17                                |
| 6.2. | Gra     | phic Representations18                     |

# Report No: DAT12282

#### **Peabody Energy**



| 7.0   | Valid Data Exception Tables                       | 23 |
|-------|---------------------------------------------------|----|
| 8.0   | Report Summary                                    | 24 |
| Арре  | endix 1 - Definitions & Abbreviations             | 25 |
| Арре  | endix 2 - Explanation of Exception Table          | 26 |
|       |                                                   |    |
| List  | t of Figures                                      |    |
| Figur | re 1: Wilpinjong Mine Monitoring Station Location | 8  |
| Figur | re 2: NO 1-hour averaged data                     | 18 |
| Figur | re 3: NO <sub>2</sub> 1-hour averaged data        | 19 |
| Figur | re 4: NO <sub>x</sub> 1-hour averaged data        | 19 |
| Figur | re 5: SO <sub>2</sub> 1-hour averaged data        | 20 |
| Figur | re 6: H₂S 1-hour averaged data                    | 20 |
| Figur | re 7: BTX 1-hour averaged data                    | 21 |
| Figur | re 8: WS 1-hour averaged data                     | 21 |
| Figur | re 9: Wind Rose                                   | 22 |

# Report No: DAT12282

#### **Peabody Energy**



#### **List of Tables**

| Table 1: Wilpinjong Mine monitoring site location                                                                | 7  |
|------------------------------------------------------------------------------------------------------------------|----|
| Table 2: Parameters measured at the Wilpinjong Mine monitoring station                                           | 9  |
| Table 3: Methods                                                                                                 | 10 |
| Table 4: Wilpinjong Air Quality Goals (NEPM)                                                                     | 13 |
| Table 5: Exceedences Recorded                                                                                    | 13 |
| Table 6: Units and Uncertainties                                                                                 | 14 |
| Table 7: Automatic checks for NO, NO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> , H <sub>2</sub> S and BTX | 15 |
| Table 8: Wilpinjong Wollar Maintenance Table                                                                     | 16 |
| Table 9: Data Capture for Wilpinjong Wollar Station                                                              | 17 |
| Table 10: Wollar Valid Data Exception Table                                                                      | 23 |

**Report No: DAT12282** 

**Peabody Energy** 



#### 1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO,  $NO_2$ ,  $NO_x$ ,  $SO_2$ ,  $H_2S$ , Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for July 2017. Data capture for the different pollutants is presented in Table 9.

**Report No: DAT12282** 

**Peabody Energy** 



#### 2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1<sup>st</sup> March 2013.

This report presents the data for July 2017.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

## 3.0 Monitoring and Data Collection

#### **3.1.** Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

| Site Name | Geographical Coordinates  Height Above Sea Level (m) |     |
|-----------|------------------------------------------------------|-----|
| Wollar    | Lat: -32.360105 Long: 149.949509                     | 366 |

**Report No: DAT12282** 

**Peabody Energy** 



A siting audit was conducted on 27<sup>th</sup> February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.



Figure 1: Wilpinjong Mine Monitoring Station Location

**Report No: DAT12282** 

**Peabody Energy** 



#### 3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

| Parameter Measured                          | Instrument and Measurement Technique       |  |
|---------------------------------------------|--------------------------------------------|--|
| BTX (Benzene, Toluene and <i>p</i> -Xylene) | Synspec GC955 - Gas Chromatography         |  |
| H₂S                                         | Ecotech EC9852 - fluorescence              |  |
| NO, NO <sub>2</sub> , NO <sub>x</sub>       | Ecotech EC9841 gas phase chemiluminescence |  |
| SO <sub>2</sub>                             | Ecotech EC9850 – fluorescence              |  |
| Wind Speed (horizontal, 10m)                | Gill Windsonic                             |  |
| Wind Direction (10m)                        | Gill Windsonic                             |  |

**Report No: DAT12282** 

#### **Peabody Energy**



#### 3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

**Table 3: Methods** 

| Parameter<br>Measured                 | Data Collection Methods<br>Used | Description of Method                                                                                                                   |  |
|---------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | AS 3580.5.1-2011                | Methods for sampling and analysis of ambient air. Method 5.1:  Determination of oxides of nitrogen – chemiluminescence method           |  |
| , , , , , , , , , , , , , , , , , , , | Ecotech Laboratory<br>Manual    | In-house method 6.1 Oxides of nitrogen by chemiluminescence                                                                             |  |
| SO <sub>2</sub>                       | AS 3580.4.1-2008                | Methods for sampling and analysis of ambient air. Method 4.1:  Determination of sulfur dioxide – Direct reading instrumental method     |  |
| 302                                   | Ecotech Laboratory<br>Manual    | In-house method 6.2 Sulfur dioxide by fluorescence                                                                                      |  |
| H <sub>2</sub> S                      | Ecotech Laboratory<br>Manual    | In-house method 6.5 Hydrogen sulfide by fluorescence                                                                                    |  |
| ВТХ                                   | Manufacturer's<br>Instructions  | Gas Chromatography Synspec CG955 Series Manual                                                                                          |  |
| Vector Wind<br>Speed                  | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |
| (Horizontal)                          | Ecotech Laboratory<br>Manual    | In-house method 8.1 Wind speed (Horizontal) by anemometer                                                                               |  |
| Vector Wind                           | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |
| Direction                             | Ecotech Laboratory<br>Manual    | In-house method 8.3 Wind direction by anemometer                                                                                        |  |

**Report No: DAT12282** 

**Peabody Energy** 



#### 3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

• Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.

#### 3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis<sup>TM</sup> version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5-minute intervals.

#### 3.4. Data Validation and Reporting

#### 3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five-minute data.

**Report No: DAT12282** 

#### **Peabody Energy**



#### 3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report July-17.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5-minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five-minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One-hour averages are calculated based on a clock hour. One-day averages are calculated based on calendar days.

**Report No: DAT12282** 

**Peabody Energy** 



## 4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

| Parameter       | Time Period | Exceedence<br>Level | Units | Maximum allowable exceedences |
|-----------------|-------------|---------------------|-------|-------------------------------|
| NO <sub>2</sub> | 1 year      | 30                  | ppb   | None                          |
| NO <sub>2</sub> | 1 hour      | 120                 | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 hour      | 200                 | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 day       | 80                  | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 year      | 20                  | ppb   | None                          |

## 4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

**Table 5: Exceedences Recorded** 

| Parameter       | Time Period | Value of Exceedence | Date of Exceedence |
|-----------------|-------------|---------------------|--------------------|
| NO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 day       | -                   | -                  |

**Report No: DAT12282** 

**Peabody Energy** 



#### 5.0 Calibrations and Maintenance

#### 5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

**Table 6: Units and Uncertainties** 

| Parameter                                          | Units | Resolution | Uncertainty                                                           | Measurement<br>Range <sup>1</sup>                |
|----------------------------------------------------|-------|------------|-----------------------------------------------------------------------|--------------------------------------------------|
| NO, NO <sub>x</sub><br>(EC9841)                    | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                          | 0 ppb to 500 ppb                                 |
| NO <sub>2</sub> (EC9841)                           | ppm   | 1 ppb      | ± 16 ppb<br>K factor of 2.01                                          | 0 ppb to 500 ppb                                 |
| SO₂ (EC9850)                                       | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                          | 0 ppb to 500 ppb                                 |
| H₂S                                                | ppm   | 1 ppb      | 15.2% of reading or ± 19 ppb, whichever is greater  K factor of 2     | 0 ppb to 500 ppb                                 |
| Benzene,<br>Toluene and <i>p</i> -<br>Xylene (BTX) | ppb   | 0.03 ppb   | 15.1% of reading or 3.8ppb, whichever is greater  K factor of 2       | 0 ppb to 300 ppb                                 |
| Vector Wind<br>Speed                               | m/s   | 0.1 m/s    | ±0.01 m/s or 2.0% of reading, whichever is greater (K factor of 1.96) | 0 m/s to 60 m/s                                  |
| Vector Wind<br>Direction                           | Deg   | 1 deg      | ±2 deg<br>K factor of 2.11                                            | 0 deg to 360 deg<br>Starting threshold:<br>0 m/s |

 $<sup>^{1}</sup>$  Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO<sub>2</sub> and NO<sub>x</sub> by EC 9841 and SO<sub>2</sub> by EC9850 are calculated based on a measurement range of 0-125 ppb.

**Report No: DAT12282** 

#### **Peabody Energy**



#### 5.2. Automatic Checks

Automatic span and zero calibration checks run every night for NO, NO<sub>2</sub>, NO<sub>x</sub> and SO<sub>2</sub>, every  $2^{nd}$  night for H<sub>2</sub>S and weekly for BTX.

Background checks run each night for SO<sub>2</sub> and H<sub>2</sub>S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S and BTX

| Parameter                             | Span / Zero cycle time<br>(approximate)           | Background cycle time<br>(approximate) |
|---------------------------------------|---------------------------------------------------|----------------------------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 00:45 to 01:25 every day                          | N/A                                    |
| SO <sub>2</sub>                       | 00:45 to 01:25 every day 23:45 to 23:50 every day |                                        |
| H₂S                                   | 01:35 to 02:35 every 2 <sup>nd</sup> day          | 23:45 to 23:50 every day               |
| ВТХ                                   | 02:45 to 05:25 weekly                             | N/A                                    |

#### 5.3. Maintenance

Scheduled monthly maintenance was performed on 12/07/2017.

Four unscheduled visits were made:

- 11/07/2017 to install the new BTX analyser, and
- 14/07/2017 to replace the Gas calibrator (Instrument ID:04-1126 was transferred in and ID: 99-0563 was transferred out), and
- 17/07/2017 remote access to BTX analyser to fix the time zone and the clock
- 19/07/2017 remote calibration was performed for NOx analyser to fix the span drift

**Report No: DAT12282** 

#### **Peabody Energy**



#### 5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

**Table 8: Wilpinjong Wollar Maintenance Table** 

| Parameter                             | Date of Last<br>Maintenance | Maintenance Type | Date of Last<br>Calibration | Calibration<br>Cycle |
|---------------------------------------|-----------------------------|------------------|-----------------------------|----------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 19/07/2017                  | Unscheduled      | 12/07/2017                  | Monthly              |
| SO <sub>2</sub>                       | 12/07/2017                  | Monthly          | 12/07/2017                  | Monthly              |
| H <sub>2</sub> S                      | 12/07/2017                  | Monthly          | 12/07/2017                  | Monthly              |
| ВТХ                                   | 19/07/2017                  | Unscheduled      | 27/01/2017                  | Yearly               |
| Wind Sensor                           | 12/07/2017                  | Monthly          | 22/07/2015                  | 2-yearly             |

## **Report No: DAT12282**

#### **Peabody Energy**



#### 6.0 Results

#### 6.1. Data Capture

Data capture is based on 1-hour averages, calculated from 5-minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for July 2017. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

**Table 9: Data Capture for Wilpinjong Wollar Station** 

| Parameter                             | Data Capture % |
|---------------------------------------|----------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 32.8           |
| SO <sub>2</sub>                       | 95.7           |
| H₂S                                   | 95.3           |
| Benzene                               | 27.5           |
| Toluene                               | 27.5           |
| <i>p</i> -Xylene                      | 27.5           |
| WS, WD                                | 98.8           |

**Report No: DAT12282** 

**Peabody Energy** 



## 6.2. Graphic Representations

Validated 5-minute data for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

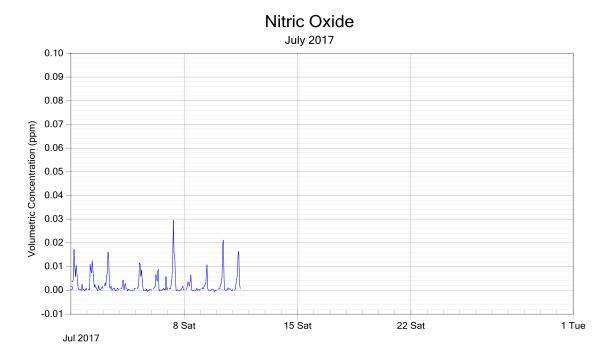



Figure 2: NO 1-hour averaged data

## **Report No: DAT12282**

**Peabody Energy** 



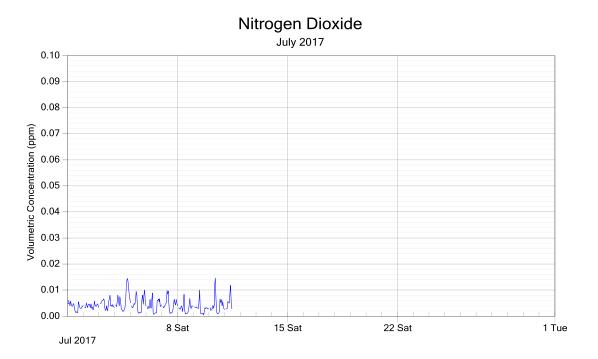



Figure 3: NO<sub>2</sub> 1-hour averaged data

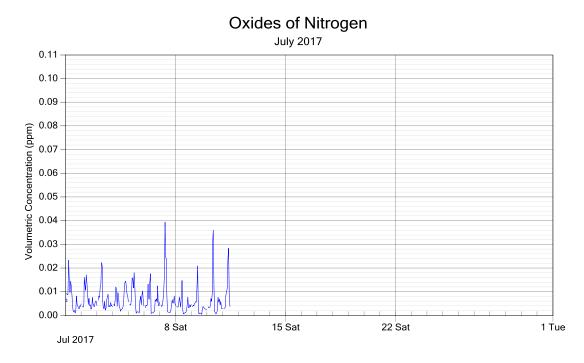



Figure 4: NO<sub>X</sub> 1-hour averaged data

## **Report No: DAT12282**

**Peabody Energy** 



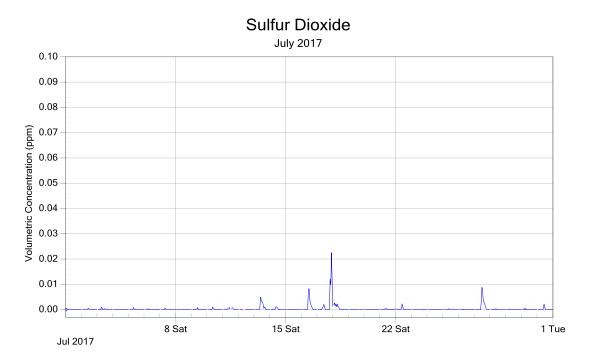



Figure 5: SO<sub>2</sub> 1-hour averaged data



Figure 6: H<sub>2</sub>S 1-hour averaged data

## **Report No: DAT12282**

**Peabody Energy** 



#### Benzene, Toluene and p-Xylene

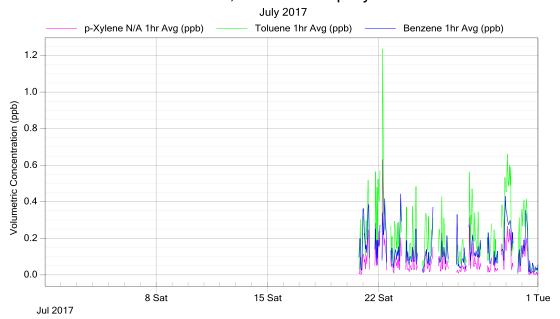



Figure 7: BTX 1-hour averaged data

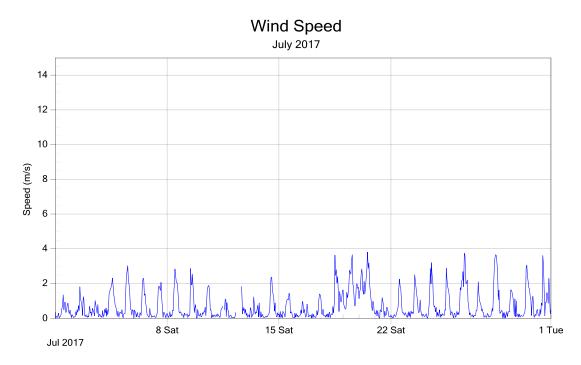



Figure 8: WS 1-hour averaged data

# **Report No: DAT12282**

**Peabody Energy** 



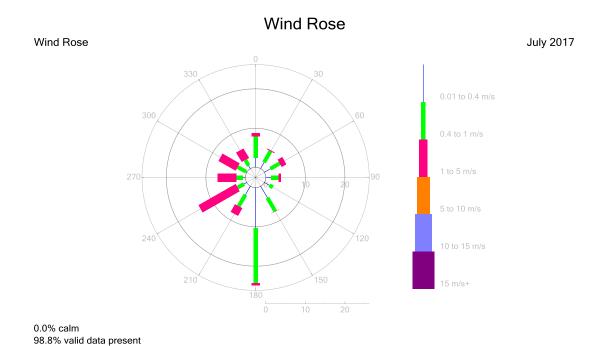



Figure 9: Wind Rose

**Report No: DAT12282** 

**Peabody Energy** 



# 7.0 Valid Data Exception Tables

The table below detail all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

**Table 10: Wollar Valid Data Exception Table** 

| Start Date          | End Date            | Reason                                                                               | Change<br>Details                     | User<br>Name | Change<br>Date |
|---------------------|---------------------|--------------------------------------------------------------------------------------|---------------------------------------|--------------|----------------|
| 30/06/2017<br>1:30  | 3/07/2017<br>0:40   | Linear multiplier applied to correct span values where A= 0.87 & B= 0.88             | NO, NO <sub>2</sub> , NO <sub>x</sub> | EP           | 23/08/2017     |
| 1/07/2017<br>0:00   | 11/07/2017<br>12:30 | Instrument fault - Synspec oven failed                                               | втх                                   | EP           | 23/08/2017     |
| 1/07/2017<br>0:00   | 1/08/2017<br>0:00   | Static offset of 0.001ppm to correct baseline                                        | H <sub>2</sub> S                      | EP           | 23/08/2017     |
| 4/07/2017<br>1:30   | 7/07/2017<br>0:40   | Static multiplier of 1.09 applied to correct span values                             | NO, NO <sub>2</sub> , NO <sub>x</sub> | СТ           | 28/08/2017     |
| 11/07/2017<br>12:35 | 11/07/2017<br>15:40 | Non-scheduled maintenance -Synpec analyser installed                                 | All channels                          | EP           | 23/08/2017     |
| 11/07/2017<br>14:15 | 1/08/2017<br>0:00   | Instrument fault - not responding to span check                                      | NO, NO <sub>2</sub> , NO <sub>x</sub> | СТ           | 28/08/2017     |
| 11/07/2017<br>15:45 | 14/07/2017<br>9:35  | Instrument stabilisation                                                             | втх                                   | СТ           | 29/08/2017     |
| 12/07/2017<br>7:45  | 12/07/2017<br>14:50 | Scheduled maintenance – monthly tasks performed                                      | All parameters                        | EP           | 23/08/2017     |
| 14/07/2017<br>9:40  | 14/07/2017<br>16:15 | Non-scheduled maintenance - Synpec analyser not communicating due to Gas cal failure | втх                                   | EP           | 23/08/2017     |
| 14/07/2017<br>16:20 | 20/07/2017<br>18:10 | Instrument stabilisation and settings adjusted in the analyser                       | втх                                   | СТ           | 28/08/2017     |
| 19/07/2017<br>17:15 | 19/07/2017<br>17:50 | Remote calibration performed                                                         | SO <sub>2</sub>                       | EP           | 23/08/2017     |

**Report No: DAT12282** 

**Peabody Energy** 



| Start Date          | End Date            | Reason                                                                                                                    | Change<br>Details | User<br>Name | Change<br>Date |
|---------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|----------------|
| 21/07/2017<br>10:50 | 30/07/2017<br>17:25 | Intermittent instrument fault - BTX unresponsive for extended period. Possibly affected by changes in shelter temperature | втх               | СТ           | 28/08/2017     |
| 28/07/2017<br>12:45 | 28/07/2017<br>12:55 | Additional background check and following instrument stabilisation                                                        | H₂S               | EP           | 23/08/2017     |

## 8.0 Report Summary

The data capture for Wollar was below 95% for the reporting month; with the exception of  $NO_X$ , benzene, toluene and p-xylene.

