Wambo Coal Mine and Rail Spur

Environmental Noise Monitoring August 2021

Prepared for Wambo Coal Pty Limited

Noise and Vibration Analysis and Solutions

Global Acoustics Pty Ltd PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 Email global@globalacoustics.com.au ABN 94 094 985 734

Wambo Coal Mine and Rail Spur

Environmental Noise Monitoring August 2021

Reference: 21198_R01 Report date: 15 October 2021

Prepared for

Wambo Coal Pty Limited PMB 1 Singleton NSW 2330

Prepared by

Global Acoustics Pty Ltd PO Box 3115 Thornton NSW 2322

Jene hilly

kya kui

Prepared:

Jesse Tribby Consultant

OA Review: **Ryan Bruniges** Consultant

Global Acoustics Pty Ltd ~ Environmental noise modelling and impact assessment ~ Sound power testing ~ Noise control advice ~ Noise and vibration monitoring ~ OHS noise monitoring and advice ~ Expert evidence in Land and Environment and Compensation Courts ~ Architectural acoustics ~ Blasting assessments and monitoring ~ Noise management plans (NMP) ~ Sound level meter and noise logger sales and hire

Table of Contents

1 INTRODUCTION	1
1.1 Background	1
1.2 Attended Monitoring Locations	1
1.3 Terminology & Abbreviations	
2 REGULATOR REQUIREMENTS AND NOISE CRITERIA	4
2.1 WCM Development Consent	4
2.2 WCRS Development Consent	4
2.3 Environment Protection Licence	4
2.4 Noise Management Plan	4
2.5 Noise Criteria	4
2.6 Meteorological Conditions	5
2.6.1 Development Consent	5
2.6.2 Environment Protection Licence	
2.7 Modifying Factors	5
3 METHODOLOGY	6
3.1 Overview	6
3.2 Attended Noise Monitoring	6
3.3 Modifying Factors	7
3.4 Meteorological Data	7
3.5 Attended Noise Monitoring Equipment	7
4 RESULTS	8
4.1 Total Measured Noise Levels	8
4.2 Modifying Factors	
4.3 Attended Noise Monitoring	9
4.4 Atmospheric Conditions	
5 DISCUSSION	11
5.1 Noted Noise Sources	11
5.1.1 N01	

6 SI	UMMARY	17
	5.1.5 N26	16
	5.1.4 N21	15
	5.1.3 N20A	14
	5.1.2 N16	13

Appendices

Α	REGULATOR DOCUMENTS	18
B	CALIBRATION CERTIFICATES	26

1 INTRODUCTION

1.1 Background

Global Acoustics was engaged by Wambo Coal (WC) to conduct a monthly noise survey of operations at Wambo Coal Mine (WCM) and Wambo Coal Rail Spur (WCRS). WCM and WCRS operate under separate development consents while reporting has been combined for both. The purpose of the survey is to quantify and describe the existing acoustic environment around WCM and WCRS, and compare results with relevant limits.

WC operates underground mining operations located near Warkworth, NSW. The underground operations include associated surface facilities, including a coal handling and preparation plant (CHPP), conveyors, bins and other material-handling infrastructure.

The WCRS is located between Mt Thorley and Warkworth Village and includes the following components:

- a product coal stockpile and reclaim area, product coal conveyor, train load-out bin, rail loop and a rail spur from the WCM to Mount Thorley;
- rail transport of product coal to the market, an intermittent activity that can take place at any time; and
- a locomotive refuelling facility.

Attended environmental noise monitoring described in this report was undertaken during the night periods of 5/6 and 10/11 August 2021 at a total of five monitoring locations for WCM and WCRS. Monitoring was not completed on the first night of monitoring due to fatigue management controls.

1.2 Attended Monitoring Locations

Attended monitoring locations are detailed in Table 1.1 and shown in Figure 1. It should be noted that Figure 1 shows the actual monitoring position, not the location of residences.

Site Reference ¹	EPA Point ²	Area Description	Properties Represented ³
N01	N/A	North Bulga	3, 7, 379
N16	20	Jerrys Plains Road	Privately-owned residences near Jerry's Plains
N20A	21	Redmanvale Road Central	Privately-owned residences near Jerry's Plains
N21	22	South Wambo	25, 35a
N26	23	Redmanvale Road South	Privately-owned residences near Jerry's Plains

Table 1.1: WAMBO COAL ATTENDED MONITORING LOCATIONS

Notes:

