APPENDIX 3C – SURFACE WATER MONITORING DATA

SW Monitoring	E	C (µS/cm)		рН		SO4 (mg/L)			Turbidity (NTU)		
Point	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
CC1	228.0	1280.0	491.7	6.70	7.60	7.23	19.0	384.0	84.2	20.0	5520.0	1321.9
CC2	364.0	7570.0	6262.4	7.60	8.10	7.92	67.0	3000.0	2379.7	1.4	499.0	57.1
CC3	40.0	40.0	40.0	7.80	7.80	7.80	4.0	4.0	4.0	141.0	141.0	141.0
WIL (U)	-	-	-	-	-	-	-	-	-	-	-	-
WIL (U2)	1790.0	4380.0	3441.8	3.50	7.40	6.03	80.0	446.0	58.5	5.1	159.0	58.5
WIL (PC)	-	-	-	-	-	-	-	-	-	-	-	-
WIL (NC)	239.0	383.0	319.1	6.70	7.50	7.28	41.0	100.0	66.3	0.4	2.8	1.4
WIL (D)	278.0	2020.0	669.7	5.20	8.00	6.92	20.0	553.0	134.7	1.3	288.0	44.3
WIL (D2)	236.0	569.0	386.3	4.20	7.80	6.84	33.0	204.0	80.9	1.6	396.0	104.3
WOL1	425.0	2150.0	1260.1	7.20	8.40	8.01	41.0	494.0	294.1	1.0	19.6	6.8
WOL2	1730.0	2850.0	2404.5	7.00	7.90	7.51	209.0	740.0	447.7	1.0	36.2	6.1

Summary of 2018 Surface Water Monitoring Results

Summary of 2017 Surface Water Monitoring Results

SW Monitoring	E	C (µS/cm)		рН			SO4 (mg/l	.)	т	urbidity (N	TU)
Point	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
CC1												
	279.0	5380.0	2392.3	7.00	8.30	7.58	45.0	1790.0	787.0	4.4	1970.0	600.9
CC2												
	5470.0	8230.0	6306.0	7.70	8.30	7.99	1700.0	3170.0	2145.0	0.6	15.8	4.1
CC3												
	4100.0	4990.0	4520.0	8.30	8.50	8.40	1490.0	1920.0	1688.0	0.6	1.8	1.2
WIL (U)*	-	-	-	-	_	-	-	_	_	-	-	-
WIL (U2)												
	1360.0	3890.0	2851.7	5.40	8.00	6.58	13.0	121.0	20.9	2.4	70.8	20.9
WIL (PC)*	-	-	-	-	-	-	-	-	-	_	-	-
WIL (NC)												
	230.0	411.0	313.2	6.80	8.30	7.27	10.0	85.0	48.1	0.2	15.2	3.7
WIL (D)												
	248.0	1480.0	493.5	7.30	7.80	7.55	7.0	87.0	46.4	2.2	5.6	3.8
WIL (D2)												
	256.0	650.0	386.8	7.30	7.90	7.53	2.0	83.0	47.7	1.7	31.9	10.3
WOL1												
	336.0	1490.0	872.4	8.10	8.60	8.25	19.0	184.0	97.2	0.9	6.1	2.9
WOL2												
	1800.0	2950.0	2133.6	7.40	8.00	7.82	184.0	440.0	304.2	0.4	21.1	3.2

Notes: mg/L = micrograms per litre. mS/cm= micro Siemens per centimetre. NTU = nephelometric turbidity units. *Dry

SW	EC	(µS/cm)			рН			SO₄ (mg/L)			Turbidity (N	FU)
Monitoring Point	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
CC1	170.0	4470.0	2802.9	7.10	7.90	7.41	28.0	1710.0	978.9	4.6	6270.0	936.0
CC2	3020.0	7540.0	5036.3	7.50	8.00	7.84	920.0	2940.0	1738.8	0.5	26.4	5.0
CC3	80.0	4860.0	2771.7	7.40	8.40	8.18	8.0	1920.0	972.5	0.7	126.0	25.1
WIL (U)	520.0	950.0	632.0	6.20	7.40	6.94	13.0	83.0	36.8	5.8	43.5	21.2
WIL (U2)	440.0	4420.0	2140.0	6.50	7.60	7.04	14.0	102.0	34.8	3.3	153.0	34.8
WIL (PC)	260.0	1340.0	682.0	6.90	7.40	7.16	7.0	48.0	28.6	9.7	64.6	38.3
WIL (NC)	240.0	1650.0	560.8	7.10	7.80	7.39	8.0	265.0	64.5	8.6	201.0	54.2
WIL (D)	580.0	3030.0	1189.2	6.80	8.00	7.46	12.0	603.0	165.5	1.2	39.4	10.0
WIL (D2)	390.0	1840.0	796.1	6.90	8.10	7.50	9.0	466.0	159.1	3.9	323.0	43.8
WOL1	780.0	2220.0	1226.3	7.80	8.30	8.11	104.0	475.0	205.8	1.3	11.2	5.0
WOL2	740.0	3160.0	1693.3	7.20	8.00	7.56	97.0	650.0	303.1	0.9	70.7	15.3
SGC_1*	0	0	0	0	0	0	0	0	0	0	0	0

Summary of 2016 Surface Water Monitoring Results

Notes: mg/L = micrograms per litre. mS/cm= micro Siemens per centimetre. NTU = nephelometric turbidity units. *Dry

SW		EC (µS/cm)			рН		SO₄ (mg/L)				Turbidity (NTU)		
Monitoring Point	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave	
CC1	120.0	4380.0	2316.3	6.60	7.80	7.31	13.0	1660.0	237.7	3.3	13000. 0	3415.4	
CC2	350.0	5970.0	3591.4	7.30	7.90	7.67	1400.0	2290.0	1977.8	0.4	20.8	4.7	
ССЗ	150.0	5130.0	2220.0	7.00	8.40	7.93	17.0	2100.0	946.0	1.2	359.0	93.7	
WIL (U)	1650.0	7550.0	4306.7	4.80	6.80	5.93	38.0	146.0	99.0	7.4	263.0	77.0	
WIL (U2)	790.0	5580.0	3353.8	5.60	7.40	6.71	22.0	118.0	41.9	1.5	158.0	41.9	
WIL (PC)*	1170.0	6100.0	3256.3	6.80	7.90	7.23	3.0	42.0	16.0	1.8	222.0	90.4	
WIL (NC)	410.0	3960.0	1987.1	6.60	7.80	7.31	4.0	106.0	43.0	1.2	1440.0	284.5	
WIL (D)	340.0	5880.0	2713.0	7.10	8.10	7.67	29.0	607.0	253.2	2.6	363.0	63.1	
WIL (D2)	500.0	6520.0	2457.5	7.50	8.20	7.73	16.0	693.0	148.4	7.5	557.0	113.2	
WOL1	160.0	5540.0	2223.0	7.50	8.20	7.96	208.0	956.0	445.8	1.1	61.8	13.3	
WOL2	400.0	5550.0	1830.0	7.30	7.80	7.54	262.0	822.0	532.8	0.6	486.0	53.9	

Summary of 2015 Surface Water Monitoring Results

Notes: mg/L = micrograms per litre. mS/cm= micro Siemens per centimetre. NTU = nephelometric turbidity units.

SW		EC (µS/cm)		рН			SO₄ (mg/L)		Turbidity (NTU)		
Monitoring Point	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
CC1	610.0	5430.0	2055.7	7.10	9.20	8.00	120.0	1880.0	785.0	2.3	352.0	91.3
CC2	160.0	6590.0	4944.0	6.90	7.80	7.44	85.0	2520.0	1733.5	0.2	151.0	16.4
CC3	400.0	5260.0	3522.5	7.60	8.00	7.80	23.0	2100.0	1380.8	1.1	346.0	96.0
WIL (U)	980.0	1540.0	1260.0	6.00	7.10	6.55	70.0	174.0	122.0	3.2	30.0	16.6
WIL (U2)	1340.0	5970.0	2886.0	6.30	7.40	6.78	10.0	110.0	50.1	4.5	290.0	50.1
WIL (PC)	-	-	-	-	-	-	-	-	-	-	-	-
WIL (NC)	310.0	790.0	445.0	7.00	7.40	7.25	6.0	96.0	27.0	1.8	2410.0	664.4
WIL (D)	1520.0	6010.0	3728.3	6.90	8.40	7.68	205.0	1680.0	634.8	1.0	26.8	6.6
WIL (D2)	780.0	7550.0	3756.0	7.00	8.70	8.02	120.0	1670.0	932.4	0.8	42.7	11.7
WOL1	1870.0	3680.0	2582.5	7.00	8.90	8.13	434.0	1120.0	635.6	1.2	18.6	3.8
WOL2	1670.0	4060.0	2779.2	7.20	7.80	7.46	452.0	842.0	589.9	0.6	69.7	16.1

Summary of 2014 Surface Water Monitoring Results

Notes: mg/L = micrograms per litre. mS/cm= micro Siemens per centimetre. NTU = nephelometric turbidity units. * Indicates no sample available during the schedule monitoring programme.

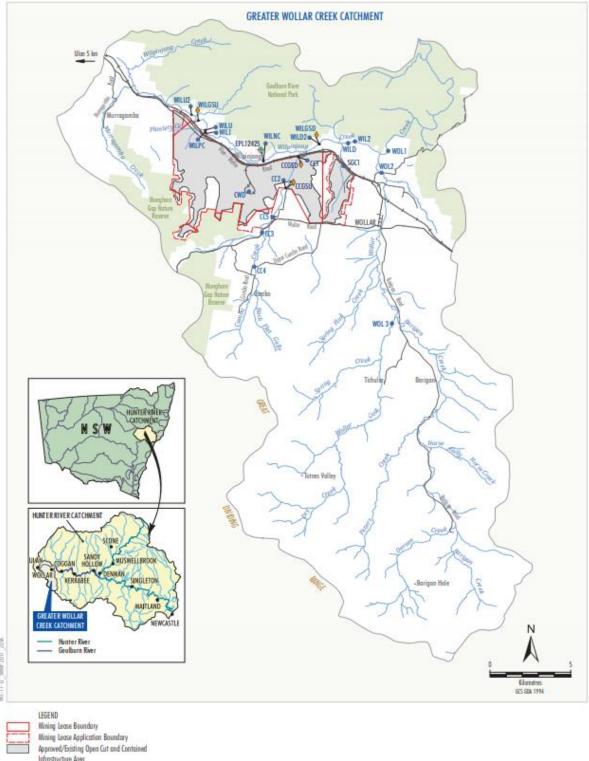
SW	l	EC (µS/cm)		рН			SO₄ (mg/L)		Turbidity (NTU)		
Monitoring Point	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave
CC1	3150.0	5710.0	4568.5	6.9	8.2	7.9	828.0	3160.0	1647.0	0.4	1770	169.6
CC2	4380.0	6070.0	5040.0	7.4	8.1	7.7	1610.0	3110.0	2040.0	0.2	2.6	0.9
ССЗ	225.0	4890.0	3130.6	7.8	8.2	8.0	94.0	2270.0	1454.1	0.8	360.0	59.4
WIL (U)	448.0	1390.0	1065.0	6.5	7.0	6.8	7.0	63.0	38.1	1.5	74.5	26.5
WIL (U2)	413.0	4620.0	2165.5	6.3	7.6	6.7	4.0	89.0	47.4	6.1	473.0	62.8
WIL (PC)	395.0	1730.0	1158.0	6.7	7.1	6.9	31.0	186.0	93.8	5.2	148.0	47.6
WIL (NC)	340.0	930.0	510.0	7.4	7.9	7.7	5.0	140.0	59.6	2.2	4000	941.5
WIL (D)	1656.0	4200.0	2942.6	7.8	8.8	8.1	216.0	822.0	475.2	1.4	59.1	9.3
WIL (D2)	1500.0	4950.0	3051.6	7.8	8.1	7.9	217.0	1360.0	646.7	1.2	21.8	7.0
WOL1	1180.0	2710.0	1982.3	8.1	8.7	8.4	326.0	675.0	464.8	0.6	8.9	3.0
WOL2	1460.0	3150.0	2153.9	7.3	8.3	7.9	286.0	793.0	487.7	0.6	14.9	6.0