Please refer to Data Capture Percentage Table 9 for details; and Table 10 for valid data exceptions.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.



**Report No: DAT12282** 

**Peabody Energy** 



# **Appendix 1 - Definitions & Abbreviations**

BTX Benzene, Toluene and *p*-Xylene

H<sub>2</sub>S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO<sub>2</sub> Nitrogen dioxide

NO<sub>x</sub> Oxides of nitrogen

ppb Parts per billion

SO<sub>2</sub> Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

**Report No: DAT12282** 

**Peabody Energy** 



### **Appendix 2 - Explanation of Exception Table**

**Automatic background check** refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero-signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

**Calibration check outside tolerance** refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

**Commissioning** refers to the initial setup and calibration of the instrument when it is first installed. For some instruments, there may be a stabilisation period before normal operation commences.

**Data affected by environmental conditions – wind speed / wind speed gust spike** refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

**Data transmission error** refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

**Equipment malfunction/instrument fault** refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

**Gap in data/data not available** refers to a period of time when either data has been lost or could not be collected.

**Instrument Alarm** refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

**Instrument out of service** refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

**Linear offset or multiplier** refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

**Report No: DAT12282** 

#### **Peabody Energy**



**Logger error** refers to when an error occurs and instrument readings are not correctly recorded by the logger.

**Maintenance** refers to a period of time when the logger / instrument was switched off due to maintenance.

**Overnight span/zero out of tolerance** refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

**Power Interruption** refers to no power to the station therefore no data was collected at this time.

**Remote Calibration** refers to when a technician remotely connects to the station and manually performs a span check.

**Static offset or multiplier** refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

**Warm up after power interruption** refers to the start-up period of an instrument after power has been restored.



Accredited for compliance with ISO/IEC 17025 - Testing



Accreditation No. 14184.

# **Peabody Energy**

# Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1st August – 31st August 2017

Report No.: DAT12412

Report issue date: 28th September 2017

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

**Report No: DAT12412** 

**Peabody Energy** 



|                           | Customer Details                  |  |  |  |
|---------------------------|-----------------------------------|--|--|--|
| Customer                  | Customer Peabody Energy Australia |  |  |  |
| Contact name Clark Potter |                                   |  |  |  |
| Address                   | Locked Bag 2005, Mudgee 2850 NSW  |  |  |  |
| Email                     | cpotter@peabodyenergy.com         |  |  |  |
| Phone +61 (02) 6370 2527  |                                   |  |  |  |

| Revision History |           |            |              |  |
|------------------|-----------|------------|--------------|--|
| Revision         | Report ID | Date       | Analyst      |  |
| 0                | DAT12412  | 28/09/2017 | Elmira Parto |  |

**Report by** Elmira Parto

**Approved by** Caroline Knight

C. knept

# Report No: DAT12412

#### **Peabody Energy**



## **Table of Contents**

| 1.0  | Exec  | cutive Summary6                            |
|------|-------|--------------------------------------------|
| 2.0  | Intro | oduction7                                  |
| 3.0  | Mor   | nitoring and Data Collection7              |
| 3.1. | Si    | iting Details                              |
| 3.2. | M     | Nonitored Parameters9                      |
| 3.3. | Da    | ata Collection Methods10                   |
| 3    | .3.1. | Compliance with Standards                  |
| 3    | .3.2. | Data Acquisition                           |
| 3.4. | D     | ata Validation and Reporting11             |
| 3    | .4.1. | Validation11                               |
| 3    | .4.2. | Reporting12                                |
| 4.0  | Air ( | Quality Goals13                            |
| 4.1. | Ai    | ir Quality Summary13                       |
| 5.0  | Calil | brations and Maintenance14                 |
| 5.1. | U     | nits and Uncertainties14                   |
| 5.2. | Αι    | utomatic Checks                            |
| 5.3. | M     | Naintenance                                |
| 5    | .3.1. | Calibration & Maintenance Summary Tables16 |
| 6.0  | Resu  | ults17                                     |
| 6.1. | Da    | ata Capture                                |
| 6.2. | G     | raphic Representations18                   |

# Report No: DAT12412

#### **Peabody Energy**



| 7.0   | Valid Data Exception Tables                       | 23 |
|-------|---------------------------------------------------|----|
| 8.0   | Report Summary                                    | 25 |
| Appe  | pendix 1 - Definitions & Abbreviations            | 26 |
| Appe  | pendix 2 - Explanation of Exception Table         | 27 |
|       |                                                   |    |
| List  | t of Figures                                      |    |
| Figur | re 1: Wilpinjong Mine Monitoring Station Location | 8  |
| Figur | re 2: NO 1-hour averaged data                     | 18 |
| Figur | re 3: NO <sub>2</sub> 1-hour averaged data        | 19 |
| Figur | ıre 4: NO <sub>X</sub> 1-hour averaged data       | 19 |
| Figur | re 5: SO <sub>2</sub> 1-hour averaged data        | 20 |
| Figur | ıre 6: H₂S 1-hour averaged data                   | 20 |
| Figur | re 7: BTX 1-hour averaged data                    | 21 |
| Figur | re 8: WS 1-hour averaged data                     | 21 |
| Figur | ıre 9: Wind Rose                                  | 22 |

# Report No: DAT12412

## **Peabody Energy**



## **List of Tables**

| Table 1: Wilpinjong Mine monitoring site location                                                                | 7  |
|------------------------------------------------------------------------------------------------------------------|----|
| Table 2: Parameters measured at the Wilpinjong Mine monitoring station                                           | S  |
| Table 3: Methods                                                                                                 | 10 |
| Table 4: Wilpinjong Air Quality Goals (NEPM)                                                                     | 13 |
| Table 5: Exceedences Recorded                                                                                    | 13 |
| Table 6: Units and Uncertainties                                                                                 | 14 |
| Table 7: Automatic checks for NO, NO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> , H <sub>2</sub> S and BTX | 15 |
| Table 8: Wilpinjong Wollar Maintenance Table                                                                     | 16 |
| Table 9: Data Capture for Wilpinjong Wollar Station                                                              | 17 |
| Table 10: Wollar Valid Data Exception Table                                                                      | 23 |

**Report No: DAT12412** 

**Peabody Energy** 



# 1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene, *p*-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for August 2017. Data capture for the different pollutants is presented in Table 9.

Benzene, Toluene and Xylene data monitored at the Wollar station after 7/08/2017 is not included in this report as the data is pending further investigation into instrument performance and calibration. Data will be issued on completion of this investigation.

**Report No: DAT12412** 

**Peabody Energy** 



#### 2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1<sup>st</sup> March 2013.

This report presents the data for August 2017.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

## 3.0 Monitoring and Data Collection

#### **3.1.** Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

| Site Name | Geographical Coordinates         | Height Above<br>Sea Level (m) |  |
|-----------|----------------------------------|-------------------------------|--|
| Wollar    | Lat: -32.360105 Long: 149.949509 | 366                           |  |

**Report No: DAT12412** 

**Peabody Energy** 



A siting audit was conducted on 27<sup>th</sup> February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.



Figure 1: Wilpinjong Mine Monitoring Station Location

**Report No: DAT12412** 

**Peabody Energy** 



#### 3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

| Parameter Measured                             | Instrument and Measurement Technique       |
|------------------------------------------------|--------------------------------------------|
| BTX<br>(Benzene, Toluene and <i>p</i> -Xylene) | Synspec GC955 - Gas Chromatography         |
| H₂S                                            | Ecotech EC9852 - fluorescence              |
| NO, NO <sub>2</sub> , NO <sub>x</sub>          | Ecotech EC9841 gas phase chemiluminescence |
| SO <sub>2</sub>                                | Ecotech EC9850 – fluorescence              |
| Wind Speed (horizontal, 10m)                   | Gill Windsonic                             |
| Wind Direction (10m)                           | Gill Windsonic                             |

**Report No: DAT12412** 

#### **Peabody Energy**



#### 3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

**Table 3: Methods** 

| Parameter<br>Measured                                     | Data Collection Methods<br>Used | Description of Method                                                                                                                   |  |
|-----------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| AS 3580.5.1-2011<br>NO, NO <sub>2</sub> , NO <sub>x</sub> |                                 | Methods for sampling and analysis of ambient air. Method 5.1:  Determination of oxides of nitrogen – chemiluminescence method           |  |
| 110,1102,110                                              | Ecotech Laboratory<br>Manual    | In-house method 6.1 Oxides of nitrogen by chemiluminescence                                                                             |  |
| SO <sub>2</sub>                                           | AS 3580.4.1-2008                | Methods for sampling and analysis of ambient air. Method 4.1:  Determination of sulfur dioxide – Direct reading instrumental method     |  |
| 302                                                       | Ecotech Laboratory<br>Manual    | In-house method 6.2 Sulfur dioxide by fluorescence                                                                                      |  |
| H₂S                                                       | Ecotech Laboratory<br>Manual    | In-house method 6.5 Hydrogen sulfide by fluorescence                                                                                    |  |
| втх                                                       | Manufacturer's<br>Instructions  | Gas Chromatography Synspec CG955 Series Manual                                                                                          |  |
| Vector Wind<br>Speed                                      | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications  |  |
| (Horizontal) Ecotech Laboratory In-house me               |                                 | In-house method 8.1 Wind speed (Horizontal) by anemometer                                                                               |  |
| Vector Wind                                               | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |
| Direction                                                 | Ecotech Laboratory<br>Manual    | In-house method 8.3 Wind direction by anemometer                                                                                        |  |

**Report No: DAT12412** 

**Peabody Energy** 



#### 3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of the wind data from 22/7/2017 up to 6/09/2017 is not covered by Ecotech's NATA scope of accreditation as the 2 yearly calibration is overdue.

#### 3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis<sup>TM</sup> version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5-minute intervals.

#### 3.4. Data Validation and Reporting

#### 3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five-minute data.

**Report No: DAT12412** 

#### **Peabody Energy**



#### 3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report August-17.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5-minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five-minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One-hour averages are calculated based on a clock hour. One-day averages are calculated based on calendar days.

**Report No: DAT12412** 

**Peabody Energy** 



## 4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

| Parameter       | Time Period | Exceedence<br>Level | Units | Maximum allowable exceedences |
|-----------------|-------------|---------------------|-------|-------------------------------|
| NO <sub>2</sub> | 1 year      | 30                  | ppb   | None                          |
| NO <sub>2</sub> | 1 hour      | 120 ppb 1 day a yea |       | 1 day a year                  |
| SO <sub>2</sub> | 1 hour      | 200                 | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 day       | 80                  | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 year      | 20                  | ppb   | None                          |

#### 4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

**Table 5: Exceedences Recorded** 

| Parameter       | Time Period | Value of Exceedence | Date of Exceedence |
|-----------------|-------------|---------------------|--------------------|
| NO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 day       | -                   | -                  |

**Report No: DAT12412** 

**Peabody Energy** 



#### 5.0 Calibrations and Maintenance

#### 5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

**Table 6: Units and Uncertainties** 

| Parameter                                         | Units | Resolution | Uncertainty                                                           | Measurement<br>Range <sup>1</sup>                |
|---------------------------------------------------|-------|------------|-----------------------------------------------------------------------|--------------------------------------------------|
| NO, NO <sub>x</sub><br>(EC9841)                   | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                          | 0 ppb to 500 ppb                                 |
| NO <sub>2</sub> (EC9841)                          | ppm   | 1 ppb      | ± 16 ppb<br>K factor of 2.01                                          | 0 ppb to 500 ppb                                 |
| SO₂ (EC9850)                                      | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                          | 0 ppb to 500 ppb                                 |
| H <sub>2</sub> S                                  | ppm   | 1 ppb      | 15.2% of reading or ± 19 ppb, whichever is greater  K factor of 2     | 0 ppb to 500 ppb                                 |
| Benzene,<br>Toluene and <i>p-</i><br>Xylene (BTX) | ppb   | 0.03 ppb   | 15.1% of reading or 3.8ppb, whichever is greater  K factor of 2       | 0 ppb to 300 ppb                                 |
| Vector Wind<br>Speed                              | m/s   | 0.1 m/s    | ±0.01 m/s or 2.0% of reading, whichever is greater (K factor of 1.96) | 0 m/s to 60 m/s                                  |
| Vector Wind<br>Direction                          | Deg   | 1 deg      | ±2 deg<br>K factor of 2.11                                            | 0 deg to 360 deg<br>Starting threshold:<br>0 m/s |

 $<sup>^{1}</sup>$  Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO<sub>2</sub> and NO<sub>x</sub> by EC 9841 and SO<sub>2</sub> by EC9850 are calculated based on a measurement range of 0-125 ppb.

**Report No: DAT12412** 

**Peabody Energy** 



#### 5.2. Automatic Checks

Automatic span and zero calibration checks run every night for NO, NO<sub>2</sub>, NO<sub>x</sub> and SO<sub>2</sub>, every  $2^{nd}$  night for H<sub>2</sub>S and weekly for BTX.

Background checks run each night for SO<sub>2</sub> and H<sub>2</sub>S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S and BTX

| Parameter                             | Span / Zero cycle time<br>(approximate)  | Background cycle time<br>(approximate) |
|---------------------------------------|------------------------------------------|----------------------------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 00:45 to 01:25 every day                 | N/A                                    |
| SO <sub>2</sub>                       | 00:45 to 01:25 every day                 | 23:45 to 23:50 every day               |
| H <sub>2</sub> S                      | 01:35 to 02:35 every 2 <sup>nd</sup> day | 23:45 to 23:50 every day               |
| ВТХ                                   | 02:45 to 05:25 weekly                    | N/A                                    |

#### 5.3. Maintenance

Scheduled monthly maintenance was performed on 07/08/2017.

Four unscheduled visits were made:

- 21/08/2017 to replace the zero air generator (Instrument ID:01-0659 was transferred in and ID: 04-0225 was transferred out) an additional gas calibrator and zero air generator was installed for calibration of the BTX analyser (Gas Calibrator ID:04-0477 and Zero Air Generator ID: 06-0577)
- 22/08/2017 NOx analyser was replaced (Instrument ID: 02-0385 was transferred in and ID: 96-0329 was transferred out), H₂S analyser was replaced (Instrument ID: 97-0373 was transferred in and Instrument ID: 02-0368 was transferred out)
- 28/08/2017 to install a separate scrubber for BTX analyser
- 29/08/2017 to replace the logger and run the span for BTX and H₂S

**Report No: DAT12412** 

#### **Peabody Energy**



#### 5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

**Table 8: Wilpinjong Wollar Maintenance Table** 

| Parameter                             | Date of Last<br>Maintenance | Maintenance Type | Date of Last<br>Calibration | Calibration<br>Cycle |
|---------------------------------------|-----------------------------|------------------|-----------------------------|----------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 22/08/2017                  | Unscheduled      | 22/08/2017                  | Monthly              |
| SO <sub>2</sub>                       | 21/08/2017                  | Unscheduled      | 21/08/2017                  | Monthly              |
| H <sub>2</sub> S                      | 29/08/2017                  | Unscheduled      | 29/08/2017                  | Monthly              |
| ВТХ                                   | 29/08/2017                  | Unscheduled      | 29/08/2017                  | Yearly               |
| Wind Sensor                           | 7/08/2017                   | 3 Monthly        | 22/07/2015                  | 2-yearly             |

#### **Report No: DAT12412**

#### **Peabody Energy**



#### 6.0 Results

#### 6.1. Data Capture

Data capture is based on 1-hour averages, calculated from 5-minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for August 2017. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

**Table 9: Data Capture for Wilpinjong Wollar Station** 

| Parameter                             | Data Capture % |
|---------------------------------------|----------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 25.4           |
| SO <sub>2</sub>                       | 51.2           |
| H₂S                                   | 4.3            |
| Benzene                               | ТВА            |
| Toluene                               | ТВА            |
| <i>p</i> -Xylene                      | ТВА            |
| WS, WD                                | 94.9           |

## **Report No: DAT12412**

**Peabody Energy** 



## 6.2. Graphic Representations

Validated 5-minute data for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.




Figure 2: NO 1-hour averaged data

## **Report No: DAT12412**

**Peabody Energy** 



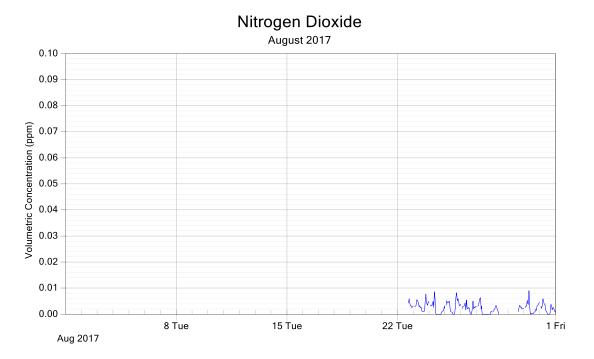



Figure 3: NO<sub>2</sub> 1-hour averaged data

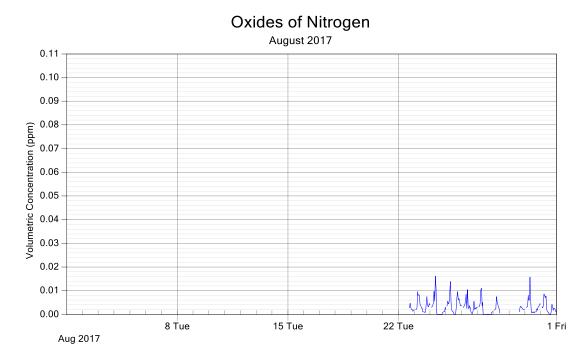



Figure 4: NO<sub>X</sub> 1-hour averaged data

## **Report No: DAT12412**

**Peabody Energy** 



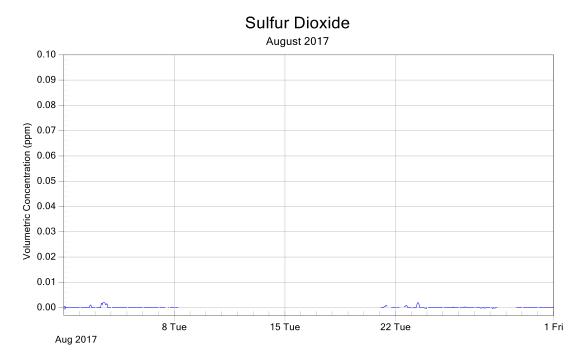



Figure 5: SO<sub>2</sub> 1-hour averaged data

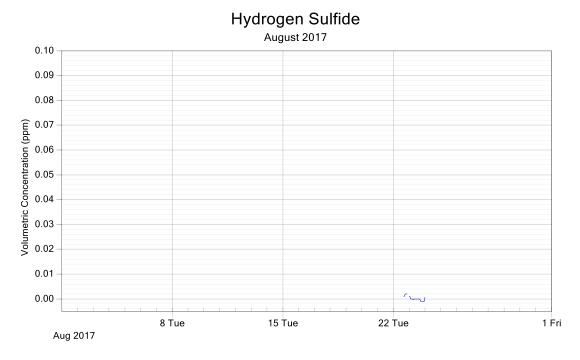



Figure 6: H<sub>2</sub>S 1-hour averaged data

## **Report No: DAT12412**

**Peabody Energy** 



#### Benzene, Toluene and p-Xylene

August 2017 Toluene 1hr Avg (ppb) Benzene 1hr Avg (ppb) p-Xylene N/A 1hr Avg (ppb) 1.8 1.6 1.4 Volumetric Concentration (ppb) 1.2 1.0 0.8 0.6 0.4 0.0 8 Tue 15 Tue 22 Tue 1 Fri Aug 2017

Figure 7: BTX 1-hour averaged data

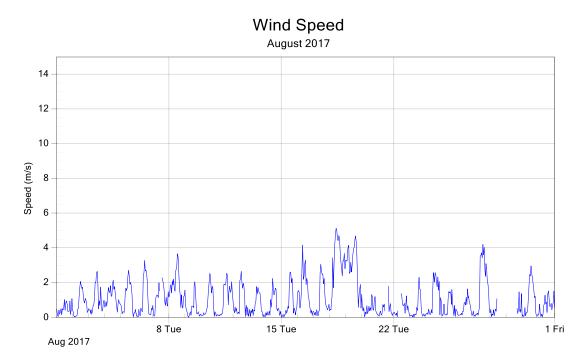



Figure 8: WS 1-hour averaged data

# **Report No: DAT12412**

**Peabody Energy** 



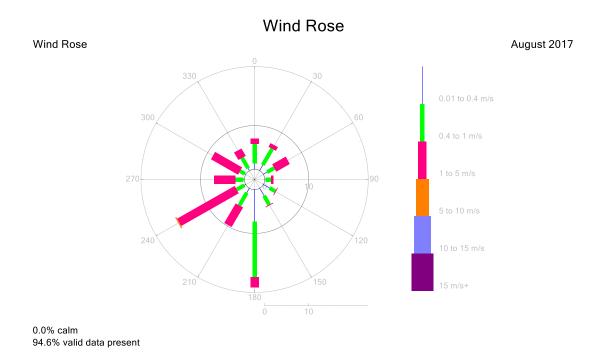



Figure 9: Wind Rose

**Report No: DAT12412** 

**Peabody Energy** 



## 7.0 Valid Data Exception Tables

The table below detail all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

**Table 10: Wollar Valid Data Exception Table** 

| Start Date          | End Date            | Reason                                                                                                                                 | Change<br>Details                                                                  | User<br>Name | Change<br>Date |
|---------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------|----------------|
| 11/07/2017<br>14:15 | 7/08/2017<br>10:50  | Instrument fault - Pump faulty                                                                                                         | NO, NO <sub>2</sub> , NO <sub>x</sub>                                              | EP           | 21/09/2017     |
| 1/08/2017<br>0:00   | 22/08/2017<br>7:30  | Instrument fault - high voltage out of range                                                                                           | H <sub>2</sub> S                                                                   | EP           | 21/09/2017     |
| 7/08/2017<br>10:55  | 7/08/2017<br>17:45  | Scheduled maintenance – monthly tasks performed                                                                                        | H <sub>2</sub> S , SO <sub>2</sub> , BTX,<br>NO, NO <sub>2</sub> , NO <sub>x</sub> | EP           | 21/09/2017     |
| 7/08/2017<br>17:50  | 21/08/2017<br>12:40 | Instrument fault - not responding possibly affected by high shelter temperature and out of calibration for more than 7 days            |                                                                                    | EP           | 21/09/2017     |
| 7/08/2017<br>17:50  | 1/09/2017<br>0:00   | Data under investigation BTX                                                                                                           |                                                                                    | EP           | 21/09/2017     |
| 8/08/2017<br>7:50   | 21/08/2017<br>0:40  | Instrument out of calibration for more than 7 days                                                                                     | SO <sub>2</sub>                                                                    | EP           | 21/09/2017     |
| 21/08/2017<br>12:45 | 21/08/2017<br>15:55 | Logger failure due to maintenance  All parameters                                                                                      |                                                                                    | EP           | 21/09/2017     |
| 21/08/2017<br>15:55 | 21/08/2017<br>17:40 | Non-scheduled maintenance - Faulty zero air generator replaced, an additional gas calibrator was installed for BTX  All parameters  EP |                                                                                    | EP           | 21/09/2017     |
| 21/08/2017<br>17:45 | 22/08/2017<br>7:30  | Instrument fault - calibration outside tolerance                                                                                       | NO, NO <sub>2</sub> , NO <sub>x</sub>                                              | EP           | 21/09/2017     |

Report No: DAT12412

**Peabody Energy** 



| Start Date          | End Date            | Reason Detail                                                                       |        | User<br>Name | Change<br>Date |
|---------------------|---------------------|-------------------------------------------------------------------------------------|--------|--------------|----------------|
| 22/08/2017<br>7:35  | 22/08/2017<br>17:00 | Non-scheduled maintenance - Replaced NO <sub>x</sub> and H <sub>2</sub> S analysers | ·      |              | 21/09/2017     |
| 22/08/2017<br>15:35 | 28/08/2017<br>11:25 | Instrument fault                                                                    | Xylene | EP           | 21/09/2017     |
| 22/08/2017<br>17:05 | 6/09/2017<br>10:50  | Static offset of -0.002ppm applied to correct the baseline                          | NO NO  |              | 21/09/2017     |
| 24/08/2017<br>2:25  | 28/08/2017<br>11:25 | Instrument fault - calibration outside tolerance H <sub>2</sub> S EP                |        | EP           | 21/09/2017     |
| 28/80/2017<br>11:05 | 28/08/2017<br>17:00 | Non-scheduled maintenance  All parameters                                           |        | EP           | 21/09/2017     |
| 28/08/2017<br>17:05 | 29/08/2017<br>7:20  | Logger failure All parameters                                                       |        | EP           | 21/09/2017     |
| 29/08/2017<br>7:25  | 29/08/2017<br>15:20 | Non-scheduled maintenance - Replaced the logger All parameters                      |        | EP           | 21/09/2017     |
| 29/08/2017<br>15:25 | 1/09/2017<br>0:00   | Instrument fault - calibration outside tolerance                                    | H₂S    | EP           | 21/09/2017     |

**Report No: DAT12412** 

**Peabody Energy** 



#### 8.0 Report Summary

The data capture for Wollar was below 95% for the reporting month. Please refer to Data Capture Percentage Table 9 for details; and Table 10 for valid data exceptions.

Benzene, Toluene and Xylene data monitored at the Wollar station after 7/08/2017 is not included in this report as the data is pending further investigation into instrument performance and calibration. Data will be issued on completion of this investigation.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.



**Report No: DAT12412** 

**Peabody Energy** 



## **Appendix 1 - Definitions & Abbreviations**

BTX Benzene, Toluene and *p*-Xylene

H<sub>2</sub>S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO<sub>2</sub> Nitrogen dioxide

NO<sub>x</sub> Oxides of nitrogen

ppb Parts per billion

SO<sub>2</sub> Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

**Report No: DAT12412** 

**Peabody Energy** 



#### **Appendix 2 - Explanation of Exception Table**

**Automatic background check** refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero-signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

**Calibration check outside tolerance** refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

**Commissioning** refers to the initial setup and calibration of the instrument when it is first installed. For some instruments, there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

**Data transmission error** refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

**Equipment malfunction/instrument fault** refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

**Gap in data/data not available** refers to a period of time when either data has been lost or could not be collected.

**Instrument Alarm** refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

**Instrument out of service** refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

**Linear offset or multiplier** refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

**Report No: DAT12412** 

#### **Peabody Energy**



**Logger error** refers to when an error occurs and instrument readings are not correctly recorded by the logger.

**Maintenance** refers to a period of time when the logger / instrument was switched off due to maintenance.

**Overnight span/zero out of tolerance** refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

**Power Interruption** refers to no power to the station therefore no data was collected at this time.

**Remote Calibration** refers to when a technician remotely connects to the station and manually performs a span check.

**Static offset or multiplier** refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

**Warm up after power interruption** refers to the start-up period of an instrument after power has been restored.



Accredited for compliance with ISO/IEC 17025 - Testing



Accreditation No. 14184.

# **Peabody Energy**

# Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1<sup>st</sup> September – 30<sup>th</sup> September 2017

Report No.: DAT12476

Report issue date: 27th October 2017

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

**Report No: DAT12476** 

**Peabody Energy** 



| Customer Details                         |                                   |  |  |  |  |  |
|------------------------------------------|-----------------------------------|--|--|--|--|--|
| Customer                                 | Customer Peabody Energy Australia |  |  |  |  |  |
| Contact name Clark Potter                |                                   |  |  |  |  |  |
| Address Locked Bag 2005, Mudgee 2850 NSW |                                   |  |  |  |  |  |
| Email cpotter@peabodyenergy.com          |                                   |  |  |  |  |  |
| Phone +61 (02) 6370 2527                 |                                   |  |  |  |  |  |

| Revision History |           |            |              |  |  |
|------------------|-----------|------------|--------------|--|--|
| Revision         | Report ID | Date       | Analyst      |  |  |
| 0                | DAT12476  | 27/10/2017 | Elmira Parto |  |  |

**Report by** Elmira Parto

**Approved by** Jon Alexander

## **Report No: DAT12476**

#### **Peabody Energy**



#### **Table of Contents**

| 1.0  | Execu  | tive Summary                             | 6  |
|------|--------|------------------------------------------|----|
| 2.0  | Introd | duction                                  | 7  |
| 3.0  | Monit  | toring and Data Collection               | 7  |
| 3.1. | Siti   | ng Details                               | 7  |
| 3.2. | Мо     | nitored Parameters                       | 9  |
| 3.3. | Dat    | a Collection Methods                     | 10 |
| 3    | .3.1.  | Compliance with Standards                | 11 |
| 3    | .3.2.  | Data Acquisition                         | 11 |
| 3.4. | Dat    | a Validation and Reporting               | 11 |
| 3    | .4.1.  | Validation                               | 11 |
| 3    | .4.2.  | Reporting                                | 12 |
| 4.0  | Air Qu | uality Goals                             | 13 |
| 4.1. | Air    | Quality Summary                          | 13 |
| 5.0  | Calibr | rations and Maintenance                  | 14 |
| 5.1. | Uni    | its and Uncertainties                    | 14 |
| 5.2. | Aut    | comatic Checks                           | 15 |
| 5.3. | Ma     | intenance                                | 15 |
| 5    | .3.1.  | Calibration & Maintenance Summary Tables | 15 |
| 6.0  | Result | ts                                       | 17 |
| 6.1. | Dat    | a Capture                                | 17 |
| 6.2. | Gra    | phic Representations                     | 18 |

## **Report No: DAT12476**

#### **Peabody Energy**



| 7.0   | Valid Data Exception Tables                       | 23 |
|-------|---------------------------------------------------|----|
| 8.0   | Report Summary                                    | 25 |
| Appe  | endix 1 - Definitions & Abbreviations             | 26 |
| Арре  | endix 2 - Explanation of Exception Table          | 27 |
|       |                                                   |    |
| List  | t of Figures                                      |    |
| Figur | re 1: Wilpinjong Mine Monitoring Station Location | 8  |
| Figur | re 2: NO 1-hour averaged data                     | 18 |
| Figur | re 3: NO <sub>2</sub> 1-hour averaged data        | 19 |
| Figur | re 4: NO <sub>x</sub> 1-hour averaged data        | 19 |
| Figur | re 5: SO <sub>2</sub> 1-hour averaged data        | 20 |
| Figur | re 6: H₂S 1-hour averaged data                    | 20 |
| Figur | re 7: BTX 1-hour averaged data                    | 21 |
| Figur | re 8: WS 1-hour averaged data                     | 21 |
| Figur | re 9: Wind Rose                                   | 22 |

## **Report No: DAT12476**

#### **Peabody Energy**



#### **List of Tables**

| Table 1: Wilpinjong Mine monitoring site location                                                                | 7  |
|------------------------------------------------------------------------------------------------------------------|----|
| Table 2: Parameters measured at the Wilpinjong Mine monitoring station                                           | 9  |
| Table 3: Methods                                                                                                 | 10 |
| Table 4: Wilpinjong Air Quality Goals (NEPM)                                                                     | 13 |
| Table 5: Exceedences Recorded                                                                                    | 13 |
| Table 6: Units and Uncertainties                                                                                 | 14 |
| Table 7: Automatic checks for NO, NO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> , H <sub>2</sub> S and BTX | 15 |
| Table 8: Wilpinjong Wollar Maintenance Table                                                                     | 16 |
| Table 9: Data Capture for Wilpinjong Wollar Station                                                              | 17 |
| Table 10: Wollar Valid Data Exception Table                                                                      | 23 |

**Report No: DAT12476** 

**Peabody Energy** 



## 1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene, *p*-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for September 2017. Data capture for the different pollutants is presented in Table 9.

Benzene, Toluene and Xylene data monitored at the Wollar station after 7/08/2017 is not included in this report as the data is pending further investigation into instrument performance and calibration. Data will be issued on completion of this investigation.

**Report No: DAT12476** 

**Peabody Energy** 



#### 2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1<sup>st</sup> March 2013.

This report presents the data for September 2017.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

#### 3.0 Monitoring and Data Collection

#### **3.1.** Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

| Site Name | Geographical Coordinates  Sea Level ( |     |
|-----------|---------------------------------------|-----|
| Wollar    | Lat: -32.360105 Long: 149.949509      | 366 |

**Report No: DAT12476** 

**Peabody Energy** 



A siting audit was conducted on 27<sup>th</sup> February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.



Figure 1: Wilpinjong Mine Monitoring Station Location

**Report No: DAT12476** 

**Peabody Energy** 



#### 3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

| Parameter Measured                             | Instrument and Measurement Technique       |
|------------------------------------------------|--------------------------------------------|
| BTX<br>(Benzene, Toluene and <i>p</i> -Xylene) | Synspec GC955 - Gas Chromatography         |
| H₂S                                            | Ecotech EC9852 - fluorescence              |
| NO, NO <sub>2</sub> , NO <sub>x</sub>          | Ecotech EC9841 gas phase chemiluminescence |
| SO <sub>2</sub>                                | Ecotech EC9850 — fluorescence              |
| Wind Speed (horizontal, 10m)                   | Gill Windsonic                             |
| Wind Direction (10m)                           | Gill Windsonic                             |

**Report No: DAT12476** 

**Peabody Energy** 



#### 3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

**Table 3: Methods** 

| Parameter<br>Measured                 | Data Collection Methods<br>Used | Description of Method                                                                                                                   |  |  |
|---------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | AS 3580.5.1-2011                | Methods for sampling and analysis of ambient air. Method 5.1:  Determination of oxides of nitrogen – chemiluminescence method           |  |  |
| ,                                     | Ecotech Laboratory<br>Manual    | In-house method 6.1 Oxides of nitrogen by chemiluminescence                                                                             |  |  |
| SO <sub>2</sub>                       | AS 3580.4.1-2008                | Methods for sampling and analysis of ambient air. Method 4.1:  Determination of sulfur dioxide – Direct reading instrumental method     |  |  |
|                                       | Ecotech Laboratory<br>Manual    | In-house method 6.2 Sulfur dioxide by fluorescence                                                                                      |  |  |
| H₂S                                   | Ecotech Laboratory<br>Manual    | In-house method 6.5 Hydrogen sulfide by fluorescence                                                                                    |  |  |
| втх                                   | Manufacturer's<br>Instructions  | Gas Chromatography Synspec CG955 Series Manual                                                                                          |  |  |
|                                       |                                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |  |
| (Horizontal)                          | Ecotech Laboratory<br>Manual    | In-house method 8.1 Wind speed (Horizontal) by anemometer                                                                               |  |  |
| Vector Wind<br>Direction              | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |  |
| Direction                             | Ecotech Laboratory<br>Manual    | In-house method 8.3 Wind direction by anemometer                                                                                        |  |  |

**Report No: DAT12476** 

**Peabody Energy** 



#### 3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of the wind data from 22/7/2017 up to 6/09/2017 is not covered by Ecotech's NATA scope of accreditation as the 2 yearly calibration is overdue.

#### 3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis<sup>TM</sup> version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5-minute intervals.

#### 3.4. Data Validation and Reporting

#### 3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five-minute data.

**Report No: DAT12476** 

#### **Peabody Energy**



#### 3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report September-17.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5-minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five-minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One-hour averages are calculated based on a clock hour. One-day averages are calculated based on calendar days.