Summary of 2013 Surface Water Monitoring Results

				0		
Sample Number	Sample Location	Sampling Date	Electrical Conductivity (Field Reading) µS/cm	pH - Field pH Unit	Sulfate mg/L	Turbidity NTU
ME1800081001	CC_1	17-Jan-2018				
ME1800081002	CC_2	17-Jan-2018				
ME1800081003	CC_3	17-Jan-2018				
ME1800081004	WIL_U	17-Jan-2018				
ME1800081005	WIL_U2	17-Jan-2018	4110	6.1	154	159
ME1800081006	WIL_NC	17-Jan-2018				
ME1800081007	WIL_PC	17-Jan-2018				
ME1800081008	WIL_D	17-Jan-2018	629	7.6	36	4.1
ME1800081009	WIL_D2	17-Jan-2018	569	7.7	37	358
ME1800081010	WOL_1	17-Jan-2018	499	8.4	41	2.2
ME1800081011	WOL_2	17-Jan-2018	2820	7.7	209	2.1
ME1800081012	SGC_1	17-Jan-2018				
ME1800223001	CC_1	14-Feb-2018	476	7.3	66	5520
ME1800223002	CC_2	14-Feb-2018				
ME1800223003	CC_3	14-Feb-2018				
ME1800223004	WIL U	14-Feb-2018				
ME1800223005	WIL U2	14-Feb-2018				
ME1800223006	WIL NC	14-Feb-2018				
ME1800223007	WIL PC	14-Feb-2018				
ME1800223008	WIL D	14-Feb-2018	1500	8	149	27
ME1800223009	WIL D2	14-Feb-2018	1500	0	145	27
ME1800223010	WOL 1	14-Feb-2018				
ME1800223010		14-Feb-2018				
	WOL_2					
ME1800223012	SGC_1	14-Feb-2018	1200	67	204	20
ME1800345001	CC_1	12-Mar-2018	1280	6.7	384	20
ME1800345002	CC_2	12-Mar-2018	6100	7.9	2960	28.8
ME1800345003	CC_3	12-Mar-2018				
ME1800345004	WIL_U	12-Mar-2018				
ME1800345005	WIL_U2	12-Mar-2018	4360	3.5	446	19.3
ME1800345006	WIL_NC	12-Mar-2018				
ME1800345007	WIL_PC	12-Mar-2018				
ME1800345008	WIL_D	12-Mar-2018	2020	6.6	553	4
ME1800345009	WIL_D2	12-Mar-2018				
ME1800345010	WOL_1	12-Mar-2018	1420	8	433	1.5
ME1800345011	WOL_2	12-Mar-2018	2370	7.2	740	3.8
ME1800345012	SGC_1	12-Mar-2018				
ME1800522001	CC_1	19-Apr-2018	308	7	48	1610
ME1800522002	CC_2	19-Apr-2018	364	7.6	67	499
ME1800522003	CC_3	19-Apr-2018	40	7.8	4	141
ME1800522004	WIL_U	19-Apr-2018	4000			4= -
ME1800522005	WIL_U2	19-Apr-2018	4380	5.3	358	45.7
ME1800522006	WIL_NC	19-Apr-2018	345	6.7	80	0.9
ME1800522007 ME1800522008	WIL_PC WIL D	19-Apr-2018 19-Apr-2018	673	5.2	308	1.3
ME1800522008	WIL D2	19-Apr-2018	507	4.2	204	1.5
		10.1010		··· -		

2018 Results for Surface Water Monitoring

Sample Number	Sample Location	Sampling Date	Electrical Conductivity (Field Reading) µS/cm	pH - Field pH Unit	Sulfate mg/L	Turbidity NTU
ME1800522010	WOL 1	19-Apr-2018	1170	7.8	494	1.9
ME1800522011	WOL 2	19-Apr-2018	2850	7.3	570	4
ME1800522012	SGC 1	19-Apr-2018				
ME1800666001	CC 1	17-May-2018				
ME1800666002	CC 2	, 17-May-2018	6950	7.9	2280	1.7
ME1800666003	CC 3	, 17-May-2018				
ME1800666004	WIL U	, 17-May-2018				
ME1800666005	WIL U2	17-May-2018	3910	5.7	103	5.1
ME1800666006	WIL NC	, 17-May-2018	383	7	82	0.9
ME1800666007	WIL PC	, 17-May-2018				
ME1800666008	WIL D	17-May-2018	442	6	129	9.6
ME1800666009	WIL D2	, 17-May-2018	405	4.7	127	5
ME1800666010	WOL 1	17-May-2018	497	7.2	147	4.9
ME1800666011	WOL 2	17-May-2018	1730	7	292	3.8
ME1800666012	SGC 1	, 17-May-2018				
ME1800785001	CC 1	14-Jun-2018	401	7.1	48	372
ME1800785002	CC 2	14-Jun-2018	7150	7.9	2620	1.4
ME1800785003	CC 3	14-Jun-2018				
ME1800785004	WIL U	14-Jun-2018				
ME1800785005	WIL U2	14-Jun-2018	3250	7.4	151	21.4
ME1800785006	WIL NC	14-Jun-2018	360	7.5	100	0.7
ME1800785007	WIL_PC	14-Jun-2018				
ME1800785008	WIL_D	14-Jun-2018	377	7	102	32.9
ME1800785009	WIL_D2	14-Jun-2018	325	7.1	92	9.5
ME1800785010	WOL_1	14-Jun-2018	425	7.9	117	11.1
ME1800785011	WOL_2	14-Jun-2018	2580	7.1	417	2.4
ME1800785012	SGC_1	14-Jun-2018				
ME1800952001	CC_1	18-Jul-2018				
ME1800952002	CC_2	18-Jul-2018	6820	8.1	2620	1.6
ME1800952003	CC_3	18-Jul-2018				
ME1800952004	WIL_U	18-Jul-2018				
ME1800952005	WIL_U2	18-Jul-2018	3190	5.9	159	13.4
ME1800952006	WIL_NC	18-Jul-2018	262	7.4	54	2.8
ME1800952007	WIL_PC	18-Jul-2018				
ME1800952008	WIL_D	18-Jul-2018	388	7.1	90	36.6
ME1800952009	WIL_D2	18-Jul-2018	361	7.4	96	33.4
ME1800952010	WOL_1	18-Jul-2018	1360	8.1	326	9.6
ME1800952011	WOL_2	18-Jul-2018	2570	7.9	645	1
ME1800952012	SGC_1	18-Jul-2018				
ME1801045001	CC_1	08-Aug-2018	380	7.6	86	277
ME1801045002	CC_2	08-Aug-2018	6930	8.1	2400	4.6
ME1801045003	CC_3	08-Aug-2018				
ME1801045004	WIL_U	08-Aug-2018	2012	<u> </u>	467	42.5
ME1801045005	WIL_U2	08-Aug-2018	3010	6.4	127	12.1
ME1801045006	WIL_NC	08-Aug-2018	301	7.5	54	1.1
ME1801045007	WIL_PC	08-Aug-2018	275	74	<u> </u>	44.0
ME1801045008	WIL_D	08-Aug-2018	375	7.1	69	44.8
ME1801045009	WIL_D2	08-Aug-2018	336	7.6	57	26.3
ME1801045010	WOL_1	08-Aug-2018	1560 2360	8.1 7.9	390 526	11.3 1.3
ME1801045011 ME1801045012	WOL_2 SGC 1	08-Aug-2018	2000	1.3	520	1.3
IVIL 1001043012	300_1	08-Aug-2018				



Sample Number	Sample Location	Sampling Date	Electrical Conductivity (Field Reading) µS/cm	pH - Field pH Unit	Sulfate mg/L	Turbidity NTU
ME1801229001	CC 1	18-Sep-2018	441	7.6	33	375
ME1801229002	CC 2	18-Sep-2018	6600	8	2410	5
ME1801229003	CC 3	18-Sep-2018		-		
ME1801229004	WIL U	18-Sep-2018				
ME1801229005	WIL U2	18-Sep-2018	2960	6.2	140	29.2
ME1801229006	WIL NC	18-Sep-2018	239	7.5	41	1.6
ME1801229007	WIL PC	18-Sep-2018				
ME1801229008	WIL D	18-Sep-2018	414	7.4	42	31.4
ME1801229009	WIL D2	18-Sep-2018	355	7.7	52	48.4
ME1801229010	WOL_1	18-Sep-2018	1560	8.2	287	4.7
ME1801229010	WOL 2	18-Sep-2018	2110	7.8	422	3.8
ME1801229011 ME1801229012	SGC 1	18-Sep-2018	2110	7.0	722	5.0
ME1801371001	CC 1	17-Oct-2018	528	7.4	41	493
ME1801371001 ME1801371002	CC 2	17-Oct-2018	6730	8	2530	11.7
ME1801371002	CC 3	17-Oct-2018	0730	0	2550	11.7
ME1801371003	WIL U	17-Oct-2018				
ME1801371004	WIL U2	17-Oct-2018	3270	6.6	80	84.8
ME1801371005	WIL_02	17-Oct-2018	292	7.5	48	0.4
			292	7.5	40	0.4
ME1801371007 ME1801371008	WIL_PC WIL D	17-Oct-2018 17-Oct-2018	452	74	30	28.1
	WIL_D			7.4	30 41	28.1 83.7
ME1801371009		17-Oct-2018	383	7.7		
ME1801371010	WOL_1	17-Oct-2018	2150	8.2	389	19.6
ME1801371011	WOL_2	17-Oct-2018	2220	7.7	397	2.5
ME1801371012	SGC_1	17-Oct-2018	202	7.0	22	4270
ME1801504001	CC_1	14-Nov-2018	383	7.2	33	1370
ME1801504002	CC_2	14-Nov-2018	7570	8.1	2910	14.3
ME1801504003	CC_3	14-Nov-2018				
ME1801504004	WIL_U	14-Nov-2018	2622	6.4		457
ME1801504005	WIL_U2	14-Nov-2018	3630	6.4	80	157
ME1801504006	WIL_NC	14-Nov-2018	371	7.1	71	2.6
ME1801504007	WIL_PC	14-Nov-2018			• •	
ME1801504008	WIL_D	14-Nov-2018	488	7.4	20	23.8
ME1801504009	WIL_D2	14-Nov-2018	386	7.8	33	81
ME1801504010	WOL_1	14-Nov-2018	1960	8.2	317	1
ME1801504011	WOL_2	14-Nov-2018	2500	7.4	413	5.9
ME1801504012	SGC_1	14-Nov-2018				
ME1801638001	CC_1	13-Dec-2018	228	7.2	19	1860
ME1801638002	CC_2	13-Dec-2018	7410	7.6	3000	2.4
ME1801638003	CC_3	13-Dec-2018				
ME1801638004	WIL_U	13-Dec-2018				
ME1801638005	WIL_U2	13-Dec-2018	1790	6.8	100	96.1
ME1801638006	WIL_NC	13-Dec-2018				
ME1801638007	WIL_PC	13-Dec-2018				
ME1801638008	WIL_D	13-Dec-2018	278	6.2	88	288
ME1801638009	WIL_D2	13-Dec-2018	236	6.5	70	396
ME1801638010	WOL_1	13-Dec-2018	242	7.5	43	371
ME1801638011	WOL_2	13-Dec-2018	2340	7.6	294	36.2