**Report No: DAT12476** 

**Peabody Energy** 



## 4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

| Parameter       | Time Period | Exceedence<br>Level | Units | Maximum allowable exceedences |
|-----------------|-------------|---------------------|-------|-------------------------------|
| NO <sub>2</sub> | 1 year      | 30                  | ppb   | None                          |
| NO <sub>2</sub> | 1 hour      | 120                 | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 hour      | 200                 | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 day       | 80                  | ppb   | 1 day a year                  |
| SO <sub>2</sub> | 1 year      | 20                  | ppb   | None                          |

#### 4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

**Table 5: Exceedences Recorded** 

| Parameter       | Time Period | Value of Exceedence | Date of Exceedence |
|-----------------|-------------|---------------------|--------------------|
| NO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 day       | -                   | -                  |

**Report No: DAT12476** 

**Peabody Energy** 



#### 5.0 Calibrations and Maintenance

#### 5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

**Table 6: Units and Uncertainties** 

| Parameter                                          | Units | Resolution | Uncertainty                                                                       | Measurement<br>Range <sup>1</sup> |  |
|----------------------------------------------------|-------|------------|-----------------------------------------------------------------------------------|-----------------------------------|--|
| NO, NO <sub>x</sub><br>(EC9841)                    | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                                      | 0 ppb to 500 ppb                  |  |
| NO <sub>2</sub> (EC9841)                           | ppm   | 1 ppb      | ± 16 ppb<br>K factor of 2.01                                                      | 0 ppb to 500 ppb                  |  |
| SO <sub>2</sub> (EC9850)                           | ppm   | 1 ppb      | ± 14 ppb<br>K factor of 2.01                                                      | 0 ppb to 500 ppb                  |  |
| H₂S                                                | ppm   | 1 ppb      | 15.2% of reading or ± 19 ppb, whichever is greater  K factor of 2                 | 0 ppb to 500 ppb                  |  |
| Benzene,<br>Toluene and <i>p</i> -<br>Xylene (BTX) | ppb   | 0.03 ppb   | 15.1% of reading or 3.8ppb, whichever is greater  K factor of 2                   | 0 ppb to 300 ppb                  |  |
| Vector Wind<br>Speed                               | m/s   | 0.1 m/s    | ±0.01 m/s or 2.0% of reading, whichever is greater (K factor of 1.96)  0 m/s to 6 |                                   |  |
| Vector Wind<br>Direction                           | Deg   | 1 deg      | ±2 deg K factor of 2.11  0 deg to Starting th                                     |                                   |  |

 $<sup>^{1}</sup>$  Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO<sub>2</sub> and NO<sub>x</sub> by EC 9841 and SO<sub>2</sub> by EC9850 are calculated based on a measurement range of 0-125 ppb.

**Report No: DAT12476** 

**Peabody Energy** 



#### 5.2. Automatic Checks

Automatic span and zero calibration checks run every night for NO, NO<sub>2</sub>, NO<sub>x</sub> and SO<sub>2</sub>, every  $2^{nd}$  night for H<sub>2</sub>S and weekly for BTX.

Background checks run each night for SO<sub>2</sub> and H<sub>2</sub>S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S and BTX

| Parameter                             | Span / Zero cycle time<br>(approximate)       | Background cycle time<br>(approximate) |  |
|---------------------------------------|-----------------------------------------------|----------------------------------------|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 00:45 to 01:25 every day                      | N/A                                    |  |
| SO <sub>2</sub>                       | 00:45 to 01:25 every day 23:45 to 23:50 every |                                        |  |
| H <sub>2</sub> S                      | 01:35 to 02:35 every 2 <sup>nd</sup> day      | 23:45 to 23:50 every day               |  |
| BTX                                   | 02:45 to 05:25 weekly                         | N/A                                    |  |

#### 5.3. Maintenance

Scheduled monthly maintenance was performed on 06/09/2017.

Four unscheduled visits were made:

- 08/09/2017 the logger restored and NO<sub>x</sub> calibration was performed
- 27/09/2017 a remote calibration was performed to adjust the H₂S span

#### 5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

**Report No: DAT12476** 

#### **Peabody Energy**



Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

**Table 8: Wilpinjong Wollar Maintenance Table** 

| Parameter                             | Date of Last<br>Maintenance | Maintenance Type | Date of Last<br>Calibration | Calibration<br>Cycle |
|---------------------------------------|-----------------------------|------------------|-----------------------------|----------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 08/09/2017                  | Unscheduled      | 08/09/2017                  | Monthly              |
| SO <sub>2</sub>                       | 06/09/2017                  | Monthly          | 06/09/2017                  | Monthly              |
| H₂S                                   | 27/09/2017                  | Unscheduled      | 27/09/2017                  | Monthly              |
| втх                                   | 06/09/2017                  | Monthly          | 06/09/2017                  | Yearly               |
| Wind Sensor                           | 06/09/2017                  | Monthly          | 22/07/2015                  | 2-yearly             |

#### **Report No: DAT12476**

**Peabody Energy** 



#### 6.0 Results

#### 6.1. Data Capture

Data capture is based on 1-hour averages, calculated from 5-minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for September 2017. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

**Table 9: Data Capture for Wilpinjong Wollar Station** 

| Parameter                             | Data Capture % |
|---------------------------------------|----------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 76.1           |
| SO <sub>2</sub>                       | 93.4           |
| H₂S                                   | 76.1           |
| Benzene                               | ТВА            |
| Toluene                               | ТВА            |
| <i>p</i> -Xylene                      | 0.0            |
| WS, WD                                | 97.0           |

**Report No: DAT12476** 

**Peabody Energy** 



#### 6.2. Graphic Representations

Validated 5-minute data for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

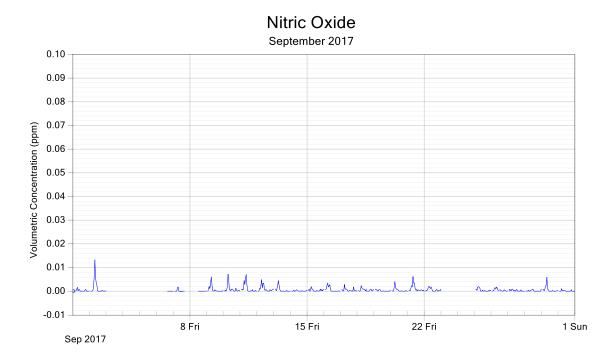



Figure 2: NO 1-hour averaged data

## **Report No: DAT12476**

**Peabody Energy** 



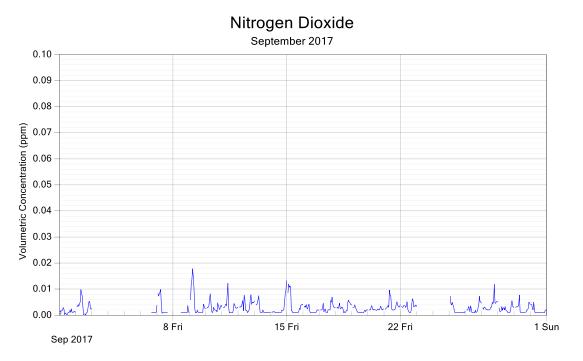



Figure 3: NO<sub>2</sub> 1-hour averaged data

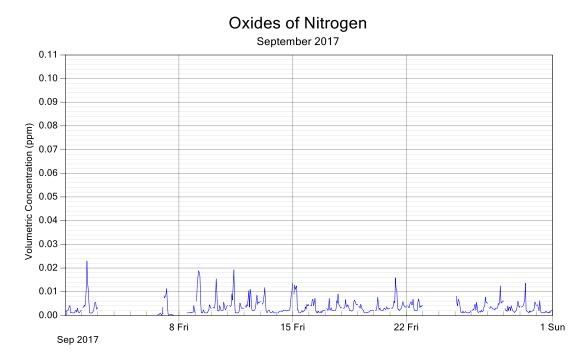



Figure 4: NO<sub>X</sub> 1-hour averaged data

#### **Report No: DAT12476**

**Peabody Energy** 



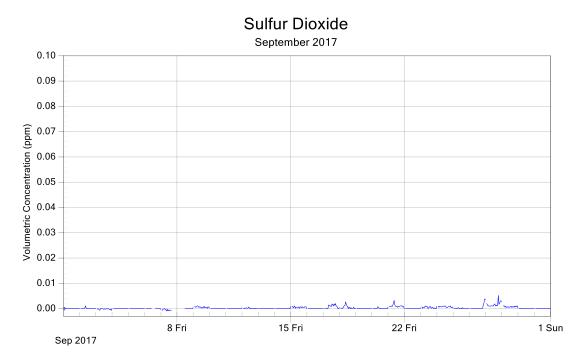



Figure 5: SO<sub>2</sub> 1-hour averaged data

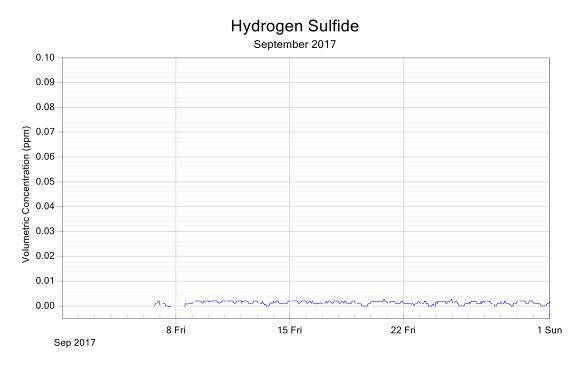



Figure 6: H<sub>2</sub>S 1-hour averaged data

#### **Report No: DAT12476**

**Peabody Energy** 



#### Benzene, Toluene and p-Xylene

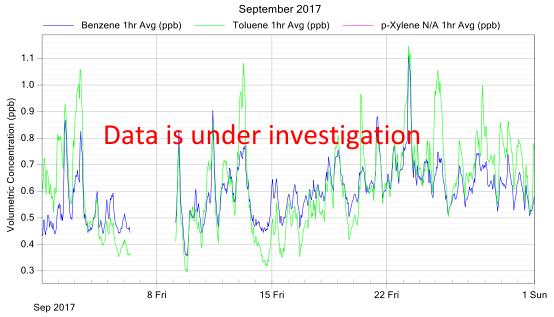



Figure 7: BTX 1-hour averaged data

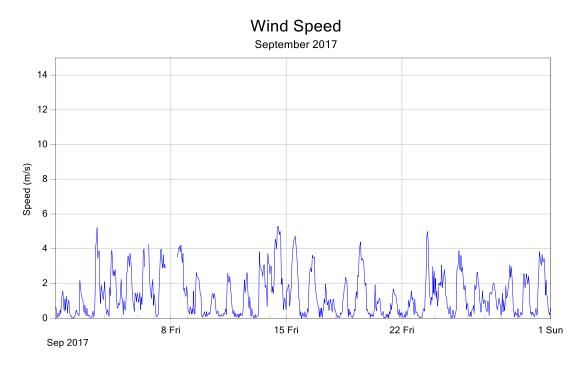



Figure 8: WS 1-hour averaged data

## **Report No: DAT12476**

**Peabody Energy** 



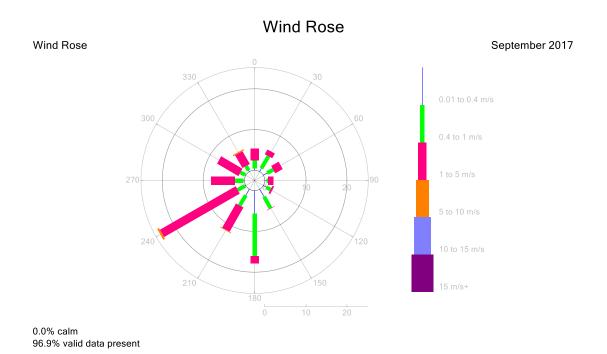



Figure 9: Wind Rose

**Report No: DAT12476** 

**Peabody Energy** 



## 7.0 Valid Data Exception Tables

The table below detail all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

**Table 10: Wollar Valid Data Exception Table** 

| Start Date          | End Date           | Reason                                                                                                                                           | Change<br>Details                     | User<br>Name | Change<br>Date |
|---------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|----------------|
| 22/08/2017<br>17:05 | 3/09/2017<br>0:40  | Static offset of -0.002ppm applied to correct the baseline                                                                                       | NO, NO <sub>x</sub>                   | EP           | 19/10/2017     |
| 1/09/2017<br>0:00   | 1/10/2017<br>0:00  | Instrument fault                                                                                                                                 | Xylene                                | EP           | 19/10/2017     |
| 1/09/2017<br>0:00   | 1/10/2017<br>0:00  | Data under investigation                                                                                                                         | Benzene and<br>Toluene                | EP           | 19/10/2017     |
| 1/09/2017<br>0:00   | 6/09/2017<br>10:50 | Instrument fault - high voltage out of range                                                                                                     | H₂S                                   | EP           | 19/10/2017     |
| 1/09/2017<br>1:30   | 3/09/2017<br>0:40  | Linear multiplier (A = 1 and B=1.12) applied to<br>data correct the drifted span                                                                 | NO, NO <sub>2</sub> , NO <sub>x</sub> | EP           | 19/10/2017     |
| 3/09/2017<br>1:30   | 6/09/2017<br>10:50 | Instrument fault - calibration outside tolerance                                                                                                 | NO, NO <sub>2</sub> , NO <sub>x</sub> | EP           | 19/10/2017     |
| 6/09/2017<br>10:55  | 6/09/2017<br>15:50 | Scheduled maintenance – monthly tasks performed                                                                                                  | All parameters                        | EP           | 19/10/2017     |
| 6/09/2017<br>15:55  | 7/09/2017<br>17:20 | Instrument fault                                                                                                                                 | ВТХ                                   | EP           | 19/10/2017     |
| 7/09/2017<br>17:25  | 8/09/2017<br>9:35  | Data gap due to logger crashed                                                                                                                   | All parameters                        | EP           | 19/10/2017     |
| 8/09/2017<br>9:40   | 8/09/2017<br>14:15 | Non-scheduled maintenance and subsequent instrument stabilisation - Fix the logger and manual calibration performed for NO <sub>x</sub> analyser | All parameters                        | EP           | 19/10/2017     |

**Report No: DAT12476** 

**Peabody Energy** 



| Start Date          | End Date            | Reason                                                                                                       | Change<br>Details                     | User<br>Name | Change<br>Date |
|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|----------------|
| 8/09/2017<br>14:20  | 9/09/2017<br>3:50   | Instrument stabilisation following maintenance                                                               | Benzene and<br>Toluene                | EP           | 19/10/2017     |
| 19/09/2017<br>3:40  | 27/09/2017<br>12:40 | Static multiplier (0.92) applied to data to correct the drifted span                                         | H <sub>2</sub> S                      | EP           | 19/10/2017     |
| 23/09/2017<br>1:30  | 25/09/2017<br>0:40  | Instrument fault - calibration outside tolerance                                                             | NO, NO <sub>2</sub> , NO <sub>x</sub> | EP           | 19/10/2017     |
| 27/09/2017<br>12:45 | 27/09/2017<br>13:30 | Non-scheduled maintenance - Remote calibration performed for H <sub>2</sub> S analyser to fix the span drift | H₂S                                   | EP           | 19/10/2017     |
| 30/09/2017<br>16:30 | 30/09/2017<br>16:30 | Data gap                                                                                                     | All parameters                        | EP           | 19/10/2017     |

**Report No: DAT12476** 

**Peabody Energy** 



#### 8.0 Report Summary

The data capture for Wollar was below 95% for the reporting month. Please refer to Data Capture Percentage Table 9 for details; and Table 10 for valid data exceptions.

Benzene, Toluene and Xylene data monitored at the Wollar station after 7/08/2017 is not included in this report as the data is pending further investigation into instrument performance and calibration. Data will be issued on completion of this investigation.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.



**Report No: DAT12476** 

**Peabody Energy** 



## **Appendix 1 - Definitions & Abbreviations**

BTX Benzene, Toluene and *p*-Xylene

H<sub>2</sub>S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO<sub>2</sub> Nitrogen dioxide

NO<sub>x</sub> Oxides of nitrogen

ppb Parts per billion

SO<sub>2</sub> Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

**Report No: DAT12476** 

**Peabody Energy** 



#### **Appendix 2 - Explanation of Exception Table**

**Automatic background check** refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero-signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

**Calibration check outside tolerance** refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

**Commissioning** refers to the initial setup and calibration of the instrument when it is first installed. For some instruments, there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

**Data transmission error** refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

**Equipment malfunction/instrument fault** refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

**Gap in data/data not available** refers to a period of time when either data has been lost or could not be collected.

**Instrument Alarm** refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

**Instrument out of service** refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

**Linear offset or multiplier** refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

**Report No: DAT12476** 

#### **Peabody Energy**



**Logger error** refers to when an error occurs and instrument readings are not correctly recorded by the logger.

**Maintenance** refers to a period of time when the logger / instrument was switched off due to maintenance.

**Overnight span/zero out of tolerance** refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

**Power Interruption** refers to no power to the station therefore no data was collected at this time.

**Remote Calibration** refers to when a technician remotely connects to the station and manually performs a span check.

**Static offset or multiplier** refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the start-up period of an instrument after power has been restored.



Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation No. 14184.



# **Peabody Energy**

# Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report\_Amended

1<sup>st</sup> October – 31<sup>st</sup> October 2017

Report No.: DAT12579Rev1

Report issue date: 20th February 2018

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

## Report No: DAT12579Rev1

**Peabody Energy** 



| Customer Details                  |                                  |  |  |  |
|-----------------------------------|----------------------------------|--|--|--|
| Customer Peabody Energy Australia |                                  |  |  |  |
| Contact name                      | tact name Clark Potter           |  |  |  |
| Address                           | Locked Bag 2005, Mudgee 2850 NSW |  |  |  |
| Email                             | cpotter@peabodyenergy.com        |  |  |  |
| Phone                             | +61 (02) 6370 2527               |  |  |  |

| Revision History |           |            |              |  |
|------------------|-----------|------------|--------------|--|
| Revision         | Report ID | Date       | Analyst      |  |
| 0                | DAT12579  | 28/11/2017 | Elmira Parto |  |
| 1                | DAT12579  | 20/02/2018 | Elmira Parto |  |

Refer to Appendix 3 for details of amendments

Report by Elmira Parto

**Approved by** Jon Alexander

- Ponto

## Report No: DAT12579Rev1

## **Peabody Energy**



#### **Table of Contents**

| Cus  | tomer    | r Details                                | 2        |
|------|----------|------------------------------------------|----------|
| Rev  | vision F | History                                  | 2        |
|      |          | ures                                     |          |
|      |          | bles                                     |          |
|      |          |                                          |          |
| 1.0  |          | cutive Summary                           |          |
| 2.0  |          | oduction                                 |          |
| 3.0  |          | nitoring and Data Collection             |          |
| 3.1. |          | ting Details                             |          |
| 3.2. | . M      | onitored Parameters                      | <u>S</u> |
| 3.3. | . Da     | ata Collection Methods                   | 10       |
| 3    | 3.3.1.   | Compliance with Standards                | 11       |
| 3    | 3.3.2.   | Data Acquisition                         | 11       |
| 3.4. | . Da     | ata Validation and Reporting             | 11       |
| 3    | 3.4.1.   | Validation                               | 11       |
| 3    | 3.4.2.   | Reporting                                | 12       |
| 4.0  | Air Q    | Quality Goals                            | 13       |
| 4.1. | . Aiı    | r Quality Summary                        | 13       |
| 5.0  | Calib    | prations and Maintenance                 | 14       |
| 5.1. | . Ur     | nits and Uncertainties                   | 14       |
| 5.2. | . Au     | utomatic Checks                          | 15       |
| 5.3. | . Ma     | aintenance                               | 15       |
| 5    | 5.3.1.   | Calibration & Maintenance Summary Tables | 16       |
| 6.0  | Resu     | ılts                                     |          |
|      |          |                                          |          |

# Report No: DAT12579Rev1

## **Peabody Energy**



| 6.1.   | Data Capture                                   | 17 |
|--------|------------------------------------------------|----|
| 6.2.   | Graphic Representations                        | 18 |
| 7.0    | Valid Data Exception Tables                    | 23 |
| 8.0    | Report Summary                                 | 25 |
| Appen  | dix 1 - Definitions & Abbreviations            | 26 |
| Appen  | dix 2 - Explanation of Exception Table         | 27 |
| Appen  | dix 3 – Amendments                             | 29 |
|        |                                                |    |
| List o | of Figures                                     |    |
| Figure | 1: Wilpinjong Mine Monitoring Station Location | 8  |
| Figure | 2: NO 1-hour averaged data                     | 18 |
| Figure | 3: NO <sub>2</sub> 1-hour averaged data        | 19 |
| Figure | 4: NO <sub>X</sub> 1-hour averaged data        | 19 |
| Figure | 5: SO <sub>2</sub> 1-hour averaged data        | 20 |
| Figure | 6: H <sub>2</sub> S 1-hour averaged data       | 20 |
| Figure | 7: BTX 1-hour averaged data                    | 21 |
| Figure | 8: WS 1-hour averaged data                     | 21 |
| Figure | 9: Wind Rose                                   | 22 |

# Report No: DAT12579Rev1

## **Peabody Energy**



## **List of Tables**

| Table 1: Wilpinjong Mine monitoring site location                                                                | 7        |
|------------------------------------------------------------------------------------------------------------------|----------|
| Table 2: Parameters measured at the Wilpinjong Mine monitoring station                                           | <u>S</u> |
| Table 3: Methods                                                                                                 | 10       |
| Table 4: Wilpinjong Air Quality Goals (NEPM)                                                                     | 13       |
| Table 5: Exceedences Recorded                                                                                    | 13       |
| Table 6: Units and Uncertainties                                                                                 | 14       |
| Table 7: Automatic checks for NO, NO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> , H <sub>2</sub> S and BTX | 15       |
| Table 8: Wilpinjong Wollar Maintenance Table                                                                     | 16       |
| Table 9: Data Capture for Wilpinjong Wollar Station                                                              | 17       |
| Table 10: Wollar Valid Data Exception Table                                                                      | 23       |

Report No: DAT12579Rev1

**Peabody Energy** 



## 1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for October 2017. Data capture for the different pollutants is presented in Table 9.

#### Report No: DAT12579Rev1

**Peabody Energy** 



#### 2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1<sup>st</sup> March 2013.

This report presents the data for October 2017.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

## 3.0 Monitoring and Data Collection

#### **3.1.** Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

| Site Name | Geographical Coordinates         | Height Above<br>Sea Level (m) |
|-----------|----------------------------------|-------------------------------|
| Wollar    | Lat: -32.360105 Long: 149.949509 | 366                           |

## Report No: DAT12579Rev1

**Peabody Energy** 



A siting audit was conducted on 27<sup>th</sup> February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

The station is classified as a neighbourhood station according to AS/NZS 3580.1.1:2007.



Figure 1: Wilpinjong Mine Monitoring Station Location

## Report No: DAT12579Rev1

**Peabody Energy** 



#### 3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

| Parameter Measured                          | Instrument and Measurement Technique       |
|---------------------------------------------|--------------------------------------------|
| BTX (Benzene, Toluene and <i>p</i> -Xylene) | Synspec GC955 - Gas Chromatography         |
| H₂S                                         | Ecotech EC9852 - fluorescence              |
| NO, NO <sub>2</sub> , NO <sub>x</sub>       | Ecotech EC9841 gas phase chemiluminescence |
| SO <sub>2</sub>                             | Ecotech EC9850 – fluorescence              |
| Wind Speed (horizontal, 10m)                | Gill Windsonic                             |
| Wind Direction (10m)                        | Gill Windsonic                             |

## Report No: DAT12579Rev1

**Peabody Energy** 



#### 3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

**Table 3: Methods** 

| Parameter<br>Measured                 | Data Collection Methods<br>Used | Description of Method                                                                                                                   |  |  |
|---------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | AS 3580.5.1-2011                | Methods for sampling and analysis of ambient air. Method 5.1:  Determination of oxides of nitrogen – chemiluminescence method           |  |  |
|                                       | Ecotech Laboratory<br>Manual    | In-house method 6.1 Oxides of nitrogen by chemiluminescence                                                                             |  |  |
| SO <sub>2</sub>                       | AS 3580.4.1-2008                | Methods for sampling and analysis of ambient air. Method 4.1:  Determination of sulfur dioxide – Direct reading instrumental method     |  |  |
|                                       | Ecotech Laboratory<br>Manual    | In-house method 6.2 Sulfur dioxide by fluorescence                                                                                      |  |  |
| H₂S                                   | Ecotech Laboratory<br>Manual    | In-house method 6.5 Hydrogen sulfide by fluorescence                                                                                    |  |  |
| втх                                   | Manufacturer's<br>Instructions  | Gas Chromatography Synspec CG955 Series Manual                                                                                          |  |  |
| Vector Wind<br>Speed                  | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |  |
| (Horizontal)                          | Ecotech Laboratory<br>Manual    | In-house method 8.1 Wind speed (Horizontal) by anemometer                                                                               |  |  |
| Vector Wind                           | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |  |
| Direction                             | Ecotech Laboratory<br>Manual    | In-house method 8.3 Wind direction by anemometer                                                                                        |  |  |

#### Report No: DAT12579Rev1

**Peabody Energy** 



#### 3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- The siting of Wollar station does not complies with AS/NZS 3580.1.1:2007 as of 27/2/2016 due to the yearly audit task is overdue.

#### 3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis<sup>TM</sup> version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5-minute intervals.

#### 3.4. Data Validation and Reporting

#### 3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five-minute data.

#### Report No: DAT12579Rev1

#### **Peabody Energy**



#### 3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report October-17.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5-minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five-minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One-hour averages are calculated based on a clock hour. One-day averages are calculated based on calendar days.

## Report No: DAT12579Rev1

**Peabody Energy** 



## 4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

| Parameter       | Time Period | Exceedence<br>Level | Units | Maximum allowable exceedences |
|-----------------|-------------|---------------------|-------|-------------------------------|
| NO <sub>2</sub> | 1 year      | 0.030               | ppm   | None                          |
| NO <sub>2</sub> | 1 hour      | 0.120               | ppm   | 1 day a year                  |
| SO <sub>2</sub> | 1 hour      | 0.200               | ppm   | 1 day a year                  |
| SO <sub>2</sub> | 1 day       | 0.080               | ppm   | 1 day a year                  |
| SO <sub>2</sub> | 1 year      | 0.020               | ppm   | None                          |

## 4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

| Parameter       | Time Period | Value of Exceedence | Date of Exceedence |
|-----------------|-------------|---------------------|--------------------|
| NO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 day       | -                   | -                  |

## Report No: DAT12579Rev1

**Peabody Energy** 



#### 5.0 Calibrations and Maintenance

#### 5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

**Table 6: Units and Uncertainties** 

| Parameter                                         | Units                               | Resolution | Uncertainty                                                           | Measurement<br>Range <sup>1</sup>                |
|---------------------------------------------------|-------------------------------------|------------|-----------------------------------------------------------------------|--------------------------------------------------|
| NO, NO <sub>x</sub><br>(EC9841)                   | ppm                                 | 0.001 ppm  | ± 0.014 ppm<br>K factor of 2.01                                       | 0.000 ppm to 0.500<br>ppm                        |
| NO <sub>2</sub> (EC9841)                          | ppm                                 | 0.001 ppm  | ± 0.016 ppm<br>K factor of 2.01                                       | 0 ppb to 0.500 ppb                               |
| SO <sub>2</sub> (EC9850)                          | ppm                                 | 0.001 ppm  | ± 0.014 ppm<br>K factor of 2.01                                       | 0.000 ppm to 0.500<br>ppm                        |
| H <sub>2</sub> S                                  | ppm                                 | 1 ppb      | 15.2% of reading or ± 0.019 ppm, whichever is greater  K factor of 2  | 0.000 ppm to 0.500<br>ppm                        |
| Benzene,<br>Toluene and <i>p-</i><br>Xylene (BTX) | Toluene and p- ppb 0.03 ppb greater |            |                                                                       | 0 ppb to 300 ppb                                 |
| Vector Wind<br>Speed                              | m/s                                 | 0.1 m/s    | ±0.01 m/s or 2.0% of reading, whichever is greater (K factor of 1.96) | 0 m/s to 60 m/s                                  |
| Vector Wind<br>Direction                          | Deg                                 | 1 deg      | ±2 deg<br>K factor of 2.11                                            | 0 deg to 360 deg<br>Starting threshold:<br>0 m/s |

 $<sup>^{1}</sup>$  Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO<sub>2</sub> and NO<sub>x</sub> by EC 9841 and SO<sub>2</sub> by EC9850 are calculated based on a measurement range of 0-125 ppb.

#### Report No: DAT12579Rev1

**Peabody Energy** 



#### 5.2. Automatic Checks

Automatic span and zero calibration checks run every night for NO, NO<sub>2</sub>, NO<sub>x</sub> and SO<sub>2</sub>, every  $2^{nd}$  night for H<sub>2</sub>S and weekly for BTX.

Background checks run each night for SO<sub>2</sub> and H<sub>2</sub>S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S and BTX

| Parameter                             | Span / Zero cycle time<br>(approximate)  | Background cycle time<br>(approximate) |  |
|---------------------------------------|------------------------------------------|----------------------------------------|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 00:45 to 01:25 every day                 | N/A                                    |  |
| SO <sub>2</sub>                       | 00:45 to 01:25 every day                 | 23:45 to 23:50 every day               |  |
| H <sub>2</sub> S                      | 01:35 to 02:35 every 2 <sup>nd</sup> day | 23:45 to 23:50 every day               |  |
| BTX                                   | 02:45 to 05:25 weekly                    | N/A                                    |  |

#### 5.3. Maintenance

Scheduled monthly maintenance was performed over two days on 09/10/2017 and 10/09/2017. NOx analyser was replaced (Instrument ID: 07-0853 was transferred in and ID: 02-0385 transferred out).

An unscheduled visits was made:

- 12/10/2017 a remote calibration was performed on NO<sub>x</sub> and SO<sub>2</sub> analysers to adjust the span
- 19/10/2017 a remote calibration was performed to adjust the H<sub>2</sub>S span
- 26/10/2017 a remote calibration was performed on NO<sub>x</sub> and SO₂ analysers

## Report No: DAT12579Rev1

**Peabody Energy** 



#### 5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

**Table 8: Wilpinjong Wollar Maintenance Table** 

| Parameter                             | Date of Last<br>Maintenance | Maintenance Type | Date of Last<br>Calibration | Calibration<br>Cycle |
|---------------------------------------|-----------------------------|------------------|-----------------------------|----------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 09/10/2017                  | Monthly          | 26/10/2017                  | Monthly              |
| SO <sub>2</sub>                       | 09/10/2017                  | Monthly          | 09/10/2017                  | Monthly              |
| H₂S                                   | 10/10/2017                  | Monthly          | 19/10/2017                  | Monthly              |
| втх                                   | 10/10/2017                  | Monthly          | 10/10/2017                  | Yearly               |
| Wind Sensor                           | 09/10/2017                  | Monthly          | 22/07/2015                  | 2-yearly             |

## Report No: DAT12579Rev1

**Peabody Energy** 



#### 6.0 Results

#### 6.1. Data Capture

Data capture is based on 1-hour averages, calculated from 5-minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data)  $\times 100\%$ 

#### Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for October 2017. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

**Table 9: Data Capture for Wilpinjong Wollar Station** 

| Parameter                             | Data Capture % |
|---------------------------------------|----------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 95.3           |
| SO <sub>2</sub>                       | 94.9           |
| H₂S                                   | 92.8           |
| Benzene                               | 96.8           |
| Toluene                               | 96.8           |
| <i>p</i> -Xylene                      | 0.0            |
| WS, WD                                | 98.7           |

## Report No: DAT12579Rev1

**Peabody Energy** 



## 6.2. Graphic Representations

Validated 5-minute data for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

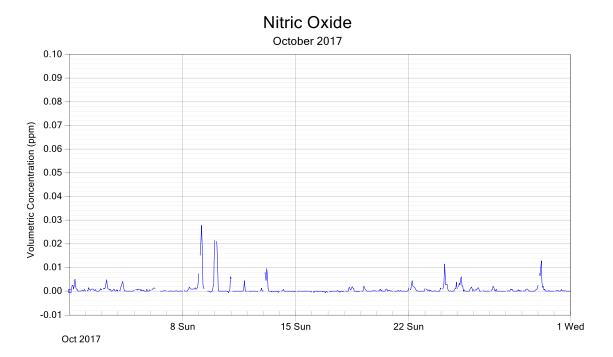



Figure 2: NO 1-hour averaged data

## Report No: DAT12579Rev1

**Peabody Energy** 



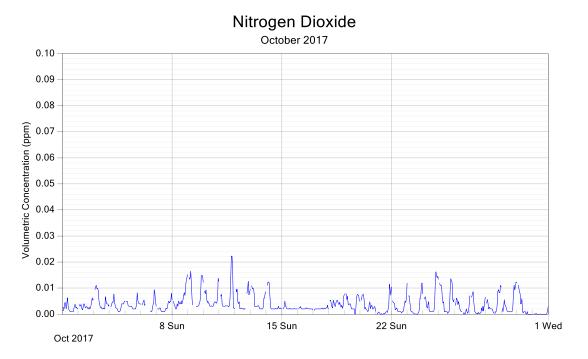



Figure 3: NO<sub>2</sub> 1-hour averaged data

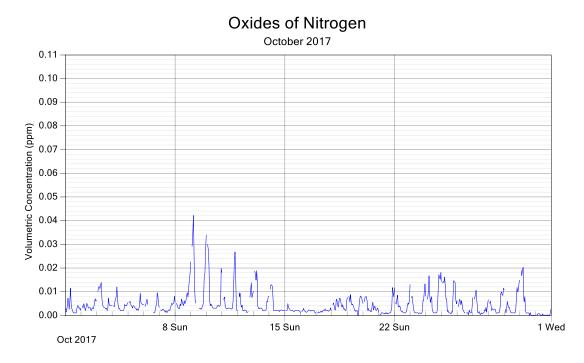



Figure 4: NO<sub>X</sub> 1-hour averaged data

## Report No: DAT12579Rev1

**Peabody Energy** 



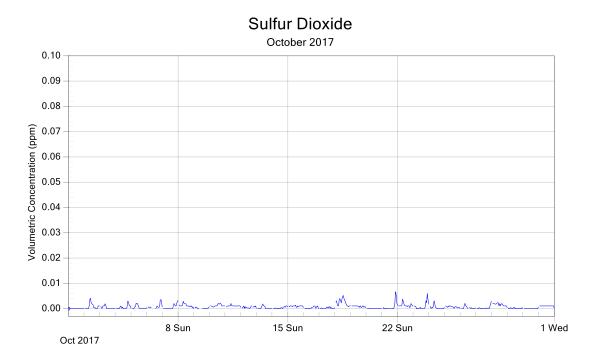



Figure 5: SO<sub>2</sub> 1-hour averaged data

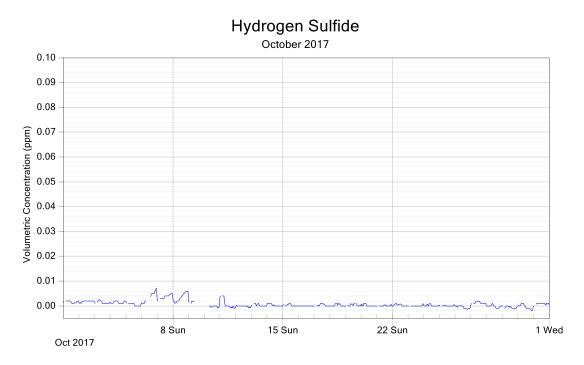



Figure 6: H<sub>2</sub>S 1-hour averaged data

## Report No: DAT12579Rev1

**Peabody Energy** 



## Benzene, Toluene and p-Xylene

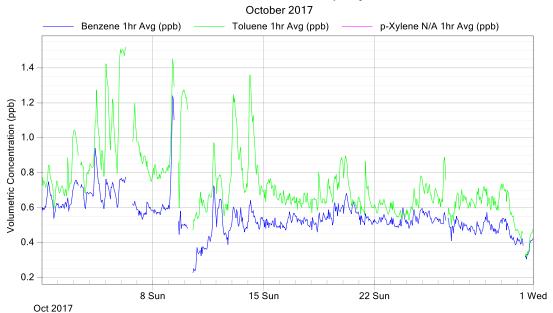



Figure 7: BTX 1-hour averaged data

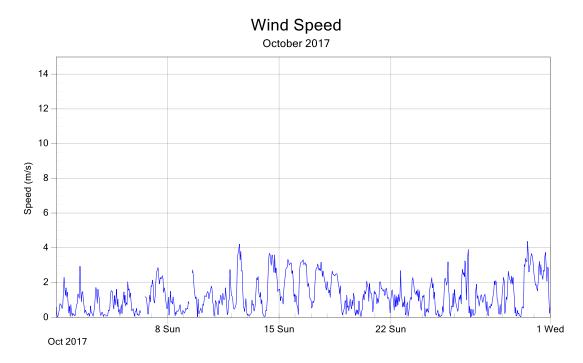



Figure 8: WS 1-hour averaged data

## Report No: DAT12579Rev1

**Peabody Energy** 





Figure 9: Wind Rose

Report No: DAT12579Rev1

**Peabody Energy** 



## 7.0 Valid Data Exception Tables

The table below detail all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

**Table 10: Wollar Valid Data Exception Table** 

| Start Date          | End Date            | Reason                                                                                   | Change<br>Details                                          | User<br>Name | Change<br>Date |
|---------------------|---------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------|----------------|
| 1/10/2017<br>0:00   | 1/11/2017<br>0:00   | Instrument fault                                                                         | Xylene                                                     | EP           | 14/11/2017     |
| 3/10/2017<br>8:30   | 31/10/2017<br>11:15 | Intermittent instrument restarted and subsequent instrument stabilisation                | Benzene,<br>Toluene                                        | EP           | 14/11/2017     |
| 6/10/2017<br>7:55   | 6/10/2017<br>16:20  | Power interruption and subsequent instruments stabilisation                              | All parameters                                             | EP           | 14/11/2017     |
| 9/10/2017<br>9:25   | 9/10/2017<br>14:35  | Scheduled monthly maintenance and subsequent instrument stabilisation (first visit)      | All parameters                                             | EP           | 14/11/2017     |
| 9/10/2017<br>13:05  | 10/10/2017<br>6:05  | Instrument left in out of order mode                                                     | H <sub>2</sub> S                                           | EP           | 14/11/2017     |
| 10/10/2017<br>1:30  | 12/10/2017<br>17:40 | Linear multiplier (A = 1 and B=1.069) applied to data correct the drifted span           | NO, NO <sub>2</sub> , NO <sub>x</sub>                      | EP           | 14/11/2017     |
| 10/10/2017<br>6:10  | 10/10/2017<br>12:55 | Scheduled monthly maintenance and subsequent instrument stabilisation (second visit)     | BTX, H <sub>2</sub> S                                      | EP           | 14/11/2017     |
| 12/10/2017<br>17:40 | 12/10/2017<br>18:20 | Non-scheduled maintenance to adjust the span drift                                       | SO <sub>2</sub> , NO, NO <sub>2</sub> ,<br>NO <sub>x</sub> | EP           | 14/11/2017     |
| 13/10/2017<br>3:30  | 19/10/2017<br>15:00 | Linear multiplier (A = 1 and B=1.117) applied to $H_2S$ EP data correct the drifted span |                                                            | EP           | 14/11/2017     |
| 16/10/2017<br>15:20 | 16/10/2017<br>15:20 | Unrealistic negative readings                                                            | NO, NO <sub>2</sub> , NO <sub>x</sub>                      | EP           | 14/11/2017     |

Report No: DAT12579Rev1

**Peabody Energy** 



| Start Date          | End Date            | Reason                                                     | Change<br>Details                                                           | User<br>Name | Change<br>Date |
|---------------------|---------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|--------------|----------------|
| 19/10/2017<br>15:05 | 19/10/2017<br>16:00 | Non-scheduled maintenance to adjust the span drift         | SO <sub>2</sub> ,H <sub>2</sub> S, NO,<br>NO <sub>2</sub> , NO <sub>x</sub> | EP           | 14/11/2017     |
| 26/10/2017<br>13:15 | 26/10/2017<br>13:45 | Non-scheduled maintenance                                  | SO <sub>2</sub> , NO, NO <sub>2</sub> ,<br>NO <sub>x</sub>                  | EP           | 14/11/2017     |
| 26/10/2017<br>13:30 | 26/10/2017<br>15:00 | Data affected by rapid change of the enclosure temperature | Benzene,<br>Toluene                                                         | EP           | 14/11/2017     |

Report No: DAT12579Rev1

**Peabody Energy** 



## 8.0 Report Summary

The data capture for most of the parameters a Wollar was above 95% for the reporting month. The exceptions were  $H_2S$ ,  $SO_2$  and p-xylene. Please refer to Data Capture Percentage Table 9 for details; and Table 10 for valid data exceptions.