Sample Number	Sample Location	Sampling Date	Electrical Conductivity (Field Reading) μS/cm	pH - Field pH Unit	Sulfate mg/L	Turbidity NTU
ME1801638012	SGC_1	13-Dec-2018				

Surface Water Monitoring Locations

MOT 900F 2001 11-11-TM

> Approved/Existing Open Cut and Contained Infrastructure Area WCPL Monitoring Surface Water Monitoring Site WCPL Gouging Station 0 EPL 12425 Licensed Discharge and Monitoring Point

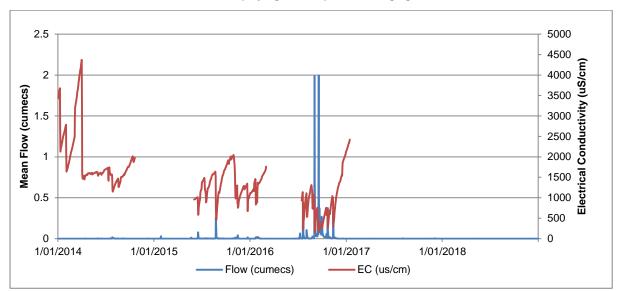
Source: WCPL (2017); After DIPNR (2003); DPI Water (2015); NSW Lord & Property Information (2013)

Peabody

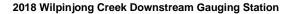
WILPINJONG COAL MINE Wilpinjong Coal Mine Surface Water Monitoring Network

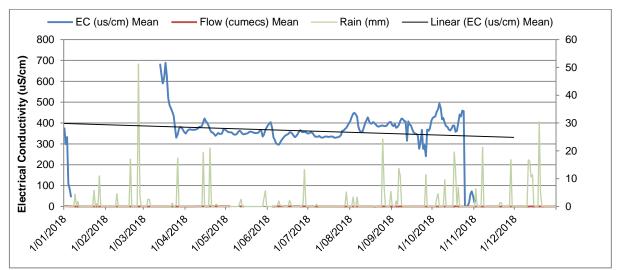
Figure 3

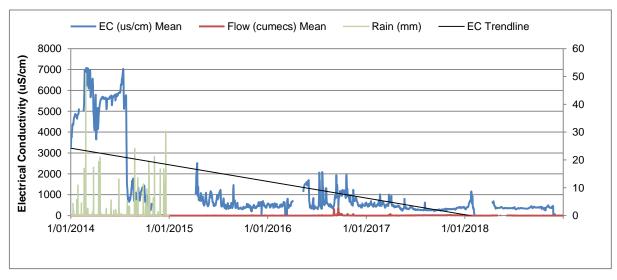
Channel Stability & Stream Health Monitoring Locations



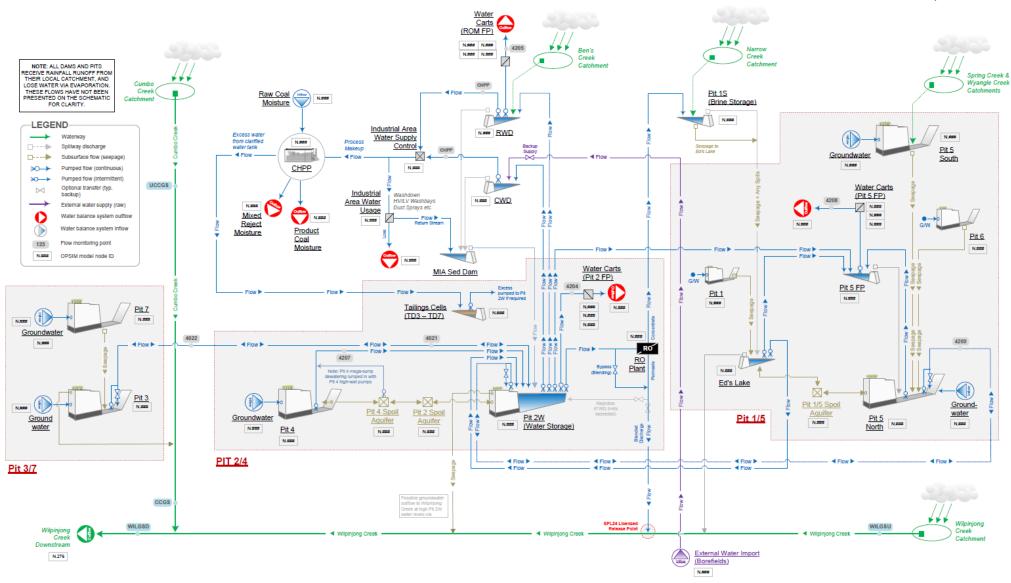
Peabo WILPINJONG COAL MIN


Channel Stability and Stream Health Monitoring Locations


Figure 5



2014-2018 Wilpinjong Creek Upstream Gauging Station



2014-2018 Wilpinjong Creek Downstream Gauging Station

Peabody

OPSIM Schematic: Major Components of the WCPL Water Management System

Wilpinjong Coal Pty Ltd - 2016 Water Balance Model Update Baseline OPSIM Model Setup - 31 Mar 2017

Water Management Performance Measures

A summary of the water management performance measures was undertaken by WCPL as they related to the Development Consent SSD-6764 (1 January 2018 to 31 December 2018)

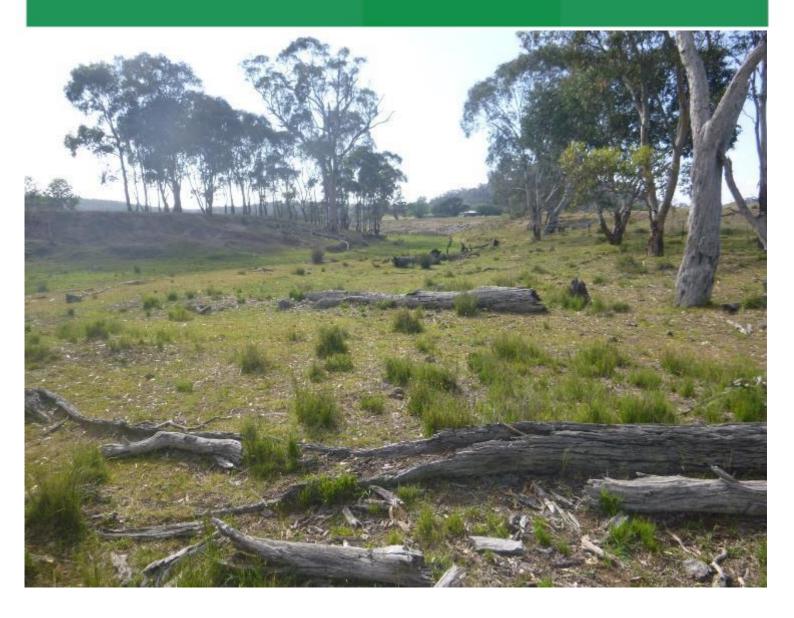
Feature	Performance Measure	Complied with Performance Measure (Yes/No)	Comments/Actions
General	Maintain separation between clean, dirty and mine water management systems. Minimise the use of clean water on site. Design, install, operation and maintain water management systems in a proper and efficient manager.	Yes	Refer to Site Water Balance (Section 7.7) Refer to Estimate Groundwater Take (Section 7.2) Refer to Surface Water Results (Section 7.6)
Clean water diversion and storage infrastructure	Maximise as far as reasonable and feasible the diversion of clean water around disturbed areas on site.	Yes	Refer to Erosion and Sediment Control (Section 7.5)
Sediment dams	Design, install and/or maintain sediment dams to ensure no discharges to surface waters, except in accordance with an EPL or in accordance with Section 120 of the POEO Act.	Yes	Refer to Erosion and Sediment Control (Section 7.5) Refer to Water Treatment Facility (Section 7.8)
Mine water storages	Design, install and/or maintain mine water storage infrastructure to ensure no discharge of untreated mine water off-site. Discharge treated mine water in accordance with an EPL or in accordance with Section 120 of the POEO Act.	Yes	Refer to Site Water Balance (Section 7.7) Refer to Surface Water Results (Section 7.6) Refer to Water Treatment Facility (Section 7.8)
Wilpinjong, Cumbo and Wollar Creeks	No greater impact than predicted for the development for water flow and quality.	Yes	Refer to Surface Water Results (Section 7.6) Refer to Stream Health (Section 7.9)

Assessment of Water Management Performance Measures

Feature	Performance Measure	Complied with Performance Measure (Yes/No)	Comments/Actions
Aquatic, riparian and groundwater dependent ecosystems	Negligible environmental consequences beyond those predicted for the development.	Yes	Refer to Surface Water Results (Section 7.6) Refer to Stream Health (Section 7.9)
Flood mitigation measures*	Ensure all open cut pits, CHPP, coal stockpiles and main mine facilities areas exclude flows for all flood events up to and including the 1 in 100 year ARI. All final voids designed to exclude all flood events up to include the PMF event.	Yes	The Wilpinjong Coal Mine open cuts are located outside the extent of flooding from Wilpinjong Creek in the 1 in 1,000 AEP design flood. Flood mitigation works for open cut infrastructure in the vicinity of Cumbo Creek are already being implemented at the Wilpinjong Coal Mine and have been designed to a 1 in 100 AEP flood protection (WRM Water and Environment, 2015).
Overburden, CHPP Reject and Tailings	Design, install and maintain emplacements to prevent or minimise the migration of pollutants due to seepage.	Yes	Waste rock emplacements and coal reject management in accordance with the MOP
Chemical and hydrocarbon storage	Chemical and hydrocarbon products to be stored in bunded areas or structures in accordance with relevant Australian Standards.	Yes	Chemical and hydrocarbon products stored in bunded areas in accordance with relevant Australian Standards

Notes:* Consistent with Condition 29, Schedule 3 of Development Consent (SSD-6764), WCPL have maintained all open cut pits, CHPP, coal stockpiles and main mine facilities areas so that they exclude flows for all flood events up to and including the 1 in 100 year ARI. The final voids would be designed to exclude all flood events up to the probable maximum flood.

Creek Stability Monitoring Reports



Wilpinjong Coal Mine

2018 Channel Stability Monitoring Report

Prepared for Wilpinjong Coal Pty Ltd

30 March 2019

DOCUMENT TRACKING

Item	Detail							
Project Name	VCPL Channel Stability Monitoring							
Project Number	18MUD-9579							
Project Manager	Kalya Abbey Mudgee Office 02 4302 1238 / 0410 503 959 / kalyaa@ecoaus.com.au							
Prepared by	Angelina Siegrist and Tom Kelly							
Reviewed by	Mark Southwell, Kalya Abbey							
Approved by	Daniel Magdi							
Status	Draft							
Version Number	V1							
Last saved on	30 March 2019							
Cover photo	Site WCk39 (credit: T. Kelly)							

This report should be cited as 'Eco Logical Australia 2019. *Wilpinjong Coal Mine – 2018 Channel Stability Monitoring Report*. Prepared for Wilpinjong Coal Pty Ltd.'

ACKNOWLEDGEMENTS

This document has been prepared by Eco Logical Australia Pty Ltd with support from Wilpinjong Coal Pty Ltd.

Disclaimer

This document may only be used for the purpose for which it was commissioned and in accordance with the contract between Eco Logical Australia Pty Ltd and Wilpinjong Coal Pty Ltd. The scope of services was defined in consultation with Wilpinjong Coal Pty Ltd, by time and budgetary constraints imposed by the client, and the availability of reports and other data on the subject area. Changes to available information, legislation and schedules are made on an ongoing basis and readers should obtain up to date information.

Eco Logical Australia Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report and its supporting material by any third party. Information provided is not intended to be a substitute for site specific assessment or legal advice in relation to any matter. Unauthorised use of this report in any form is prohibited.

Contents

Summ	ary of key findings	vi
1	Introduction	1
1.1	Background	1
1.2	Objectives	1
2	Methodology	2
2.1	Field survey - stability & comparative assessment	2
2.2	Rainfall and flood analysis	3
3	Results	6
4	Discussion and Recommendations	23
4.1	Multi-year comparisons	23
4.1.1	Site stability scores	24
4.1.2	Photographic comparisons	26
4.2	Erosion points	26
4.3	Revegetation and remediation	31
4.4	Exclusion of livestock	32
5	Conclusion	34
6	References	35
Appen	dix A : BEHI Assessment Scoring	36
Appen	dix B : Site Photo Comparisons	37
Appen	dix C : Monthly Rainfall Data	67

List of figures

Figure 2-1: Monitoring locations	4
Figure 2-2: Active erosion points assessed in 2018	5
Figure 3-1: Management Issues and Threatened Species	22
Figure 4-1: Effects of stock access in the riparian zone (left-hand side of the fence line), contrasted vithe results of stock exclusion (right-hand side of the fence line)	

List of tables

Table 2-1: BEHI score ranges for each rating class2
Table 3-1: Bank Erosion Hazard Index (BEHI) for Wilpinjong Creek6
Table 3-2: Bank Erosion Hazard Index (BEHI) for Cumbo Creek8
Table 3-3: 2018 monitoring site descriptions, including comparisons to 2017 results – Wilpinjong Creek and Cumbo Creek 10
Table 4-1: Wilpinjong Creek site stability scores 2016 – 2018 comparison24
Table 4-2: Cumbo Creek site stability score 2017 – 2018 comparison
Table 4-3: Significant erosion points and suggested remediation works 27
Table 4-4: Suggested native tree and shrub species for revegetation works 31
Table 6-1: Monthly rainfall from 2014 - 2017 (mm)67

Abbreviations

Abbreviation	Description						
BEHI	Bank Erosion Hazard Index						
ELA	co Logical Australia						
ML	Mining Lease						
SWMMP	Surface Water Management and Monitoring Plan						
WCPL	Wilpinjong Coal Pty Ltd						

Summary of key findings

Channel stability monitoring was undertaken during spring 2018 to provide an assessment of overall riparian stability and health within the Wilpinjong Mine and surrounds. Fifty-nine (59) permanent survey sites were monitored along Wilpinjong and Cumbo Creeks. Monitoring assessed channel stability indicators including bank height and angle, streambank protection and riparian vegetation cover. Channel Stability ratings at monitoring sites along Wilpinjong Creek ranged from Moderately Unstable to Highly Stable, and Stable to Highly Stable along Cumbo Creek.

Comparison of monitoring data from 2016 to 2018 found that the stability rating has either improved or remained constant for most monitoring sites (53 of 59) across both Wilpinjong and Cumbo Creeks. This reflects the overall stable nature of both creeks in what has been a prolonged dry period, despite no management intervention.

Channel stability issues evident within Wilpinjong and Cumbo Creeks relate to agricultural practices, including vegetation clearing and stock access to the riparian zone.

Revegetation and remediation works are recommended in order to restore degraded sections of the channels, to mitigate further erosion and promote regeneration of the riparian zone. Areas experiencing lateral erosion, including the established erosion points, should be prioritised for vegetation works.

1 Introduction

Eco Logical Australia (ELA) was engaged by Wilpinjong Coal Pty Ltd (WCPL) to undertake annual monitoring of channel stability along Wilpinjong and Cumbo Creeks. Channel stability monitoring is required to satisfy Schedule 3, Condition 32 (e) of WCPL's Project Approval (05-0021), and the channel stability monitoring criteria detailed in Appendix 2 of the Wilpinjong Water Management Plan (WCPL 2017).

This report details the findings from the 2018 monitoring program and provides a comparison of the regeneration progress of both Wilpinjong and Cumbo Creeks against previous monitoring conducted since 2011.

1.1 Background

A baseline channel stability assessment of Wilpinjong and Cumbo Creeks was undertaken in 2005 as part of the Environmental Impact Statement for the Wilpinjong Coal Project (WCPL 2005) to characterise the existing condition of the Wilpinjong and Cumbo creek stream channels prior to mining. The Wilpinjong Creek survey included 49 sites and extended 12.5 km from the upstream gauging station to the confluence with Wollar Creek to the east. The Cumbo Creek survey included 10 sites and extended 3 km from the southern boundary of Mining Lease (ML) 1573 north to the confluence with Wilpinjong Creek.

The baseline surveys concluded both Wilpinjong and Cumbo Creeks have been affected by pre-mining land management practices dominated by sheep and cattle grazing. These land management practices involved the clearing of riparian vegetation on both creeks to maximize grazing areas and stock access to drinking water. The clearing of this vegetation is assumed to have contributed significantly to bank instability. Disturbance from burrowing animals, both native (e.g. Common Wombat) and introduced (e.g. European Rabbit), is also likely to have contributed to instability.

Subsequent annual surveys have been undertaken in 2011, 2014, 2015, 2016 and 2017 to assess the ongoing stability of the Wilpinjong and Cumbo Creeks during mining. Barnson (2017) developed a proforma to assist in the assessment of creek stability at each survey location and to enable comparisons to be made between annual survey periods.

1.2 Objectives

The channel stability monitoring program aims to provide qualitative measures of stream bed and bank erosion and channel instability along Wilpinjong and Cumbo Creeks.

The key objectives of the 2018 channel stability monitoring program are to:

- Evaluate erosional or depositional features of the creek banks
- Record the details of permanent monitoring sites with written descriptions and photographs
- Assess the stability of Wilpinjong and Cumbo Creeks using a rapid assessment methodology
- Compare visual channel stability at each of the permanent monitoring sites against previous monitoring records.

2 Methodology

2.1 Field survey - stability & comparative assessment

The field survey was conducted by ELA ecologists Tom Kelly and Elise Keane between 27 and 30 November 2018.

A total of 59 (49 on Wilpinjong Creek and 10 on Cumbo Creek) permanent monitoring locations were surveyed (Figure 2-1). Consistent with previous monitoring, surveys involved surveying the designated reach of each site (approximately 100 m) and completing the Bank Erosion Hazard Index (BEHI) assessment. BEHI assessment involves scoring a site on eight quantitative categories outlined below and in **Appendix A**.

The eight BEHI indicators of channel stability that were used to evaluate erosion at each site include:

- Bank Height (m)
- Bank Angle (°)
- Percentage of Bank Height with a Bank Angle Greater than 80°
- Evidence of Mass Wasting (% of Bank)
- Unconsolidated Material (% of Bank)
- Streambank Protection (% of Streambank covered by plant roots, vegetation, logs, branches, rocks etc.)
- Established Beneficial Riparian Woody Vegetation Cover
- Stream Curvature Descriptor.

The channel stability indicators produce an activity rating that classifies each location from 'Highly Unstable', indicating the drainage line is experiencing severe on-going erosion, to 'Highly Stable', indicating the drainage line is highly stable in function and form. This rating system enables any deterioration or improvement in bank stability to be detected over time. The classification system is detailed below in Table 2-1.

Rating	BEHI Score					
Highly Stable	0-25					
Mod Stable	26-35					
Stable	36-45					
Unstable	46-55					
Mod Unstable	56-65					
Highly Unstable	66-85					

Table 2-1: BEHI score ranges for each rating class

Field notes and photographs were taken to allow qualitative assessment through comparisons between monitoring periods. This process included written site descriptions using the previous monitoring report (ELA 2018) to make comparisons *in situ*, as well as taking upstream and downstream photographs at each of the permanent monitoring sites. Site descriptions are provided in **Section 3** and copies of site photos are provided in **Appendix B.** Comparison of the 2018 monitoring sites to 2011 – 2017 monitoring photographs has been made by referring to previous reports prepared by Barnson (2017) and ELA (2018).

Previously established erosion points along the Wilpinjong Creek were also assessed (**Figure 2-2**). These are in areas with moderate to severe erosion and are monitored to determine the presence and extent of on-going erosion.

Management issues and threatened species are recorded opportunistically throughout the surveys, to highlight areas where management intervention is needed.

2.2 Rainfall and flood analysis

Previous WCPL channel stability monitoring reports have included an analysis of rainfall Intensity-Frequency-Duration (IFD) and exceedance likelihood, with its effect on erosion (Barnson 2017). Consistent with 2017 monitoring, it was determined that due to below average annual rainfall received during 2018 and the absence of significant erosion events at the monitoring sites, IFD and exceedance analysis would not be conducted for the purposes of this report. Rainfall data is included in **Appendix C**.

Figure 2-1: Monitoring locations

Figure 2-2: Active erosion points assessed in 2018

3 Results

The results of the channel stability monitoring are presented below in Table 3-1 and **Table 3-2**. Site descriptions and comparison notes can be found in **Table 3-3**.

	Bank	Bank	Bank	BEHI Indicator									
Site	(L/R)	Height (m)	Face Length	1	2	3	4	5	6	7	8	Total	Rating
WCk1	L	4	10	5	2	5	0	2.5	7.5	7.5	5	34.5	Mod Stable
WCk2	R	3.5	9	5	2	5	2.5	2.5	2.5	10	0	34.5	Mod Stable
WCk3	L	3	12	5	2	2.5	5	7.5	10	12.5	5	49.5	Unstable
WCk4	L	3.5	7	5	4	7.5	7.5	7.5	12.5	12.5	0	56.5	Mod Unstable
WCk5	L	3	7	5	2	2.5	2.5	5	7.5	7.5	0	32	Mod Stable
WCk6	L	3	6	2.5	2	2.5	2.5	2.5	2.5	7.5	2.5	24.5	Highly Stable
WCk7	L	2.5	6	2.5	2	2.5	2.5	2.5	2.5	7.5	0	22	Highly Stable
WCk8	L	5	12	7.5	2	0	2.5	5	7.5	15	2.5	42	Stable
WCk9	R	2	9	2.5	2	7.5	5	5	2.5	15	2.5	42	Stable
WCk10	R	1.5	15	2.5	0	0	0	5	7.5	15	2.5	32.5	Mod Stable
WCk11	R	1.5	18	0	0	0	0	2.5	7.5	10	2.5	22.5	Highly Stable
WCk12	R	2	12	2.5	2	0	0	0	2.55	12.5	5	24.5	Highly Stable
WCk13	L	4	8	5	4	0	2.5	5	7.5	10	5	39	Stable
WCk14	L	1.8	7	2.5	2	0	0	2.5	2.5	12.5	0	22	Highly Stable

Table 3-1: Bank Erosion Hazard Index (BEHI) for Wilpinjong Creek.