Benzene, Toluene and Xylene data monitored at the Wollar station after 7/08/2017 is not included in this report as the data is pending further investigation into instrument performance and calibration. Data will be issued on completion of this investigation.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

## Report No: DAT12579Rev1

**Peabody Energy** 

WS



# **Appendix 1 - Definitions & Abbreviations**

| ВТХ              | Benzene, Toluene and <i>p</i> -Xylene |
|------------------|---------------------------------------|
| H <sub>2</sub> S | Hydrogen sulfide                      |
| m/s              | Metres per second                     |
| NO               | Nitric oxide                          |
| $NO_2$           | Nitrogen dioxide                      |
| $NO_x$           | Oxides of nitrogen                    |
| ppb              | Parts per billion                     |
| SO <sub>2</sub>  | Sulphur dioxide                       |
| WD               | Vector Wind Direction                 |
|                  |                                       |

**Vector Wind Speed** 

## Report No: DAT12579Rev1

**Peabody Energy** 



## **Appendix 2 - Explanation of Exception Table**

**Automatic background check** refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero-signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

**Calibration check outside tolerance** refers to when the calibration values are outside the tolerance limits set for the precision check.

**Calibration correction factor applied to data** refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

**Commissioning** refers to the initial setup and calibration of the instrument when it is first installed. For some instruments, there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

**Data transmission error** refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

**Equipment malfunction/instrument fault** refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

**Gap in data/data not available** refers to a period of time when either data has been lost or could not be collected.

**Instrument Alarm** refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

**Instrument out of service** refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

**Linear offset or multiplier** refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

#### Report No: DAT12579Rev1

#### **Peabody Energy**



**Logger error** refers to when an error occurs and instrument readings are not correctly recorded by the logger.

**Maintenance** refers to a period of time when the logger / instrument was switched off due to maintenance.

**Overnight span/zero out of tolerance** refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

**Power Interruption** refers to no power to the station therefore no data was collected at this time.

**Remote Calibration** refers to when a technician remotely connects to the station and manually performs a span check.

**Static offset or multiplier** refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

**Warm up after power interruption** refers to the start-up period of an instrument after power has been restored.

Report No: DAT12579Rev1

**Peabody Energy** 



## **Appendix 3 – Amendments**

This amended report supersedes previously issued versions of the report. Refer to the revision history table on page 2 for details of previous revisions. The following modification has been made in this revision:

• On completion of the investigation, into the BTX analyser's performance and calibration, Benzene and Toluene data deemed as valid, therefore included in this report.



Accredited for compliance with ISO/IEC 17025 - Testing



Accreditation No. 14184.

# **Peabody Energy**

# Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1<sup>st</sup> November – 30<sup>th</sup> November 2017

Report No.: DAT12704

Report issue date: 28th December 2017

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

**Report No: DAT12704** 

**Peabody Energy** 



| Customer Details |                                  |  |
|------------------|----------------------------------|--|
| Customer         | Peabody Energy Australia         |  |
| Contact name     | Clark Potter                     |  |
| Address          | Locked Bag 2005, Mudgee 2850 NSW |  |
| Email            | cpotter@peabodyenergy.com        |  |
| Phone            | +61 (02) 6370 2527               |  |

| Revision History |           |            |              |  |
|------------------|-----------|------------|--------------|--|
| Revision         | Report ID | Date       | Analyst      |  |
| 0                | DAT12704  | 28/12/2017 | Elmira Parto |  |

Report by Elmira Parto

Approved by Jon Alexander

Porto

# Report No: DAT12704

## **Peabody Energy**



#### **Table of Contents**

| Cust | tomer [  | Details                                  | 2  |
|------|----------|------------------------------------------|----|
| Revi | ision Hi | istory                                   | 2  |
|      |          | res                                      |    |
|      |          | les                                      |    |
| 1.0  |          | itive Summary                            |    |
| 2.0  |          | duction                                  |    |
|      |          |                                          |    |
| 3.0  |          | toring and Data Collection               |    |
| 3.1. |          | ng Details                               |    |
| 3.2. | Mo       | nitored Parameters                       | S  |
| 3.3. | Dat      | ta Collection Methods                    | 10 |
| 3    | 3.3.1.   | Compliance with Standards                | 11 |
| 3    | 3.3.2.   | Data Acquisition                         | 11 |
| 3.4. | Dat      | ta Validation and Reporting              | 11 |
| 3    | 3.4.1.   | Validation                               | 11 |
| 3    | 3.4.2.   | Reporting                                | 12 |
| 4.0  | Air Qu   | uality Goals                             | 13 |
| 4.1. | Air      | Quality Summary                          | 13 |
| 5.0  | Calibr   | rations and Maintenance                  | 14 |
| 5.1. | Uni      | its and Uncertainties                    | 14 |
| 5.2. |          | tomatic Checks                           |    |
|      |          |                                          |    |
| 5.3. |          | intenance                                |    |
| 5    | 5.3.1.   | Calibration & Maintenance Summary Tables |    |
| 6.0  | Result   | ts                                       | 17 |

# Report No: DAT12704

# NATA WORLD RECOGNISED

## **Peabody Energy**

| 6.1.   | Data Capture                                   | . 17 |
|--------|------------------------------------------------|------|
| 6.2.   | Graphic Representations                        | . 18 |
| 7.0    | Valid Data Exception Tables                    | .23  |
| 8.0    | Report Summary                                 | .25  |
| Appen  | ndix 1 - Definitions & Abbreviations           | .26  |
| Appen  | ndix 2 - Explanation of Exception Table        | .27  |
|        |                                                |      |
| List o | of Figures                                     |      |
| Figure | 1: Wilpinjong Mine Monitoring Station Location | 8    |
| Figure | 2: NO 1-hour averaged data                     | . 18 |
| Figure | 3: NO <sub>2</sub> 1-hour averaged data        | . 19 |
| Figure | 4: NO <sub>X</sub> 1-hour averaged data        | . 19 |
| Figure | 5: SO <sub>2</sub> 1-hour averaged data        | . 20 |
| Figure | 6: H <sub>2</sub> S 1-hour averaged data       | . 20 |
| Figure | 7: BTX 1-hour averaged data                    | . 21 |
| Figure | 8: WS 1-hour averaged data                     | . 21 |
| Figure | 9: Wind Rose                                   | . 22 |

# Report No: DAT12704

## **Peabody Energy**



## **List of Tables**

| Table 1: Wilpinjong Mine monitoring site location                                                                | 7  |
|------------------------------------------------------------------------------------------------------------------|----|
| Table 2: Parameters measured at the Wilpinjong Mine monitoring station                                           | S  |
| Table 3: Methods                                                                                                 | 10 |
| Table 4: Wilpinjong Air Quality Goals (NEPM)                                                                     | 13 |
| Table 5: Exceedences Recorded                                                                                    | 13 |
| Table 6: Units and Uncertainties                                                                                 | 14 |
| Table 7: Automatic checks for NO, NO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> , H <sub>2</sub> S and BTX | 15 |
| Table 8: Wilpinjong Wollar Maintenance Table                                                                     | 16 |
| Table 9: Data Capture for Wilpinjong Wollar Station                                                              | 17 |
| Table 10: Wollar Valid Data Exception Table                                                                      | 23 |

**Report No: DAT12704** 

**Peabody Energy** 



## 1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for November 2017. Data capture for the different pollutants is presented in Table 9.

**Report No: DAT12704** 

**Peabody Energy** 



#### 2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1<sup>st</sup> March 2013.

This report presents the data for November 2017.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

## 3.0 Monitoring and Data Collection

#### **3.1.** Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

| Site Name | Geographical Coordinates         | Height Above<br>Sea Level (m) |
|-----------|----------------------------------|-------------------------------|
| Wollar    | Lat: -32.360105 Long: 149.949509 | 366                           |

**Report No: DAT12704** 

**Peabody Energy** 



A siting audit was conducted on 27<sup>th</sup> February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

The station is classified as a neighbourhood station according to AS/NZS 3580.1.1:2007.



Figure 1: Wilpinjong Mine Monitoring Station Location

**Report No: DAT12704** 

**Peabody Energy** 



#### 3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

| Parameter Measured                             | Instrument and Measurement Technique       |
|------------------------------------------------|--------------------------------------------|
| BTX<br>(Benzene, Toluene and <i>p</i> -Xylene) | Synspec GC955 - Gas Chromatography         |
| H₂S                                            | Ecotech EC9852 - fluorescence              |
| NO, NO <sub>2</sub> , NO <sub>x</sub>          | Ecotech EC9841 gas phase chemiluminescence |
| SO <sub>2</sub>                                | Ecotech EC9850 – fluorescence              |
| Wind Speed (horizontal, 10m)                   | Gill Windsonic                             |
| Wind Direction (10m)                           | Gill Windsonic                             |

**Report No: DAT12704** 

**Peabody Energy** 



#### 3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

**Table 3: Methods** 

| Parameter<br>Measured                 | Data Collection Methods<br>Used | Description of Method                                                                                                                   |
|---------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | AS 3580.5.1-2011                | Methods for sampling and analysis of ambient air. Method 5.1:  Determination of oxides of nitrogen – chemiluminescence method           |
| , , , , , , , , , , , , , , , , , , , | Ecotech Laboratory<br>Manual    | In-house method 6.1 Oxides of nitrogen by chemiluminescence                                                                             |
| SO <sub>2</sub>                       | AS 3580.4.1-2008                | Methods for sampling and analysis of ambient air. Method 4.1:  Determination of sulfur dioxide – Direct reading instrumental method     |
| 332                                   | Ecotech Laboratory<br>Manual    | In-house method 6.2 Sulfur dioxide by fluorescence                                                                                      |
| H₂S                                   | Ecotech Laboratory<br>Manual    | In-house method 6.5 Hydrogen sulfide by fluorescence                                                                                    |
| втх                                   | Manufacturer's<br>Instructions  | Gas Chromatography Synspec CG955 Series Manual                                                                                          |
| Vector Wind<br>Speed                  | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |
| (Horizontal)                          | Ecotech Laboratory<br>Manual    | In-house method 8.1 Wind speed (Horizontal) by anemometer                                                                               |
| Vector Wind<br>Direction              | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |
| Direction                             | Ecotech Laboratory<br>Manual    | In-house method 8.3 Wind direction by anemometer                                                                                        |

**Report No: DAT12704** 

**Peabody Energy** 



#### 3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- The siting of Wollar station does not comply with AS/NZS 3580.1.1:2007 as of 27/2/2016 due to the yearly audit task being overdue.

#### 3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis<sup>TM</sup> version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5-minute intervals.

#### 3.4. Data Validation and Reporting

#### 3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five-minute data.

**Report No: DAT12704** 

#### **Peabody Energy**



#### 3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report November-17.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5-minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five-minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One-hour averages are calculated based on a clock hour. One-day averages are calculated based on calendar days.

**Report No: DAT12704** 

**Peabody Energy** 



# 4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

| Parameter       | Time Period | Exceedence<br>Level | Units | Maximum allowable exceedences |
|-----------------|-------------|---------------------|-------|-------------------------------|
| NO <sub>2</sub> | 1 year      | 0.030               | ppm   | None                          |
| NO <sub>2</sub> | 1 hour      | 0.120               | ppm   | 1 day a year                  |
| SO <sub>2</sub> | 1 hour      | 0.200               | ppm   | 1 day a year                  |
| SO <sub>2</sub> | 1 day       | 0.080               | ppm   | 1 day a year                  |
| SO <sub>2</sub> | 1 year      | 0.020               | ppm   | None                          |

#### 4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

| Parameter       | Time Period | Value of Exceedence | Date of Exceedence |
|-----------------|-------------|---------------------|--------------------|
| NO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 day       | -                   | -                  |

**Report No: DAT12704** 

**Peabody Energy** 



#### 5.0 Calibrations and Maintenance

#### 5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

**Table 6: Units and Uncertainties** 

| Parameter                                          | Units | Resolution | Uncertainty                                                                | Measurement<br>Range <sup>1</sup>                |
|----------------------------------------------------|-------|------------|----------------------------------------------------------------------------|--------------------------------------------------|
| NO, NO <sub>x</sub><br>(EC9841)                    | ppm   | 0.001 ppm  | ± 0.014 ppm<br>K factor of 2.01                                            | 0.000 ppm to 0.500<br>ppm                        |
| NO <sub>2</sub> (EC9841)                           | ppm   | 0.001 ppm  | ± 0.016 ppm<br>K factor of 2.01                                            | 0 ppb to 0.500 ppb                               |
| SO <sub>2</sub> (EC9850)                           | ppm   | 0.001 ppm  | ± 0.014 ppm<br>K factor of 2.01                                            | 0.000 ppm to 0.500<br>ppm                        |
| H₂S                                                | ppm   | 1 ppb      | 15.2% of reading or ± 0.019 ppm, whichever is greater  K factor of 2       | 0.000 ppm to 0.500<br>ppm                        |
| Benzene,<br>Toluene and <i>p</i> -<br>Xylene (BTX) | ppb   | 0.03 ppb   | 15.1% of reading or 3.8ppb, whichever is greater  K factor of 2            | 0 ppb to 300 ppb                                 |
| Vector Wind<br>Speed                               | m/s   | 0.1 m/s    | $\pm 0.01$ m/s or 2.0% of reading, whichever is greater (K factor of 1.96) | 0 m/s to 60 m/s                                  |
| Vector Wind<br>Direction                           | Deg   | 1 deg      | ±2 deg<br>K factor of 2.11                                                 | 0 deg to 360 deg<br>Starting threshold:<br>0 m/s |

 $<sup>^{1}</sup>$  Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO<sub>2</sub> and NO<sub>x</sub> by EC 9841 and SO<sub>2</sub> by EC9850 are calculated based on a measurement range of 0-125 ppb.

**Report No: DAT12704** 

**Peabody Energy** 



#### 5.2. Automatic Checks

Automatic span and zero calibration checks run every night for NO, NO<sub>2</sub>, NO<sub>x</sub> and SO<sub>2</sub>, every  $2^{nd}$  night for H<sub>2</sub>S and weekly for BTX.

Background checks run each night for SO<sub>2</sub> and H<sub>2</sub>S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S and BTX

| Parameter                             | Span / Zero cycle time<br>(approximate)  | Background cycle time<br>(approximate) |
|---------------------------------------|------------------------------------------|----------------------------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 00:45 to 01:25 every day                 | N/A                                    |
| SO <sub>2</sub>                       | 00:45 to 01:25 every day                 | 23:45 to 23:50 every day               |
| H₂S                                   | 01:35 to 02:35 every 2 <sup>nd</sup> day | 23:45 to 23:50 every day               |
| BTX                                   | 02:45 to 05:25 weekly                    | N/A                                    |

#### **5.3.** Maintenance

Scheduled monthly maintenance was performed on 06/11/2017. Unscheduled visits was made:

- 14/11/2017 a remote calibration was performed on H<sub>2</sub>S analysers to adjust the span
- 21/11/2017 a remote calibration was performed to adjust the H<sub>2</sub>S span
- 22/11/2017 a remote calibration was performed to adjust the H<sub>2</sub>S span

#### 5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

**Report No: DAT12704** 

#### **Peabody Energy**



Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

**Table 8: Wilpinjong Wollar Maintenance Table** 

| Parameter                             | Date of Last<br>Maintenance | Maintenance Type | Date of Last<br>Calibration | Calibration<br>Cycle |
|---------------------------------------|-----------------------------|------------------|-----------------------------|----------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 06/11/2017                  | Monthly          | 06/11/2017                  | Monthly              |
| SO <sub>2</sub>                       | 06/11/2017                  | Monthly          | 06/11/2017                  | Monthly              |
| H₂S                                   | 22/11/2017                  | Unscheduled      | 22/11/2017                  | Monthly              |
| втх                                   | 06/11/2017                  | Monthly          | 06/11/2017                  | Yearly               |
| Wind Sensor                           | 06/11/2017                  | Monthly          | 22/07/2015                  | 2-yearly             |

#### **Report No: DAT12704**

**Peabody Energy** 



#### 6.0 Results

#### 6.1. Data Capture

Data capture is based on 1-hour averages, calculated from 5-minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for November 2017. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

**Table 9: Data Capture for Wilpinjong Wollar Station** 

| Parameter                             | Data Capture % |
|---------------------------------------|----------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 96.0           |
| SO <sub>2</sub>                       | 95.5           |
| H₂S                                   | 58.3           |
| Benzene                               | 97.4           |
| Toluene                               | 97.4           |
| <i>p</i> -Xylene                      | 0.0            |
| WS, WD                                | 99.3           |

**Report No: DAT12704** 

**Peabody Energy** 



#### 6.2. Graphic Representations

Validated 5-minute data for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

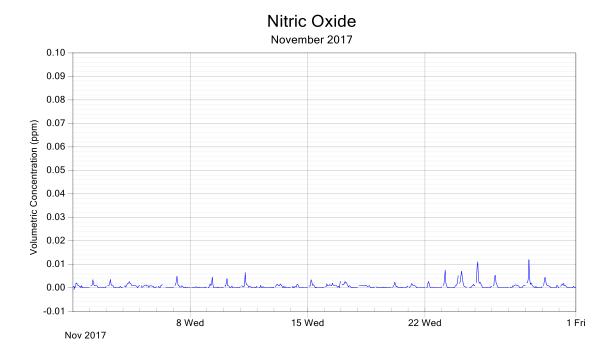



Figure 2: NO 1-hour averaged data

# **Report No: DAT12704**



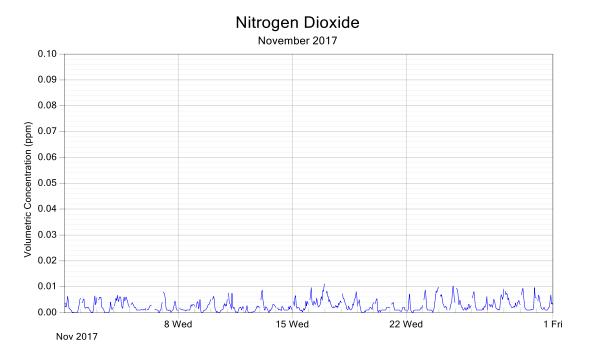



Figure 3: NO<sub>2</sub> 1-hour averaged data

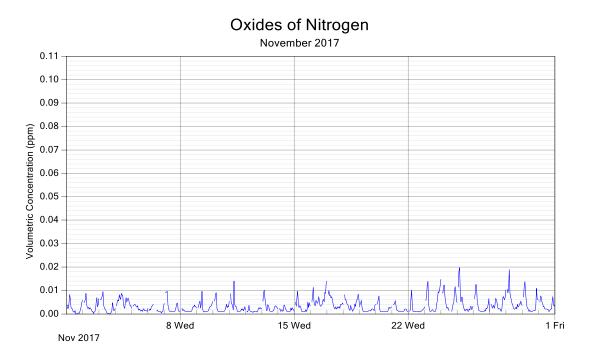



Figure 4: NO<sub>X</sub> 1-hour averaged data

#### **Report No: DAT12704**



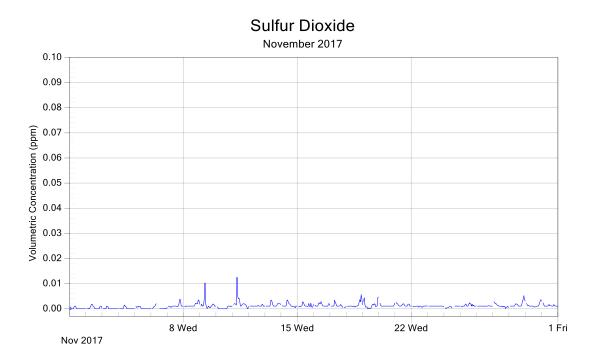



Figure 5: SO<sub>2</sub> 1-hour averaged data

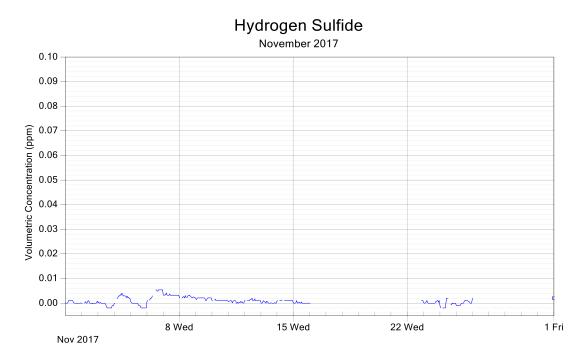



Figure 6: H<sub>2</sub>S 1-hour averaged data

# **Report No: DAT12704**

**Peabody Energy** 



#### Benzene, Toluene and p-Xylene

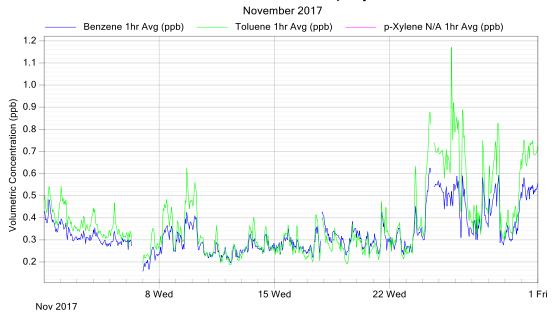



Figure 7: BTX 1-hour averaged data

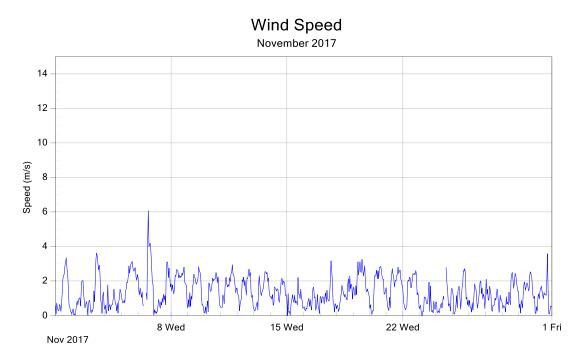



Figure 8: WS 1-hour averaged data

# **Report No: DAT12704**



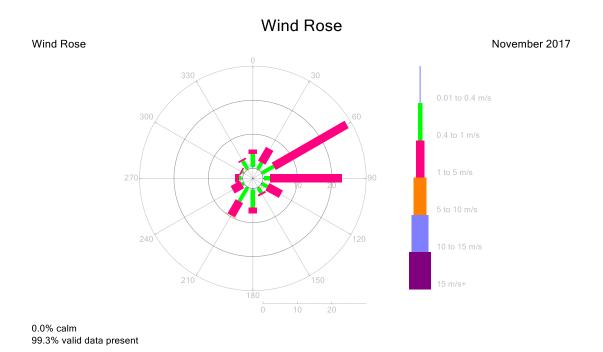



Figure 9: Wind Rose

**Report No: DAT12704** 

**Peabody Energy** 



# 7.0 Valid Data Exception Tables

The table below detail all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

**Table 10: Wollar Valid Data Exception Table** 

| Start Date          | End Date            | Reason                                                                              | Change<br>Details                                                                         | User<br>Name | Change<br>Date |
|---------------------|---------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------|----------------|
| 1/11/2017<br>0:00   | 1/12/2017<br>0:00   | Unrealistic readings                                                                | Xylene                                                                                    | EP           | 14/12/2017     |
| 4/11/2017<br>3:40   | 6/11/2017<br>8:45   | Static offset (0.001 ppm) applied to data to adjust the baseline                    | H <sub>2</sub> S                                                                          | EP           | 14/12/2017     |
| 6/11/2017<br>8:50   | 6/11/2017<br>23:30  | Scheduled monthly maintenance and subsequent instrument stabilisation               | All parameters                                                                            | EP           | 14/12/2017     |
| 6/11/2017<br>11:35  | 14/11/2017<br>9:10  | Linear multiplier (A = 1.07 and B=1) applied to data correct the drifted span       | H <sub>2</sub> S                                                                          | EP           | 14/12/2017     |
| 6/11/2017<br>11:35  | 21/11/2013<br>11:30 | Static offset (0.003 ppm) applied to data to adjust the baseline                    | H₂S                                                                                       | EP           | 14/12/2017     |
| 14/11/2017<br>9:15  | 14/11/2014<br>10:20 | Remote calibration to adjust the span drift                                         | H₂S                                                                                       | EP           | 14/12/2017     |
| 16/11/2017<br>3:40  | 21/11/2017<br>11:30 | Calibration check outside of tolerance                                              | H₂S                                                                                       | EP           | 14/12/2017     |
| 17/11/2017<br>19:20 | 17/11/2017<br>20:50 | Intermittent instrument stabilisation after suspected brief power interruptions     | NO, NO <sub>2</sub> , NO <sub><u>x</u></sub> ,<br>SO <sub>2</sub> , H <sub>2</sub> S, BTX | EP           | 14/12/2017     |
| 21/11/2017<br>11:35 | 21/11/2017<br>20:30 | Remote calibration to adjust the span and instrument stabilisation                  | H₂S                                                                                       | EP           | 14/12/2017     |
| 21/11/2017<br>20:35 | 22/11/2017<br>19:50 | Calibration check outside of tolerance                                              | H₂S                                                                                       | EP           | 14/12/2017     |
| 22/11/2017<br>19:55 | 22/11/2017<br>21:10 | Remote calibration to adjust the H <sub>2</sub> S span and instrument stabilisation | SO <sub>2</sub> , H <sub>2</sub> S, WS,<br>WD, BTX                                        | EP           | 14/12/2017     |

Report No: DAT12704



| Start Date          | End Date            | Reason                                                            | Change<br>Details                                                                     | User<br>Name | Change<br>Date |
|---------------------|---------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------|----------------|
| 22/11/2017<br>21:15 | 24/11/2017<br>13:05 | Static offset (0.002 ppm) applied to data to adjust the baseline  | H₂S                                                                                   | EP           | 14/12/2017     |
| 24/11/2017<br>13:10 | 24/11/2017<br>14:55 | Power interruption at site                                        | All<br>parameters                                                                     | AE           | 22/12/2017     |
| 24/11/2017<br>15:00 | 24/11/2017<br>16:15 | Instrument stabilisation after power interruption                 | NO, NO <sub>2</sub> , NO $_{\underline{x}}$ , SO <sub>2</sub> , H <sub>2</sub> S, BTX | EP           | 14/12/2017     |
| 24/11/2017<br>15:35 | 25/11/2017<br>0:05  | Static offset (-0.010 ppm) applied to data to adjust the baseline | H₂S                                                                                   | EP           | 14/12/2017     |
| 26/11/2017<br>3:40  | 1/12/2017<br>0:00   | Calibration check outside of tolerance                            | H₂S                                                                                   | EP           | 14/12/2017     |

**Report No: DAT12704** 

**Peabody Energy** 



#### 8.0 Report Summary

The data capture for most of the parameters a Wollar was above 95% for the reporting month. The exceptions were  $H_2S$  and p-xylene. Please refer to Data Capture Percentage Table 9 for details; and Table 10 for valid data exceptions.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

| END OF REPORT |
|---------------|
|               |

**Report No: DAT12704** 

**Peabody Energy** 



# **Appendix 1 - Definitions & Abbreviations**

BTX Benzene, Toluene and *p*-Xylene

H<sub>2</sub>S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO<sub>2</sub> Nitrogen dioxide

NO<sub>x</sub> Oxides of nitrogen

ppb Parts per billion

SO<sub>2</sub> Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

**Report No: DAT12704** 

**Peabody Energy** 



#### **Appendix 2 - Explanation of Exception Table**

**Automatic background check** refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero-signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

**Calibration check outside tolerance** refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

**Commissioning** refers to the initial setup and calibration of the instrument when it is first installed. For some instruments, there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

**Data transmission error** refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

**Equipment malfunction/instrument fault** refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

**Gap in data/data not available** refers to a period of time when either data has been lost or could not be collected.

**Instrument Alarm** refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

**Instrument out of service** refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

**Linear offset or multiplier** refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

**Report No: DAT12704** 

#### **Peabody Energy**



**Logger error** refers to when an error occurs and instrument readings are not correctly recorded by the logger.

**Maintenance** refers to a period of time when the logger / instrument was switched off due to maintenance.

**Overnight span/zero out of tolerance** refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

**Power Interruption** refers to no power to the station therefore no data was collected at this time.

**Remote Calibration** refers to when a technician remotely connects to the station and manually performs a span check.

**Static offset or multiplier** refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the start-up period of an instrument after power has been restored.



Accredited for compliance with ISO/IEC 17025 - Testing



Accreditation No. 14184.

# **Peabody Energy**

# Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1<sup>st</sup> December – 31<sup>st</sup> December 2017

Report No.: DAT12821

Report issue date: 25th January 2018

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

**Report No: DAT12821** 

**Peabody Energy** 



| Customer Details                  |                                  |  |  |
|-----------------------------------|----------------------------------|--|--|
| Customer Peabody Energy Australia |                                  |  |  |
| Contact name                      | Clark Potter                     |  |  |
| Address                           | Locked Bag 2005, Mudgee 2850 NSW |  |  |
| Email                             | cpotter@peabodyenergy.com        |  |  |
| Phone                             | +61 (02) 6370 2527               |  |  |

| Revision History                   |  |  |  |  |  |  |
|------------------------------------|--|--|--|--|--|--|
| Revision Report ID Date Analyst    |  |  |  |  |  |  |
| 0 DAT12821 25/01/2018 Elmira Parto |  |  |  |  |  |  |

Report by Elmira Parto

Approved by Amanda Elliott

Smale Ellet

# Report No: DAT12821

#### **Peabody Energy**



#### **Table of Contents**

| Cus  | tomer I | Details                                  | 2  |
|------|---------|------------------------------------------|----|
| Rev  | ision H | istory                                   | 2  |
| List | of Figu | res                                      | 4  |
| List | of Tabl | es                                       | 5  |
| 1.0  | Execu   | tive Summary                             | €  |
| 2.0  | Introd  | luction                                  | 7  |
|      |         |                                          |    |
| 3.0  |         | toring and Data Collection               |    |
| 3.1. | Siti    | ng Details                               | 7  |
| 3.2. | Мо      | nitored Parameters                       | 9  |
| 3.3. | Dat     | a Collection Methods                     | 10 |
| 3    | 3.3.1.  | Compliance with Standards                | 11 |
| 3    | 3.3.2.  | Data Acquisition                         | 11 |
| 3.4. | Dat     | a Validation and Reporting               | 11 |
| 3    | 3.4.1.  | Validation                               | 11 |
|      |         |                                          |    |
|      | 3.4.2.  | Reporting                                |    |
| 4.0  | Air Qı  | uality Goals                             | 13 |
| 4.1. | Air     | Quality Summary                          | 13 |
| 5.0  | Calibr  | ations and Maintenance                   | 14 |
| 5.1. | Uni     | ts and Uncertainties                     | 14 |
| 5.2. | Aut     | omatic Checks                            | 15 |
| 5.3. | Ma      | intenance                                | 15 |
|      |         |                                          |    |
|      | 5.3.1.  | Calibration & Maintenance Summary Tables |    |
| 6.0  | Resul   | ts                                       | 17 |

# Report No: DAT12821



| 6.1.     | Data Capture                                   | 17 |
|----------|------------------------------------------------|----|
| 6.2.     | Graphic Representations                        | 18 |
| 7.0      | Valid Data Exception Tables                    | 23 |
| 8.0      | Report Summary                                 | 24 |
| Append   | dix 1 - Definitions & Abbreviations            | 25 |
| Append   | dix 2 - Explanation of Exception Table         | 26 |
|          |                                                |    |
| List of  | f Figures                                      |    |
| Figure 1 | 1: Wilpinjong Mine Monitoring Station Location | 8  |
| Figure 2 | 2: NO 1-hour averaged data                     | 18 |
| Figure 3 | $3$ : NO $_2$ 1-hour averaged data             | 19 |
| Figure 4 | 4: NO <sub>x</sub> 1-hour averaged data        | 20 |
| Figure 5 | 5: SO <sub>2</sub> 1-hour averaged data        | 20 |
| Figure 6 | 5: H <sub>2</sub> S 1-hour averaged data       | 21 |
| Figure 7 | 7: BTX 1-hour averaged data                    | 21 |
| Figure 8 | 8: WS 1-hour averaged data                     | 22 |
| Figure 9 | 9: Wind Rose                                   | 22 |

# Report No: DAT12821

#### **Peabody Energy**



#### **List of Tables**

| Table 1: Wilpinjong Mine monitoring site location                                                                | 7  |
|------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                  |    |
| Table 2: Parameters measured at the Wilpinjong Mine monitoring station                                           | 9  |
| Table 3: Methods                                                                                                 | 10 |
| Table 4: Wilpinjong Air Quality Goals (NEPM)                                                                     | 13 |
| Table 5: Exceedences Recorded                                                                                    | 13 |
| Table 6: Units and Uncertainties                                                                                 | 14 |
| Table 7: Automatic checks for NO, NO <sub>2</sub> , NO <sub>x</sub> , SO <sub>2</sub> , H <sub>2</sub> S and BTX | 15 |
| Table 8: Wilpinjong Wollar Maintenance Table                                                                     | 16 |
| Table 9: Data Capture for Wilpinjong Wollar Station                                                              | 17 |
| Table 10: Wollar Valid Data Exception Table                                                                      | 23 |

**Report No: DAT12821** 

**Peabody Energy** 



#### 1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for December 2017. Data capture for the different pollutants is presented in Table 9.

Xylene data monitored at the Wollar station is not included for this month as the data is pending further investigation into instrument performance and calibration. Data will be issued on completion of this investigation.

**Report No: DAT12821** 

**Peabody Energy** 



#### 2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1<sup>st</sup> March 2013.

This report presents the data for December 2017.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

#### 3.0 Monitoring and Data Collection

#### **3.1.** Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

| Site Name | Geographical Coordinates         | Height Above<br>Sea Level (m) |
|-----------|----------------------------------|-------------------------------|
| Wollar    | Lat: -32.360105 Long: 149.949509 | 366                           |

#### **Report No: DAT12821**

**Peabody Energy** 



A siting audit was conducted on 27<sup>th</sup> February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

The station is classified as a neighbourhood station according to AS/NZS 3580.1.1:2007.