Site	Bank	Bank	Bank		BEHI Indicator								Rating
WCk15	L	1.8	6	2.5	2	2.5	2.5	2.5	10	10	2.5	34.5	Mod Stable
WCk16	L	2	7	2.5	2	5	2.5	7.5	7.5	7.5	0	34.5	Mod Stable
WCk17	R	1.8	4	2.5	2	0	0	2.5	2.5	15	2.5	27	Mod Stable
WCk18	R	2.5	5	2.5	2	5	2.5	2.5	7.5	15	2.5	39.5	Stable
WCk19	L	2	4	2.5	2	5	5	5	7.5	15	0	42	Stable
WCk20	L	1.8	5	2.5	2	2.5	2.5	2.5	2.5	12.5	0	27	Mod Stable
WCk21	R	1.3	5	0	2	2.5	2.5	2.5	2.5	15	2.5	29.5	Mod Stable
WCk22	R	1.6	8	2.5	2	0	2.5	5	10	12.5	2.5	37	Stable
WCk23	R	2.5	12	2.5	2	0	0	7.5	10	15	5	42	Stable
WCk24	R	1.7	10	2.5	0	2.5	5	10	12.5	15	2.5	50	Unstable
WCk25	L	1.7	7	2.5	2	2.5	7.5	5	10	15	2.5	47	Unstable
WCk26	L	3.5	10	5	2	7.5	5	7.5	10	15	2.5	54.4	Unstable
WCk27	R	2.8	5	2.5	6	7.5	5	7.5	10	15	2.5	56	Mod Unstable
WCk28	L	2.5	5	2.5	2	5	5	5	7.5	12.5	2.5	42	Stable
WCk29	L	3.6	8	5	2	5	5	2.5	7.5	15	2.5	44.5	Stable
WCk30	R	2.8	12	2.5	2	0	2.5	2.5	0	12.5	2.5	24.5	Highly Stable
WCk31	R	3	6	2.5	4	5	5	7.5	10	15	2.5	51.5	Unstable
WCk32	R	3.2	7	5	4	7.5	5	7.5	10	15	2.5	56.5	Mod Unstable

Site	Bank	Bank	Bank				BEHI Ir	ndicato	r			Total	Rating
WCk33	L	3.2	6	5	4	7.5	5	7.5	10	10	5	54	Unstable
WCk34	R	2.4	6	2.5	4	5	5	7.5	7.5	15	5	51.5	Unstable
WCk35	R	2.2	13	2.5	2	0	2.5	5	7.5	15	2.5	37	Stable
WCk36	R	2	15	2.5	2	0	2.5	2.5	2.5	15	2.5	29.5	Mod Stable
WCk37	R	2	10	2.5	2	2.5	2.5	7.5	10	15	2.5	44.5	Stable
WCk38	L	3.1	6	5	2	2.5	2.5	5	7.5	10	5	39.5	Stable
WCk39	L	3.2	7	5	4	2.5	5	10	10	15	2.5	54	Unstable
WCk40	R	3.2	14	5	2	0	5	10	12.5	15	0	49.5	Unstable
WCk41	R	2.8	8	2.5	2	2.5	2.5	2.5	7.5	15	0	34.5	Mod Stable
WCk42	R	3.8	6	5	4	5	7.5	10	10	12.5	2.5	56.5	Mod Unstable
WCk43	L	3.1	5	5	4	7.5	2.5	5	7.5	15	2.5	49	Unstable
WCk44	R	1.7	3	2.5	2	2.5	2.5	5	2.5	15	2.5	34.5	Mod Stable
WCk45	L	3.2	7	5	2	2.5	5	5	7.5	7.5	5	39.5	Stable
WCk46	R	2.2	5	2.5	4	5	2.5	5	2.5	10	2.5	34	Mod Stable
WCk47	R	2.2	6	2.5	2	2.5	5	5	7.5	12.5	0	37	Stable
WCk48	L	2.7	8	2.5	2	2.5	5	5	7.5	12.5	2.5	39.5	Stable
WCk49	L	3.8	10	5	4	2.5	2.5	7.5	7.5	12.5	2.5	44	Stable

Table 3-2: Bank Erosion Hazard Index (BEHI) for Cumbo Creek.

	Bank	Bank	Bank		BEHI Indicator								
Site	(L/R)	Height (m)	Face Length	1	2	3	4	5	6	7	8	Total	Total Rating
CCk1	R	1.8	10	2.5	0	0	0	0	2.5	15	0	20	Highly Stable
CCk2	R	1.3	8	0	2	2.5	5	5	7.5	15	5	42	Stable
CCk3	L	0.4	2	0	0	0	0	0	0	15	2.5	17.5	Highly Stable
CCk4	R	1	13	0	0	0	0	0	2.5	15	2.5	20	Highly Stable
CCk5	R	1	8	0	0	0	0	5	2.5	15	2.5	25	Highly Stable
CCk6	R	1.8	10	2.5	2	0	2.5	2.5	2.5	15	2.5	29.5	Mod Stable
CCk7	R	0.5	2	0	2	2.5	0	0	0	15	2.5	22	Highly Stable
CCk8	L	2	15	2.5	0	0	0	0	0	15	2.5	20	Highly Stable
CCk9	L	0.7	2	0	2	2.5	2.5	0	0	15	2.5	24.5	Highly Stable
CCk10	L	0.7	4	0	2	2.5	2.5	0	0	15	2.5	24.5	Highly Stable

Site	Upstream	Downstream
WCk1	 Increased cover of <i>Phragmites australis</i> (Common Reed) and <i>Chloris truncata</i> (Windmill Grass) in channel bed compared to 2017 Stream bed still bare directly adjacent to weir Localised erosion along stock tracks Sandstone bedrock exposed 	 Abundant Angophora floribunda (Rough-barked Apple) regeneration on left bank No apparent recent stock access Instream vegetation has increased compared to 2017 Bedrock exposed in creek bed Rosa rubiginosa (Sweet Briar) present on left bank
WCk2	 Reasonable vegetation cover, native and exotic grasses and herbs still dominant, but <i>Phragmites australis</i> growing back Localised erosion along stock tracks 	 Vegetation cover is moderate, with no recent signs of active grazing High leaf litter cover Rubus fruticosus (Blackberry) has died off
WCk3	 Short vegetation cover of native and exotic grasses and herbs Localised erosion along stock tracks 	 Good instream cover of native and exotic grasses and herbs Left bank active lateral erosion Low vegetation cover on left bank and exposed bedrock
WCk4	 Short vegetation cover of native and exotic grasses and herbs on channel bed Right bank stable except for stock tracks Left bank unstable, significant bank collapse and under-cutting 	 Left bank collapse and erosion, with low vegetation cover Stock tracks causing erosion on right bank near fence No signs of recent stock access Good vegetation cover in channel bed
WCk5	 Eucalypt natural regeneration in the channel bed <i>Phragmites australis</i> re-growth evident Wombat burrows on right bank down to channel bed Stock track erosion on both banks Active gully cutting on left bank 	 Good cover of vegetation and logs on right bank Left bank has reasonable cover of grass/herbs/shrubs <i>Phragmites australis</i> re-growth evident, high cover in channel bed

Site	Upstream	Downstream
WCk6	 Stock tracks on both banks <i>Gahnia aspera</i> (Rough Saw-sedge) and native shrubs growing on left bank Fallen trees into channel bed Good litter cover in creek bed 	 Wombat burrow on right bank Small amount of Blackberry present on right bank, dying off on left bank Good canopy regeneration on both banks Good cover of leaf litter Some re-growth of <i>Phragmites australis</i> on channel bed
WCk7	 Wombat burrows in right bank <i>Phragmites australis</i> re-growth evident, high cover in channel bed Good cover of vegetation and debris on both banks 	 Good Large Woody Debris (LWD) cover on right bank Good vegetation growth on both banks and channel bed <i>Phragmites australis</i> re-growth evident
WCk8	 Original site surveyed Good vegetation cover on both banks and some of channel bed Bare section in channel veg filled with debris Wombat burrows on both banks Some debris accumulation in channel 	 Original site surveyed Animal tracks, wombat burrows on left-hand bank and bare patches on steep banks Parts of channel bed bare Good vegetation cover on right bank
WCk9	 Original site surveyed Good vegetation cover in channel bed Left bank vegetation cover is sparse Right bank steep and bare, with some erosion 	 Assessed at old site Steep eroded banks on right bank High cover of <i>Phragmites australis</i> in channel Rabbit and Wombat burrows on left bank
WCk10	 Banks well vegetated with grasses, herbs and rushes Wombat burrows in left bank Large bare patch in channel bed 	 Site is at creek crossing Sparse vegetation cover in channel, large bare patch, leading to high vegetation cover patch Bare soil on steep sections of right bank where erosion is Left bank is stable

Site	Upstream	Downstream
WCk11	 Increased Wombat activity on bench of right bank compared to 2017 Generally good vegetation cover in channel bed Good litter cover in channel bed 	- Reasonably well-vegetated - Wombat burrows on right bank bench
WCk12	 Good vegetation cover on banks Some minor <i>Casuarina cunninghamiana</i> (River Sheoak) regrowth on left bank Wombat holes on left-hand bank Blackberry noted along left-hand bank 	 Good vegetation cover on right bank, moderate vegetation cover on left bank LWD, litter and wombat burrows on right-hand bank bench
WCk13	 Wombat burrows noted on left bank Some bare exposed areas on left bank in steep sections Blackberry present 	 Some undercutting on left bank downstream of reach Left bank steep and bare Sand and gravel in channel bed Pig digging evident on left bank
WCk14	 Wombat burrows in right bank Pig digging in channel Very little vegetation cover in channel bed Some debris in channel 	 Wombat burrows on both banks Pig digging in channel bed Good vegetation cover of native and exotic grasses and herbs on both banks Very little vegetation cover in channel bed
WCk15	 Wombat burrows in both banks Good vegetation cover on right bank, moderate on left bank Some older erosion on left bank Some leaf litter accumulation in channel 	 Good vegetation growth on right bank, moderate on left bank LWD on left bank Some <i>Phragmites australis</i> re-growth in channel bed
WCk16	 Sand/gravel accumulation in channel Wombat holes in channel bed Good vegetation cover on right bank Left bank steep and bare 	 Sand/gravel deposits in channel Right bank has good vegetation cover with good cover of <i>Phragmites australis</i> Left bank very little vegetation cover LWD on right bank and in channel bed

Site	Upstream	Downstream
WCk17	 Well vegetated banks and channel bed with <i>Phragmites australis</i> Sand/gravel accumulations in channel with some iron staining Animal tracks present Wombat burrows in both banks 	 Thick covering of <i>Phragmites australis</i> in channel bed and on bank Animal tracks crossing the creek Sand/gravel substrate in channel
WCk18	 Wombat burrows in both banks Reasonably good vegetation cover of grasses/ruches in channel and on banks Animal tracks across channel beds 	 Wombat burrows in both banks Current erosion on right Good vegetation cover inn channel bed, with thick <i>Phragmites australis</i> Sand and gravel substrate in channel
WCk19	 Good vegetation cover of grasses/rushes in channel bed and banks Some animal tracks on left bank Wombat holes on right bank 	 Good vegetation cover in channel and on right-hand bank Some mass wasting on top of left-hand bank
WCk20	 Bank and channel well vegetated Some lateral erosion on left bank Saffron Thistles 	 Channel and banks well-vegetated with <i>Phragmites australis</i> and <i>Lomandra</i> spp. Minor active lateral erosion still evident on both banks Some regeneration on left bank
WCk21	 Good vegetation cover in channel and on right bank Some bare exposed areas on left bank, mainly due to animal tracks Debris and leaf litter build up in channel 	- Good vegetation growth in channel and right bank - Erosion on left bank
WCk22	 Good vegetation cover in channel and of left bank Moderate vegetation cover of native and exotic grasses and herbs on right bank Wombat burrows in left bank Erosion on right bank 	 Erosion evident on right-hand bank Good vegetation cover in channel and left-hand bank No riparian tree cover

Site	Upstream	Downstream
WCk23	- Good in channel vegetation cover	- Good vegetation cover in channel
	- Left bank moderate vegetation cover with some bare patches	- Significant bare soil on both banks
	- Erosion at top of both banks, leading to are exposed patches	- Canopy species regeneration on both banks
WCk24	 Good cover of <i>Lomandra</i> spp. on left bank Some bare exposed patches with animal tracks on right bank Good vegetation cover in channel bed Wombat and rabbit burrows present on left bank 	 Good vegetation cover in channel (<i>Typha orientalis</i> (Broadleaf Cumbungi)) Good vegetation cover on left bank with the exception of animal tracks Bare soil patches and erosion on right bank, downstream of Cumbo Ck confluence
WCk25	 Left bank actively eroding Bank vegetation dominated by thistles No riparian zone Thistles on left bank 	 Significant bare soil patches with notching erosion occurring Some gullying erosion starting to form on left-hand bank LWD on right bank
WCk26	 Vegetation instream and on left bank remains similar to 2016 and 2017 Exposed areas on top of left bank Right bank remains stable Some wombat and rabbit burrows in top of left bank Blackberry dying off 	 No salt crusting evident as was the case in 2017 Some active erosion downstream Wombat burrows on top of left bank
WCk27	 In channel vegetation remains similar to 2016 and 2017 Active erosion on right bank, leading to steep and bare bank 	- Active erosion evident (rill and notching) on right bank
WCk28	 Reasonable vegetation cover in channel and on right bank Bare sections present on left bank 	 Good cover of vegetation in channel Sections of left bank steep and eroded Right bank good vegetation cover, with some animal tracks

Site	Upstream	Downstream
WCk29	- Good vegetation cover in channel and on right bank - Left bank not as steep and good cover of grass cover than downstream	 Good vegetation cover in channel and right-hand bank Wombat burrows present Top half of left-hand bank very steep and actively eroding, some notching present Good vegetation cover on bottom half of left bank, with some animal tracks Blackberry in channel
WCk30	 Increase in ground cover compared to 2017, the only areas of bare soil are associated with wombat burrows Blackberry present on right bank Wombat burrows in both banks Good general regeneration on both banks 	 Gully forming on right-hand bank on downstream end of reach Bare soil exposed on right-hand bank at downstream end of reach Left bank eroded section with exposed bare soil
WCk31	 Instream vegetation remains similar to 2016 and 2017 Right bank is still actively eroding with large areas of bare soil present No salt crystallisation evident 	 Stable instream vegetation, with some thistles Right bank soil exposure from animal tracks and steep slop Some minor gullying evident on right-hand bank Good vegetation cover on left bank, with some erosion mid bank
WCk32	 Good cover of in channel vegetation Left bank showing signs of erosion Right bank very steep erosion leading to exposed tree roots Wombat burrows in right bank 	 Right-hand bank is steep and actively eroding Gullying appears to be stabilised with addition of rock battering Blackberry in right bank gully
WCk33	 Good cover of grasses in channel and on right bank Areas of active erosion evident on left bank leading to steep bare bank Wombat burrows in both banks Tree cover present on left bank, with some regeneration but little ground cover 	 Good vegetation cover in channel and right bank Wombat burrows on both banks Left-hand bank steep, bare and actively eroding with exposed tree roots Tree cover moderate, but no groundcover on left bank LWD on left bank

Site	Upstream	Downstream
WCk34	 In channel vegetation cover remains high Right bank stable but some wombat burrows Active erosion on face of left bank and right bank 	 Right-hand bank actively eroding and several bare animal tracks Good vegetation cover on left bank Blackberry at top of right bank
WCk35	 Instream vegetation cover remains high Lower section of left bank remains stable and well vegetation, however some block failure is evident on top of left bank Right bank active erosion and bare soil predominant 	 Right-hand bank has improved in vegetation cover Regeneration downslope of reach on left bank
WCk36	 Right bank largely consistent, signs of grazing remain evident Some bare dirt from stock tracks and erosion Left bank remains steeply slowed and concave Top of left bank still steep, showing signs of erosion Good grass cover in channel and lower banks 	 Slumping still occurring on right bank Some undercutting and exposed bare soil at downstream end of left bank Good grass cover in channel and lower banks
WCk37	 Left bank remains well vegetated (grazed) with some lateral erosion Some Wombat burrows in left bank Right bank bare, with very little vegetation cover Stock tracks causing bare areas and erosion on right bank 	 Wombat burrows on left-hand bank Right bank groundcover appears to have deteriorated with increased bare soil compared to 2017 Stock tracks evident on right-hand bank Moderate vegetation cover on left bank, with some lateral erosion
WCk38	 Instream vegetation remains similar, continues to be grazed by cattle Wombat burrows on left bank Stock tracks causing localised erosion on both banks Right bank has reasonable vegetation cover though grazed Left bank active erosion, is steep and bare 	 Stock access causing localised erosion Good vegetation cover in channel and on banks, however it is being actively grazed

Site	Upstream	Downstream
WCk39	 Right bank well vegetated and stable, with some animal tracks Left bank is actively eroding and bare Wombat burrows on both banks In channel vegetation cover good, continues to be grazed by cattle 	 Right bank well vegetated, but left-hand bank actively eroding with steep bare upper-bank Minor gullying forming on left bank Wombat burrows on right bank In channel vegetation cover good, continues to be grazed by cattle
WCk40	 Good vegetation cover in channel though grazed and evidence of stock hoof prints Left bank well vegetated, with some lateral erosion Bare patches of exposed bank still present on right bank, consistent with previous years 	 Creek bed remains well vegetated and stable but actively grazed Right bank has bare slope and exposed bedrock
WCk41	 In channel vegetation cover good, continues to be grazed by cattle Stock in channel bed and on left bank Left bank has good vegetation cover Right bank has exposed soil, bedrock and erosion is active Stock tracks in left bank and right bank 	 Creek bed and left bank well vegetated and stable Well established wombat holes on left bank Right bank is steep and still actively eroding Cattle accessing creek
WCk42	 Good vegetation cover in channel Stock on left bank, and hoof prints in channel bed Right bank still eroding significantly, with bedrock exposed, and sand and gravel sediment deposits Gully developing on right bank upstream of large tree, with roots of tree exposed Rehabilitation activities required on right bank, along with stock removal 	 Channel remains well vegetated but actively grazed by cattle Wombat burrows on left bank Right bank actively eroding, with exposed tree roots
WCk43	 Good vegetation cover in channel bed Some unstable sections on left bank from erosion and stock tracks Good vegetation cover on right bank albeit grazed 	 Large patch of dead blackberry, some re-growth also present Vegetation cover good and stable but actively grazed Left bank slope steep and actively eroding

Site	Upstream	Downstream
WCk44	 Still good vegetation cover overall, but actively grazed Bare sections on both banks due to stock tracks Wombat burrows in left bank Left bank lateral erosion 	 Vegetation cover good and stable in channel bed but actively grazed Both banks lateral erosion and patchy bare soil
WCk45	 Channel well vegetated Both banks stable and vegetated, though some minor exposure around stock tracks and vegetation has been grazed 	 Good and stable vegetation as per previous years Minor localised erosion caused by stock access on left bank
WCk46	 Channel well vegetated Both banks stable and well vegetated though grazed Only bare sections on right bank due to animal tracks Signs of cattle activity, including hoof prints 	 Good and stable vegetation but actively grazed Left bank remains stable, right bank has minor exposed steep sections vulnerable to erosion Abundant leaf litter on both banks
WCk47	 Instream vegetation cover remains good, though some impact of grazing noted below fence Steep erosion around fence on right bank Right bank bare where animal tracks are 	 Stock causing localised erosion on banks Good vegetation cover in channel Good level of debris and litter in stream an on lower banks
WCk48	 Good vegetation cover in channel Some steep erosion points and bare soil on left bank Right bank stabilised by rock cover Good leaf litter and native and exotic grasses and herbs vegetation cover on right bank 	 Stock and macropod access on left bank instigating lateral erosion Abundant exposed Angophora floribunda roots on left bank Good debris in channel
WCk49	 Good cover of grasses on channel and on right bank Left bank showing signs of stock tracks and localised erosion Vegetation has been heavily grazed 	 Vegetation cover good in channel and right-hand bank Left bank steep but presently stable Localised erosion caused by stock access Wombat burrows on right bank

Site	Upstream	Downstream	
CCk1	 Site remains well vegetated and stable Mid and upper parts of right bank dominated by Saffron Thistle No tree cover 	- Good cover and stable bank with increased groundcover on right bank however, dominated by exotic species	
CCk2	 Good vegetation cover in channel and on left bank Evidence of erosion on mid and upper sections of right bank Bare at erosion points and animal tracks Some debris in channel 	 Good vegetation cover and stable in channel and left bank Some erosion, bare soil and bed rock exposure on right bank 	
CCk3	 Water pooled upstream of crossing Good grass, herb and rush cover in channel and on banks Some minor soil exposure on right bank No tree cover 	 Good vegetation cover and stable Strong exotic cover on banks 	
CCk4	- Good groundcover in channel and on both banks - Some animal tracks on right bank	 Site remains stable Good and stable vegetation cover Animal track along right bank Sweet Briar present in channel 	
CCk5	CCk5 - Area is well vegetation, with a bare patch along right bank - Eucalypt regeneration downstream towards culvert - No woody riparian vegetation on either bank - Remains well vegetated and stable - Site remains consistent with 2017		
CCk6	- Site is consistent with 2017	- Site is consistent with 2017	
CCk7	 Good cover of grasses in channel and on left bank Very limited riparian zone Some minor erosion on face of right bank Some bare bank noted low of left bank near pool 	 Good and stable groundcover in channel and right bank Minor erosion on left bank on downstream end of reach 	

Site	Upstream	Downstream
CCk8	 Good vegetation cover in channel and on both banks Very limited riparian zone apart from groundcover 	- Site remains stable with good vegetation cover
CCk9	 Some minor lateral erosion on top right bank Site remains well vegetated Saffron Thistle prevalent on both banks 	 Some minor lateral erosion, exposing soil on both banks Animal track across creek
CCk10	 Site remains well vegetated in channel and on both banks Very limited riparian zone apart from groundcover 	 Site remains stable with good vegetation cover Lateral erosion on left bank Strong exotic cover

Three species, *Xanthium spinosum* (Bathurst Burr), Blackberry and Sweet Briar, which are classified as regional priority weeds under the Central Tablelands Regional Strategic Weed Management Plan 2017 – 2022, were identified along the Wilpinjong creek. *Climacteris picumnus victoriae* (Brown Treecreeper eastern subspecies) and Artamus cyanopterus cyanopterus (Dusky Woodswallow), which are both listed under the BC Act, were also recorded during the monitoring period. These management issues are mapped below, in **Figure 3-2**.

Figure 3-1: Active erosion points assessed in 2018

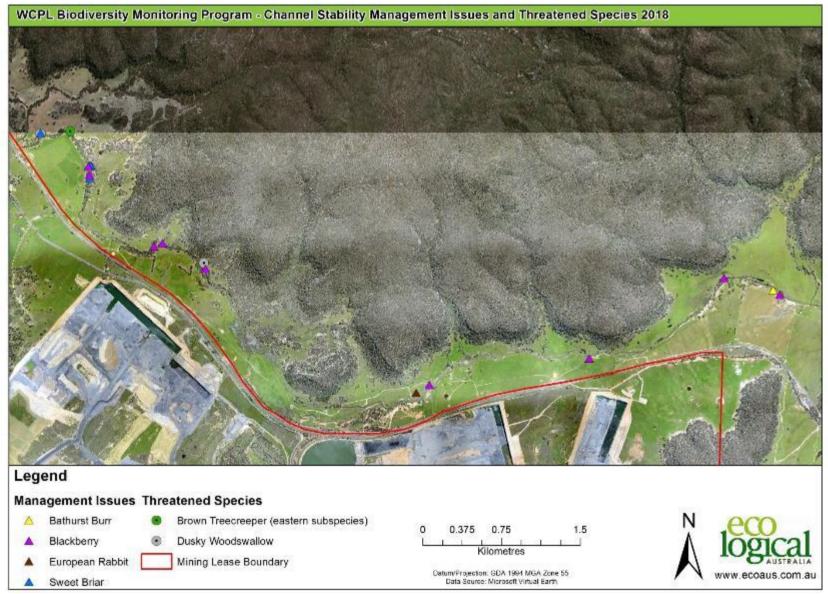


Figure 3-2: Management Issues and Threatened Species

4 Discussion and Recommendations

Of the 49 sites surveyed along Wilpinjong Creek, six were classified as Highly Stable, 13 Moderately Stable, 16 Stable, 10 Unstable and four Moderately Unstable (**Table 3-1**). As such, a total of 35 sites recorded scores in the stable range, whilst 14 sites recorded scores in the unstable range. The lowest scoring sites (all Moderately Unstable) were WCk4, WCk32 and WCk42, and were typified by severely undercut banks, mass sediment wasting and a low percentage of streambank protection and riparian vegetation cover.