Figure 1: Wilpinjong Mine Monitoring Station Location

**Report No: DAT12821** 

**Peabody Energy** 



#### 3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

| Parameter Measured                             | Instrument and Measurement Technique       |
|------------------------------------------------|--------------------------------------------|
| BTX<br>(Benzene, Toluene and <i>p</i> -Xylene) | Synspec GC955 - Gas Chromatography         |
| H₂S                                            | Ecotech EC9852 - fluorescence              |
| NO, NO <sub>2</sub> , NO <sub>x</sub>          | Ecotech EC9841 gas phase chemiluminescence |
| SO <sub>2</sub>                                | Ecotech EC9850 – fluorescence              |
| Wind Speed (horizontal, 10m)                   | Gill Windsonic                             |
| Wind Direction (10m)                           | Gill Windsonic                             |

**Report No: DAT12821** 

#### **Peabody Energy**



#### 3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

**Table 3: Methods** 

| Parameter<br>Measured                 | Data Collection Methods<br>Used | Description of Method                                                                                                                   |  |  |
|---------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | AS 3580.5.1-2011                | Methods for sampling and analysis of ambient air. Method 5.1:  Determination of oxides of nitrogen – chemiluminescence method           |  |  |
|                                       | Ecotech Laboratory<br>Manual    | In-house method 6.1 Oxides of nitrogen by chemiluminescence                                                                             |  |  |
| SO <sub>2</sub>                       | AS 3580.4.1-2008                | Methods for sampling and analysis of ambient air. Method 4.1:  Determination of sulfur dioxide – Direct reading instrumental method     |  |  |
|                                       | Ecotech Laboratory<br>Manual    | In-house method 6.2 Sulfur dioxide by fluorescence                                                                                      |  |  |
| H₂S                                   | Ecotech Laboratory<br>Manual    | In-house method 6.5 Hydrogen sulfide by fluorescence                                                                                    |  |  |
| втх                                   | Manufacturer's<br>Instructions  | Gas Chromatography Synspec CG955 Series Manual                                                                                          |  |  |
| Vector Wind<br>Speed                  | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |  |
| (Horizontal)                          | Ecotech Laboratory<br>Manual    | In-house method 8.1 Wind speed (Horizontal) by anemometer                                                                               |  |  |
| Vector Wind<br>Direction              | AS 3580.14-2014                 | Methods for sampling and analysis of ambient air. Method 14:  Meteorological monitoring for ambient air quality monitoring applications |  |  |
| Direction                             | Ecotech Laboratory<br>Manual    | In-house method 8.3 Wind direction by anemometer                                                                                        |  |  |

**Report No: DAT12821** 

**Peabody Energy** 



#### 3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of wind data does not comply with AS 3580.14-2014 as of 22/07/2017 due to the 2 yearly wind tunnel calibration task being overdue.

#### 3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis<sup>TM</sup> version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5-minute intervals.

#### 3.4. Data Validation and Reporting

#### 3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five-minute data.

**Report No: DAT12821** 

#### **Peabody Energy**



#### 3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report December-17.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5-minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five-minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One-hour averages are calculated based on a clock hour. One-day averages are calculated based on calendar days.

**Report No: DAT12821** 

**Peabody Energy** 



# 4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

| Parameter       | Time Period | Exceedence<br>Level | Units | Maximum allowable exceedences |
|-----------------|-------------|---------------------|-------|-------------------------------|
| NO <sub>2</sub> | 1 year      | 0.030               | ppm   | None                          |
| NO <sub>2</sub> | 1 hour      | 0.120               | ppm   | 1 day a year                  |
| SO <sub>2</sub> | 1 hour      | 0.200               | ppm   | 1 day a year                  |
| SO <sub>2</sub> | 1 day       | 0.080               | ppm   | 1 day a year                  |
| SO <sub>2</sub> | 1 year      | 0.020               | ppm   | None                          |

#### 4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

| Parameter       | Time Period | Value of Exceedence | Date of Exceedence |
|-----------------|-------------|---------------------|--------------------|
| NO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 hour      | -                   | -                  |
| SO <sub>2</sub> | 1 day       | -                   | -                  |

**Report No: DAT12821** 

**Peabody Energy** 



#### 5.0 Calibrations and Maintenance

#### 5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

**Table 6: Units and Uncertainties** 

| Parameter                                          | Units                                                               | Resolution | Uncertainty                                                     | Measurement<br>Range <sup>1</sup> |
|----------------------------------------------------|---------------------------------------------------------------------|------------|-----------------------------------------------------------------|-----------------------------------|
| NO, NO <sub>x</sub><br>(EC9841)                    | ppm                                                                 | 0.001 ppm  | ± 0.014 ppm<br>K factor of 2.01                                 | 0.000 ppm to 0.500<br>ppm         |
| NO <sub>2</sub> (EC9841)                           | ppm                                                                 | 0.001 ppm  | ± 0.016 ppm<br>K factor of 2.01                                 | 0 ppm to 0.500 ppm                |
| SO <sub>2</sub> (EC9850)                           | SO <sub>2</sub> (EC9850) ppm 0.001 ppm ± 0.014 ppm K factor of 2.01 |            | ± 0.014 ppm<br>K factor of 2.01                                 | 0.000 ppm to 0.500<br>ppm         |
| H <sub>2</sub> S                                   |                                                                     |            |                                                                 | 0.000 ppm to 0.500<br>ppm         |
| Benzene,<br>Toluene and <i>p</i> -<br>Xylene (BTX) | ppb                                                                 | 0.03 ppb   | 15.1% of reading or 3.8ppb, whichever is greater  K factor of 2 | 0 ppb to 300 ppb                  |
| Vector Wind<br>Speed                               | m/s    () 1 m/s    greater                                          |            | 0 m/s to 60 m/s                                                 |                                   |
| Vector Wind<br>Direction                           | Deg    1 deg                                                        |            | 0 deg to 360 deg<br>Starting threshold:<br>0 m/s                |                                   |

 $<sup>^{1}</sup>$  Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO<sub>2</sub> and NO<sub>x</sub> by EC 9841 and SO<sub>2</sub> by EC9850 are calculated based on a measurement range of 0-125 ppb.

**Report No: DAT12821** 

**Peabody Energy** 



#### 5.2. Automatic Checks

Automatic span and zero calibration checks run every night for NO, NO<sub>2</sub>, NO<sub>x</sub> and SO<sub>2</sub>, every  $2^{nd}$  night for H<sub>2</sub>S and weekly for BTX.

Background checks run each night for SO<sub>2</sub> and H<sub>2</sub>S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S and BTX

| Parameter                             | Span / Zero cycle time<br>(approximate)  | Background cycle time<br>(approximate) |  |
|---------------------------------------|------------------------------------------|----------------------------------------|--|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 00:45 to 01:25 every day                 | N/A                                    |  |
| SO <sub>2</sub>                       | 00:45 to 01:25 every day                 | 23:45 to 23:50 every day               |  |
| H <sub>2</sub> S                      | 01:35 to 02:35 every 2 <sup>nd</sup> day | 23:45 to 23:50 every day               |  |
| втх                                   | 03:45 to 6:10 weekly                     | N/A                                    |  |

#### **5.3.** Maintenance

Scheduled monthly maintenance was performed on 14/12/2017. Unscheduled visits were made:

- 09/12/2017 a remote calibration was performed on the H<sub>2</sub>S analyser to adjust the span.
- 19/12/2017 to reset the wind sensor and  $H_2S$  convertor after a power interruption caused them to be lock up.

#### 5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

**Report No: DAT12821** 

#### **Peabody Energy**



Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

**Table 8: Wilpinjong Wollar Maintenance Table** 

| Parameter                             | Date of Last<br>Maintenance | Maintenance Type | Date of Last<br>Calibration | Calibration<br>Cycle |
|---------------------------------------|-----------------------------|------------------|-----------------------------|----------------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 14/12/2017                  | Monthly          | 14/12/2017                  | Monthly              |
| SO <sub>2</sub>                       | 14/12/2017                  | Monthly          | 14/12/2017                  | Monthly              |
| H₂S                                   | 19/12/2017                  | Unscheduled      | 14/12/2017                  | Monthly              |
| втх                                   | 14/12/2017                  | Monthly          | 14/12/2017                  | Yearly               |
| Wind Sensor                           | 19/12/2017                  | Unscheduled      | 22/07/2015                  | 2-yearly             |

#### **Report No: DAT12821**

#### **Peabody Energy**



#### 6.0 Results

#### 6.1. Data Capture

Data capture is based on 1-hour averages, calculated from 5-minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for December 2017. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

**Table 9: Data Capture for Wilpinjong Wollar Station** 

| Parameter                             | Data Capture % |
|---------------------------------------|----------------|
| NO, NO <sub>2</sub> , NO <sub>x</sub> | 96.7           |
| SO <sub>2</sub>                       | 96.1           |
| H₂S                                   | 0.0            |
| Benzene                               | 94.0           |
| Toluene                               | 94.0           |
| <i>p</i> -Xylene                      | _2             |

<sup>&</sup>lt;sup>2</sup> Data is under investigation

-

#### **Report No: DAT12821**

**Peabody Energy** 



| Parameter | Data Capture % |  |
|-----------|----------------|--|
| WS, WD    | 76.8           |  |

#### **6.2.** Graphic Representations

Validated 5-minute data for NO, NO<sub>2</sub>, NO<sub>x</sub>, SO<sub>2</sub>, H<sub>2</sub>S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

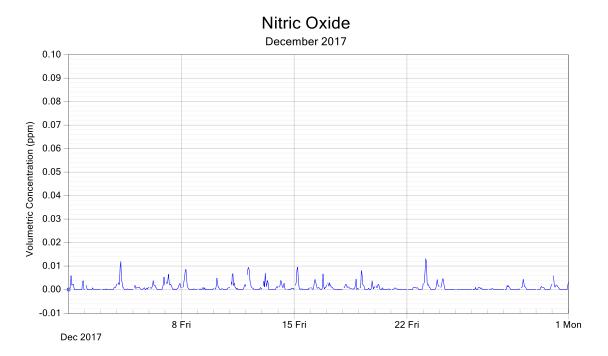



Figure 2: NO 1-hour averaged data

**Report No: DAT12821** 

**Peabody Energy** 



### Nitrogen Dioxide December 2017 0.10 0.09 0.08 Volumetric Concentration (ppm) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 22 Fri 1 Mon Dec 2017

Figure 3: NO<sub>2</sub> 1-hour averaged data

# **Report No: DAT12821**



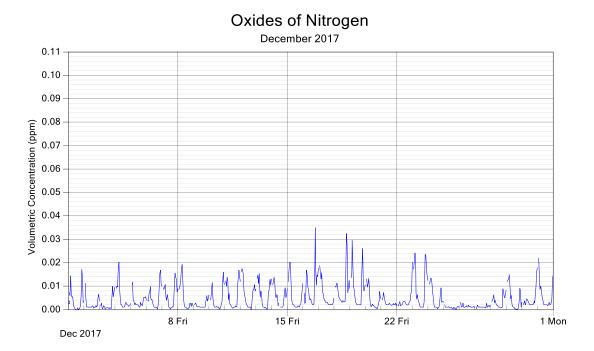



Figure 4: NO<sub>X</sub> 1-hour averaged data

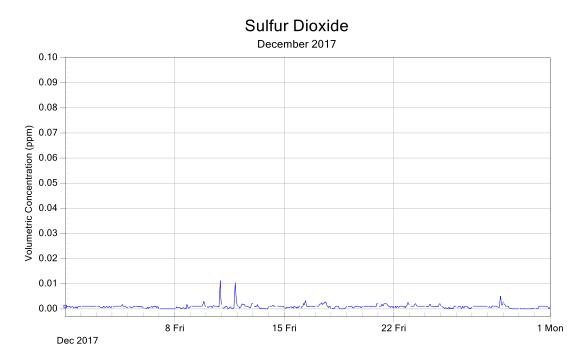



Figure 5: SO<sub>2</sub> 1-hour averaged data

#### **Report No: DAT12821**



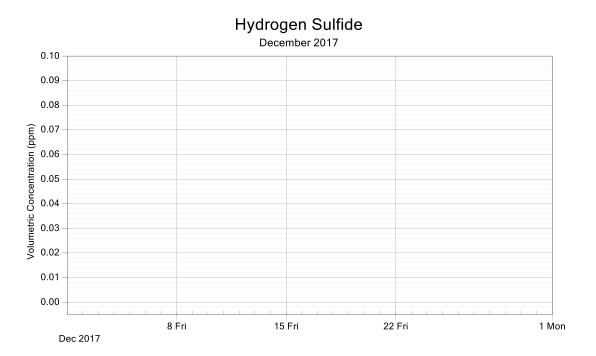



Figure 6: H<sub>2</sub>S 1-hour averaged data

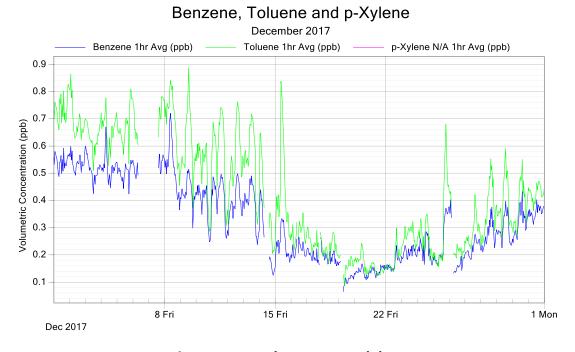



Figure 7: BTX 1-hour averaged data

# Report No: DAT12821



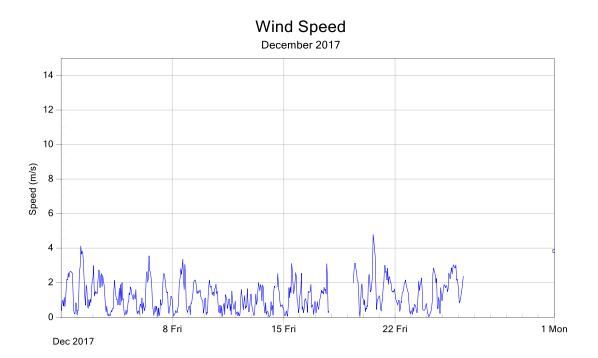



Figure 8: WS 1-hour averaged data

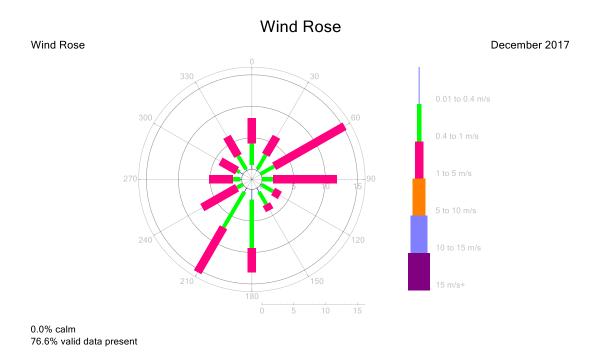



Figure 9: Wind Rose

**Report No: DAT12821** 

**Peabody Energy** 



# 7.0 Valid Data Exception Tables

The table below detail all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

**Table 10: Wollar Valid Data Exception Table** 

| Start Date          | End Date            | Reason                                                                                                              | Change Details                                                 | User<br>Name | Change Date |
|---------------------|---------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------|-------------|
| 1/12/2017<br>0:00   | 9/12/2017<br>8:55   | Calibration check outside of tolerance                                                                              | H2S                                                            | EP           | 23/01/2018  |
| 1/12/2017<br>0:00   | 1/01/2018<br>0:00   | Data under investigation                                                                                            | Xylene                                                         | EP           | 25/01/2018  |
| 6/12/2017<br>9:15   | 17/12/2017<br>20:45 | Intermittent possible power failure and subsequent instrument stabilisation and running additional background check | WS,WD, SO <sub>2</sub> , H <sub>2</sub> S,<br>Benzene, Toluene | EP           | 23/01/2018  |
| 9/12/2017<br>9:00   | 9/12/2017<br>10:05  | Remote calibration to adjust the span drift                                                                         | H <sub>2</sub> S                                               | EP           | 23/01/2018  |
| 9/12/2017<br>10:20  | 14/12/2017<br>10:20 | Calibration outside of the tolerance                                                                                | H <sub>2</sub> S                                               | EP           | 23/01/2018  |
| 14/12/2017<br>8:10  | 14/12/2017<br>14:40 | Scheduled monthly maintenance and subsequent instrument stabilisation                                               | All parameters                                                 | EP           | 23/01/2018  |
| 14/12/2017<br>14:05 | 1/01/2018<br>0:00   | Calibration check outside of tolerance                                                                              | H₂S                                                            | EP           | 23/01/2018  |
| 16/12/2017<br>2:25  | 16/12/2017<br>2:35  | Unrealistic negative readings                                                                                       | NO, NO <sub>2</sub> , NO <sub>x</sub>                          | EP           | 23/01/2018  |
| 17/12/2017<br>21:00 | 1/01/2018<br>0:00   | Intermittent wind sensor fault after power failure                                                                  | WS,WD                                                          | EP           | 23/01/2018  |
| 18/12/2017<br>8:50  | 29/12/2017<br>8:55  | Intermittent data transmission error                                                                                | WS,WD, Benzene,<br>Toluene                                     | EP           | 25/01/2018  |

**Report No: DAT12821** 

**Peabody Energy** 



| Start Date         | End Date            | Reason                                                                                               | Change Details          | User<br>Name | Change Date |
|--------------------|---------------------|------------------------------------------------------------------------------------------------------|-------------------------|--------------|-------------|
| 19/12/2017<br>3:45 | 19/12/2017<br>6:40  | Automatic calibration check and subsequent instrument stabilisation                                  | Benzene, Toluene        | EP           | 23/01/2018  |
| 19/12/2017<br>8:15 | 19/12/2017<br>11:45 | Unscheduled maintenance - Reset wind sensors and H <sub>2</sub> S converter after power interruption | WS,WD, H <sub>2</sub> S | EP           | 23/01/2018  |
| 26/12/2017<br>3:45 | 26/12/2017<br>6:55  | Automatic calibration check and subsequent instrument stabilisation                                  | Benzene, Toluene        | EP           | 23/01/2018  |

#### 8.0 Report Summary

The data capture for most of the parameters a Wollar was below 95% for the reporting month. The exceptions were  $SO_2$  and NO,  $NO_2$ ,  $NO_x$  Please refer to Data Capture Percentage Table 9 for details; and Table 10 for valid data exceptions.

Xylene data monitored at the Wollar station is not included for this month as the data is pending further investigation into instrument performance and calibration. Data will be issued on completion of this investigation.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.



**Report No: DAT12821** 

**Peabody Energy** 



# **Appendix 1 - Definitions & Abbreviations**

BTX Benzene, Toluene and *p*-Xylene

H<sub>2</sub>S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO<sub>2</sub> Nitrogen dioxide

NO<sub>x</sub> Oxides of nitrogen

ppb Parts per billion

SO<sub>2</sub> Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

**Report No: DAT12821** 

**Peabody Energy** 



#### **Appendix 2 - Explanation of Exception Table**

**Automatic background check** refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero-signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

**Calibration check outside tolerance** refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

**Commissioning** refers to the initial setup and calibration of the instrument when it is first installed. For some instruments, there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

**Data transmission error** refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

**Equipment malfunction/instrument fault** refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

**Gap in data/data not available** refers to a period of time when either data has been lost or could not be collected.

**Instrument Alarm** refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

**Instrument out of service** refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

**Linear offset or multiplier** refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

**Report No: DAT12821** 

#### **Peabody Energy**



**Logger error** refers to when an error occurs and instrument readings are not correctly recorded by the logger.

**Maintenance** refers to a period of time when the logger / instrument was switched off due to maintenance.

**Overnight span/zero out of tolerance** refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

**Power Interruption** refers to no power to the station therefore no data was collected at this time.

**Remote Calibration** refers to when a technician remotely connects to the station and manually performs a span check.

**Static offset or multiplier** refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

**Warm up after power interruption** refers to the start-up period of an instrument after power has been restored.