The western section of Wilpinjong Creek (incorporating sites WCk1 to WCk8) contains good areas of natural regeneration with overall moderate to good riparian vegetation and habitat present. At the time of survey, there was abundant birdlife occupying the canopy and shrub layer, including the threatened species Dusky Woodswallow and Brown Treecreeper (eastern subspecies) (**Figure 3-2**). The influence of riparian vegetation on channel stability is well demonstrated in this section of Wilpinjong Creek, with well vegetated sites recording stable BEHI scores, by comparison two cleared sections around sites WCk3 and WCk4 showed significant lateral erosion and associated unstable BEHI scores.

The middle section of Wilpinjong Creek (incorporating sites WCk18 to WCK44) is characterised by cleared adjacent paddocks and a narrow and scattered riparian vegetation zone (where present). Widespread historic clearing in this section of the creek has a pronounced influence on the channel stability scores with unstable BEHI scores recorded for *Streambank Protection* and *Established Beneficial Riparian Woody Vegetation Cover*. The prevalence of significant erosion sites (**Figure 2-2**) in this section of Wilpinjong Creek further demonstrates the impact of historic vegetation clearing on channel stability. Continued stock access to this section of the creek and associated impacts on channel stability through reduced vegetation cover has resulted in increased areas of bare soil and erosion potential.

The eastern section of Wilpinjong Creek (incorporating sites WCk45 to WCk49) is characterised by a relatively steep and narrow valley, which has resulted in a straight channel with high bank height. The riparian vegetation is partly intact, with sites in this section of the creek recording Stable to Moderately Stable scores.

Of the ten sites surveyed along Cumbo Creek, eight were Highly Stable, one Moderately Stable and one Stable (**Table 3-2**). The reach of Cumbo Creek surveyed is characterised by a shallow, meandering channel with low stable banks. The adjacent paddocks have been historically cleared with only very sparse riparian vegetation remaining. Despite the lack of woody riparian vegetation, the creek remains in a stable condition as evidenced by stable BEHI scores.

4.1 Multi-year comparisons

Following on from the baseline channel stability assessment of Wilpinjong and Cumbo Creeks undertaken in 2005 as part of the WCPL EIS (WCPL 2005), annual monitoring has been undertaken during 2011, 2014, 2015, 2016 and 2017. The EIS concluded that both Wilpinjong and Cumbo Creeks were affected by pre-mining agricultural land management practices, resulting in erosion and creek bank instability at numerous points. Annual monitoring since 2011 shows that the channel stability has remained constant or improved since the baseline assessment, despite minimal management intervention. This indicates that mining activities are not contributing further to channel instability, with any changes likely resulting from seasonal variations in rainfall and continued stock access.

4.1.1 Site stability scores

Site channel stability data in the form of BEHI scores are available from 2016 and 2017 for direct comparison. Site stability ratings (based on BEHI scores) for Wilpinjong Creek sites are presented in **Table 4-1** with Cumbo Creek ratings presented in **Table 4-2**. Differences in ratings were only noted as 'Improved' or 'Declined' where a trend was observed over two consecutive years. For Wilpinjong Creek, ratings improved at 24 sites, remained the same at 20 sites and declined at five sites. For Cumbo Creek, ratings improved at three sites, remained the same at six sites and declined at one site.

Overall, the results from 2016 to 2018 are relatively consistent, reflecting the overall stable nature of both creeks in what has been a prolonged dry period with no management intervention undertaken. The trend of improving stability ratings can be partly attributed to increased vegetation cover, resulting in increased scores for *Streambank Protection* and associated reduced scores for *Unconsolidated Material*. There is potential that some variation in ratings can to be attributed to observer variation between years, given the subjective nature of some of the BEHI indicators. In particular, variation in ratings is noted between 2016 (Barnson) and 2017 (ELA). To account for this variability, multi-year comparisons have been completed based on ratings, rather than scores, to highlight overall trends rather than minor variation.

Site	2016 Rating	2017 Rating	2018 Rating	Difference
WCk1	Stable	Moderately Stable	Moderately Stable	Improved
WCk2	Stable	Moderately Stable	Moderately Stable	Improved
WCk3	Unstable	Unstable	Unstable	Same
WCk4	Highly Unstable	Moderately Unstable	Moderately Unstable	Improved
WCk5	Stable	Moderately Stable	Moderately Stable	Improved
WCk6	Stable	Moderately Stable	Highly Stable	Improved
WCk7	Moderately Stable	Highly Stable	Highly Stable	Improved
WCk8	Stable	Stable	Stable	Unchanged
WCk9	Unstable	Stable	Stable	Improved
WCk10	Highly Stable	Highly Stable	Moderately Stable	Declined
WCk11	Moderately Stable	Highly Stable	Highly Stable	Improved
WCk12	Moderately Stable	Highly Stable	Highly Stable	Improved
WCk13	Stable	Moderately Stable	Stable	Unchanged
WCk14	Stable	Highly Stable	Highly Stable	Improved
WCk15	Stable	Moderately Stable	Moderately Stable	Improved
WCk16	Highly Stable	Moderately Stable	Moderately Stable	Declined
WCk17	Moderately Stable	Moderately Stable	Moderately Stable	Unchanged
WCk18	Stable	Stable	Stable	Unchanged

Table 4-1: Wilpinjong Creek site stability scores 2016 – 2018 comparison

Site	2016 Rating	2017 Rating	2018 Rating	Difference
WCk19	Unstable	Stable	Stable	Improved
WCk20	Unstable	Moderately Stable	Moderately Stable	Improved
WCk21	Unstable	Moderately Stable	Moderately Stable	Improved
WCk22	Moderately Unstable	Stable	Stable	Improved
WCk23	Moderately Unstable	Stable	Stable	Improved
WCk24	Unstable	Unstable	Unstable	Unchanged
WCk25	Unstable	Unstable	Unstable	Unchanged
WCk26	Unstable	Unstable	Unstable	Unchanged
WCk27	Stable	Unstable	Moderately Unstable	Declined
WCk28	Unstable	Stable	Stable	Improved
WCk29	Unstable	Stable	Stable	Improved
WCk30	Stable	Moderately Stable	Highly Stable	Improved
WCk31	Unstable	Unstable	Unstable	Unchanged
WCk32	Moderately Unstable	Moderately Unstable	Moderately Unstable	Unchanged
WCk33	Moderately Unstable	Unstable	Unstable	Improved
WCk34	Unstable	Unstable	Unstable	Unchanged
WCk35	Stable	Moderately Stable	Stable	Unchanged
WCk36	Stable	Moderately Stable	Moderately Stable	Improved
WCk37	Stable	Stable	Stable	Unchanged
WCk38	Stable	Stable	Stable	Unchanged
WCk39	Stable	Unstable	Unstable	Declined
WCk40	Unstable	Unstable	Unstable	Unchanged
WCk41	Stable	Moderately Stable	Moderately Stable	Improved
WCk42	Highly Unstable	Moderately Unstable	Moderately Unstable	Improved
WCk43	Not surveyed	Unstable	Unstable	Unchanged
WCk44	Stable	Moderately Stable	Moderately Stable	Improved
WCk45	Stable	Stable	Stable	Unchanged
WCk46	Stable	Moderately Stable	Moderately Stable	Improved
WCk47	Stable	Moderately Stable	Stable	Unchanged
WCk48	Stable	Stable	Stable	Unchanged
WCk49	Stable	Stable	Stable	Unchanged

Site	2016 Rating	2017 Rating	2018 Rating	Difference
CCK1	Highly Stable	Highly Stable	Highly Stable	Unchanged
CCK2	Moderately Stable	Stable	Stable	Declined
CCK3	Moderately Stable	Highly Stable	Highly Stable	Improved
CCK4	Highly Stable	Highly Stable	Highly Stable	Unchanged
CCK5	Moderately Stable	Highly Stable	Highly Stable	Improved
CCK6	Moderately Stable	Highly Stable	Moderately Stable	Unchanged
CCK7	Not surveyed	Moderately Stable	Highly Stable	Improved
CCK8	Highly Stable	Highly Stable	Highly Stable	Unchanged
CCK9	Highly Stable	Highly Stable	Highly Stable	Unchanged
CCK10	Highly Stable	Highly Stable	Highly Stable	Unchanged

Table 4-2: Cumbo Creek site stability score 2017 – 2018 comparison

4.1.2 Photographic comparisons

Photographic comparisons between sites during 2017 and 2018 monitoring are included in **Appendix B**. Photos taken from 2011, 2014, 2015 and 2016 monitoring were also compared, however, digital copies were not available to be included in this report.

Comparisons indicate that there has been little observable change in the stream channel at each monitoring site, with no new significant erosional features evident. Some notable differences were apparent relating to vegetation cover which may be attributed to seasonal variation. Rainfall which occurred in the month preceding 2018 monitoring appears to have resulted in re-growth of in-stream macrophytes at multiple sites, with an increase in vegetation cover also recorded in the BEHI scores (see **section 4.1.1**). Despite this rainfall, water levels were noticeably lower in 2018 compared to 2017 for both Wilpinjong and Cumbo creeks, as well as both upstream and downstream of the WCPL water discharge location. Water levels appear significantly lower across both 2017 and 2018 compared to previous monitoring seasons.

4.2 Erosion points

Table 4-3 provides a photo log of the significant erosion points along Wilpinjong and Cumbo Creeks (see also **Figure 3-1**). These sites were identified as having moderate to severe erosion resulting from historical clearing and agricultural practices and have been recommended for remediation works. Overall, the erosion points appear largely consistent with 2016 and 2017, with no evidence of recent downstream erosion. Given the large areas of bare soil and multiple erosional gullies present at these sites, it is highly likely that lateral erosion would still be occurring during rainfall events, because of increased runoff velocities from the surrounding cleared landscape.

Revegetation and remediation methods are discussed below in Section 4.3.

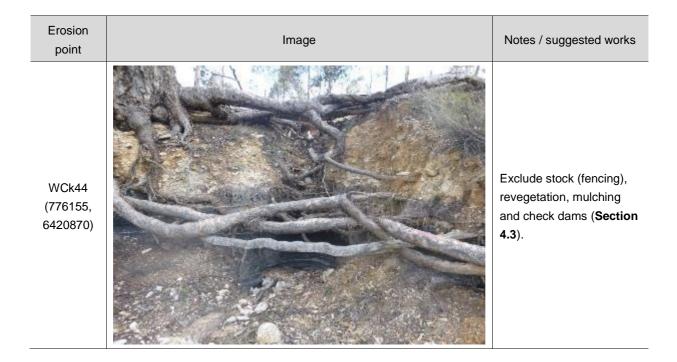

Erosion point	Image	Notes / suggested works
E1 (768557, 6422438)		Revegetation and check dams (Section 4.3).
E2 (768469, 6422527)		Revegetation and mulching (Section 4.3)

Table 4-3: Significant erosion points and suggested remediation works

Erosion point	Image	Notes / suggested works
E7 (772431, 6420352)		Revegetation (Section 4.3).
E8 (773014, 6420339)		Continue to monitor change
E9 (773397, 6420376)		Revegetation (Section 4.3).

4.3 Revegetation and remediation

Re-establishment of riparian corridors along the Wilpinjong and Cumbo Creek systems should be undertaken to provide sustainable long-term solutions to current channel instability issues. It is recommended that revegetation of native trees and shrubs be implemented along the sections of Wilpinjong and Cumbo Creeks devoid of riparian vegetation. **Table 4-4** below lists native and locallysuitable tree and shrub species for use in revegetation works. Areas experiencing lateral erosion, including the significant erosion points detailed above should be considered priority areas for revegetation works.

Revegetation works should extend to a minimum distance equal to the height of the adjacent eroded bank, to re-enforce the existing bank and provide space for the bank to partially erode whilst the vegetation becomes established (Abernathy and Rutherford 1999). The application of mulch to the bank sides is recommended to assist stabilisation until vegetation establishes, along with the installation of coarse-rock and/or hay bale check dams to reduce water flow. Fencing works will also be required to exclude native and introduced fauna from remediation areas, as well as assist with natural regeneration (see **section 4.4** below).

Scattered Regional Priority Weeds were present throughout Wilpinjong Creek and included Blackberry, Sweet Briar and Bathurst Burr (**Figure 3-2**). It was noted that Blackberry has died off since 2017 monitoring at sites WCk2, WCk26 and WCk43, although minor re-growth was also observed at WCk43. The targeted spot spraying of these weeds is recommended in association with remediation works.

Scientific Name	Common Name	
Native Trees		
Angophora floribunda	Rough-barked Apple	
Casuarina cunninghamiana	River Sheoak	
Eucalyptus blakelyi	Blakely's Red Gum	

Scientific Name	Common Name	
Eucalyptus melliodora	Yellow Box	
Native Shrubs		
Acacia decora	Western Silver Wattle	
Acacia implexa	Hickory Wattle	
Acacia linearifolia	Narrow-leaved Wattle	
Exocarpos cupressiformis	Native Cherry	

4.4 Exclusion of livestock

Livestock (cattle) access to the riparian zone continues to impact on the overall stability and health along sections of both Wilpinjong and Cumbo Creeks. By contrast, sections where stock are excluded show natural regeneration and improved channel stability. **Figure 4-1** below clearly demonstrates the impacts that cattle continue to exert on sections of Wilpinjong Creek. As evidenced by the photograph, the left-hand side of the fence line has significantly lower macrophyte biomass, high turbidity and large patches of bare soil on the right bank (foreground of photograph) resulting from cattle accessing the creek.

Stock have been observed within the eastern section of Wilpinjong Creek (incorporating sites WCk36 to WCk45), as well as the far-western section (incorporating sites WCk1 to WCk8). Excluding stock from the riparian zone through the installation of fencing is recommended. This is likely to provide additional benefits to natural regeneration through reducing grazing pressure from native herbivores.

Figure 4-1: Effects of stock access in the riparian zone (left-hand side of the fence line), contrasted with the results of stock exclusion (right-hand side of the fence line)

5 Conclusion

The channel stability of both Wilpinjong and Cumbo Creeks is characteristic of ephemeral systems in agricultural landscapes, consistent with other creeks in the surrounding region. Both creeks systems exhibit characteristic channel stability issues associated with agricultural landscapes including:

- Degraded riparian vegetation and the presence of exotic species, including Regional Priority Weeds such as Bathurst Burr, Blackberry and Sweet Briar
- Lateral gully-erosion at several locations, formed due to higher velocity runoff from adjacent cleared paddocks occurring perpendicular to the creek line
- Continued stock access contributing to bank instability, reducing in-stream and riparian vegetation and hampering natural regeneration
- Other introduced and native fauna (e.g. European Rabbit and Common Wombat) burrowing within the riparian zone

Erosion and bank stability issues within the Wilpinjong and Cumbo Creeks are strongly linked to historic agricultural practices within the riparian zone, including widespread clearing and direct animal access to the channels. The consistency of ratings since the commencement of monitoring indicates that mining activities are not contributing further to channel stability issues.

Revegetation and remediation works are recommended to restore degraded sections of the creeks, limit on-going erosion and promote natural regeneration of the riparian zone. Where possible this should be achieved through landscaping techniques (tree and shrub planting) and non-intrusive mitigation such as check dams, mulching and fencing.

6 References

Abernathy, B. and Rutherford, I.D. 1999. *Guidelines for stabilising streambanks with riparian vegetation.* Cooperative Research Centre for Catchment Hydrology.

Barnson 2017. *Wilpinjong and Cumbo Creek Stability Assessment, 2016*, prepared for Wilpinjong Coal Mine.

Eco Logical Australia 2018. *Wilpinjong Coal Mine – 2017 Channel Stability Monitoring Report.* Prepared for Wilpinjong Coal Pty Ltd.

Wilpinjong Coal Pty Limited 2005. *Wilpinjong Coal Project Environmental Impact Statement*, prepared by Resource Strategies Pty Ltd for Wilpinjong Coal Pty Limited.

Wilpinjong Coal Pty Limited 2017. Wilpinjong Coal Water Management Plan (Appendix 2) WI-ENV-MNP-0006.

Appendix A : BEHI Assessment Scoring

Indicator	Measure	Score
1. Bank Height (m)	0 - 1.5	0
	1.5-3	2.5
	3-4.5	5
	4.5-6	7.5
	6+	10
	0-20	0
2. Bank Angle (°)	21-60	2
	61-80	4
	81-90	6
	91-120	8
	> 120	10
3. Percentage of Bank Height with a Bank Angle Greater than 80°	0-10	0
	11-25	2.5
	26-50	5
	51-75	7.5
	76-100	10
4. Evidence of Mass Wasting (% of Bank)	0-10	0
	11-25	2.5
	26-50	5
	51-75	7.5
	76-100	10
	0-10	0
	11-25	2.5
5. Unconsolidated Material (% of Bank)	26-50	5
	51-75	7.5
	76-100	10
	0-10	15
	11-25	12.5
6 Streamhank Brotestian (% of Streamhank severed by plant roots	26-50	12.0
 Streambank Protection (% of Streambank covered by plant roots, vegetation, logs, branches, rocks etc 	51-70	7.5
	70-90	2.5
	90-100	0
	0-10	15
	11-25	12.5
	26-50	12.5
7. Established Beneficial Riparian Woody - Vegetation Cover	51-70	7.5
	70-90	2.5
	90-100	0
	Meander	5
	Shallow Curve	
8. Stream Curvature Descriptor		2.5
Totals	Straight	0
	Highly Stable	0-25
	Mod Stable	26-35
	Stable	36-45
	Unstable	46-55
	Mod Unstable	56-65
	Highly Unstable	66-85

Appendix B : Site Photo Comparisons

Figure B- 1: WCk1 site photos clockwise from top left: 2017 upstream, 2018 upstream, 2018 downstream, 2017 downstream

Figure B- 2: WCk2 site photos clockwise from top left: 2017 upstream, 2018 upstream, 2018 downstream, 2017 downstream

Figure B- 3: WCk3 site photos clockwise from left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 4: WCk4 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 5: WCk5 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 6: WCk6 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 7: WCk7 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 8: WCk8 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 9: WCk9 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 10: WCk10 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 11: WCk11 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 12: WCk12 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 13: WCk13 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 14: WCk14 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 15: WCk15 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 16: WCk16 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 17: WCk17 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 18: WCk18 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 19: WCk19 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 20: WCk20 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 21: WCk21 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

© ECO LOGICAL AUSTRALIA PTY LTD

Figure B- 22: WCk22 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 23: WCk23 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 24: WCk24 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 25: WCk25 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 26: WCk26 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 27: WCk27 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 28: WCk28 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 29: WCk29 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 30: WCk30 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 31: site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 32: WCk32 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 33: WCk33 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream (note: 2017 photos taken from opposite bank)

Figure B- 34: WCk34 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 35: WCk35 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 36: WCk36 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 37: WCk37 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 38: WCk38 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 39: WCk39 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 40: WCk40 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 41: WCk41 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 42: WCk42 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 43: WCk43 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 44: WCk44 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 45: WCk45 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 46: WCk46 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 47: WCk47 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 48: WCk48 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 49: WCk49 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 50: CCk1 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 51: CCk2 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 52: CCk3 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 53: CCk4 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 54: CCk5 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 55: CCk7 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 56: CCk8 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 57: CCk9 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Figure B- 58: CCk10 site photos clockwise from top left: 2017 upstream, 2018 upstream. 2018 downstream, 2017 downstream

Appendix C : Monthly Rainfall Data

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total
2014	15.6	60.0	112.6	62.8	13.8	29.8	28.6	28.8	14.6	15.4	24.4	126.7	533.1
2015	127.6	11.6	9.4	108.4	42.8	42.8	38.0	53.8	7.8	61.0	59.0	118.4	680.6
2016	152.1	7.2	23.5	14.8	66.8	104.2	101.1	40.9	198.7	86.6	51.9	90.6	938.4
2017	27.8	34.2	146	23	32.4	10.4	5.8	25.2	3	28.4	92.6	102.6	531.4
2018	24.4	77	24.6	42.2	12.4	21.6	1.2	43.8	39.6	56.8	47.4	91.2	482.2
Historical Mean	66.5	62.4	52.5	39.1	37.6	44.2	42.2	41.1	41.3	51.1	56	60.1	590.6

Table 6-1: Monthly rainfall from 2014 - 2017 (mm)

Source: WCPL and Bureau of Meteorology, 2017 (Historical averages) Wollar (Barrigan St) Weather station number:62032.

HEAD OFFICE

Suite 2, Level 3 668 Old Princes Highway Sutherland NSW 2232 T 02 8536 8600 F 02 9542 5622

CANBERRA

Level 2 11 London Circuit Canberra ACT 2601 T 02 6103 2314 F 02 9542 5622

COFFS HARBOUR

22 Ray McCarthy Drive Coffs Harbour NSW 2450 T 02 6651 5484 F 02 6651 6890

PERTH

Level 1, Bishop's See 235 St Georges Terrace Perth WA 6000 T 08 6218 2200 F 02 9542 5622

MELBOURNE

Level 1, 436 Johnston St Abbotsford, VIC 3076 T 1300 646 131

SYDNEY

Level 3 101 Sussex Street Sydney NSW 2000 T 02 9259 3800 F 02 9542 5622

NEWCASTLE

Suites 28 & 29, Level 7 19 Bolton Street Newcastle NSW 2300 T 02 4910 0125 F 02 9542 5622

ARMIDALE

92 Taylor Street Armidale NSW 2350 T 02 8081 2685 F 02 9542 5622

WOLLONGONG

Suite 204, Level 2 62 Moore Street Austinmer NSW 2515 T 02 4201 2203 F 4268 4361

BRISBANE

Level 5 12 Creek Street Brisbane QLD 4000 T 07 3239 9600 F 07 3854 0310

HUSKISSON

Unit 1, 51 Owen Street Huskisson NSW 2540 T 02 4201 2264 F 02 443 6655

NAROOMA

5/20 Canty Street Narooma NSW 2546 T 02 4302 1266 F 02 9542 5622

MUDGEE

Unit 1, Level 1 79 Market Street Mudgee NSW 2850 T 02 4302 1234 F 02 6372 9230

ADELAIDE

2, 70 Pirie Street Adelaide SA 5000 T 08 8470 6650 F 02 9542 5622

1300 646 131 www.ecoaus.com.au