1. Sourced from NMP – WA-ENV-MNP-503, November 2020;

2. Sourced from Environment Protection Licence 529, February 2021; and

3. Property numbering is from Appendix 4 of DA 305-7-2003.

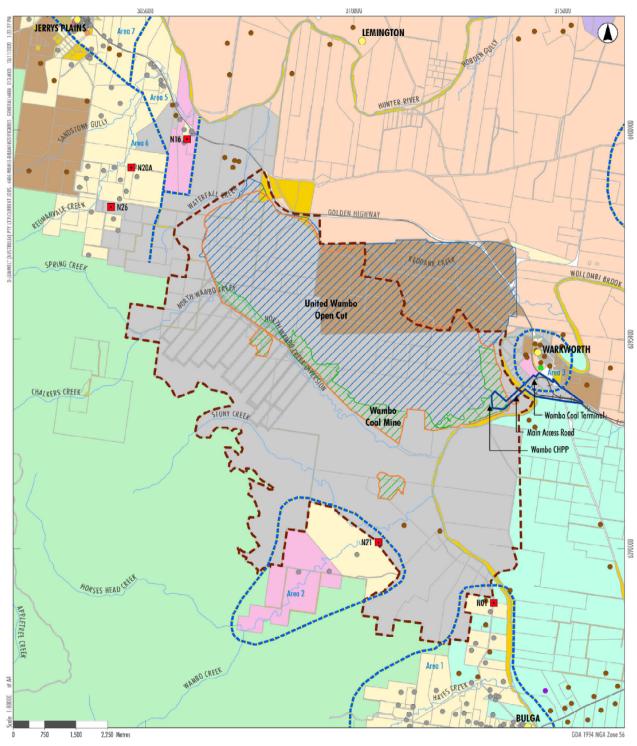


Figure 1: WCM Attended Noise Monitoring Locations

1.3 Terminology & Abbreviations

Definitions of terms and abbreviations which may be used in this report are provided in Table 1.2.

Table 1.2: TERMINOLOGY & ABBREVIATIONS

Descriptor	Definition
dB(A)	Noise level measurement units are decibels (dB). The "A" weighting scale is used to describe human response to noise.
L _{Amax}	The maximum A-weighted noise level over a time period.
L _{A1}	The noise level which is exceeded for 1 per cent of the time.
L _{A1,1} minute	The noise level which is exceeded for 1 per cent of the specified time period of 1 minute.
L _{A10}	The noise level which is exceeded for 10 percent of the time.
L _{Aeq}	The average noise A-weighted energy during a measurement period.
L _{A50}	The noise level which is exceeded for 50 per cent of the time and the median noise level during a measurement period.
L _{A90}	The level exceeded for 90 percent of the time. The L _{A90} level is often referred to as the "background" noise level and is commonly used to determine noise criteria for assessment purposes.
L _{Amin}	The minimum A-weighted noise level over a time period.
L _{Ceq}	The average C-weighted noise energy during a measurement period. The "C" weighting scale is used to take into account low-frequency components of noise within the audibility range of humans.
SPL	Sound pressure level. Fluctuations in pressure measured as 10 times a logarithmic scale, with the reference pressure being 20 micropascals.
Hertz (Hz)	The frequency of fluctuations in pressure, measured in cycles per second. Most sounds are a combination of many frequencies together.
AWS	Automatic weather station used to collect meteorological data, typically at an altitude of 10 metres
VTG	Vertical temperature gradient in degrees Celsius per 100 metres altitude.
Sigma-theta	The standard deviation of the horizontal wind direction over a period of time.
SC	Stability class (or category) is determined from measured wind speed and either sigma-theta or VTG.
IA	Inaudible. When site noise is noted as IA then there was no site noise at the monitoring location.
NM	Not Measurable. If site noise is noted as NM, this means some noise was audible but could not be quantified.
Day	This is the period 7:00am to 6:00pm.
Evening	This is the period 6:00pm to 10:00pm.
Night	This is the period 10:00pm to 7:00am.

2 REGULATOR REQUIREMENTS AND NOISE CRITERIA

2.1 WCM Development Consent

The most current development consent for WCM is DA 305-7-2003 (MOD 16, 29 August 2019). Schedule 2, Part B of the WCM consent details specific conditions relating to noise generated by WCM. Relevant sections of the WCM consent are reproduced in Appendix A.

2.2 WCRS Development Consent

The most current development consent for Wambo Rail Loop is WCRS DA 177-8-2004 (MOD 3, 29 August 2019), last modified to include a rail refuelling facility. Schedule 2, Part B of the WCRS consent details specific conditions relating to noise generated by WCRS. Relevant sections of the WCRS consent are reproduced in Appendix A.

2.3 Environment Protection Licence

WCM holds Environment Protection Licence (EPL) No. 529 issued by the Environment Protection Authority (EPA) most recently on 3 December 2020. Relevant sections of the EPL are reproduced in Appendix A.

2.4 Noise Management Plan

Noise monitoring requirements are detailed in the *Wambo Coal Noise Management Plan WA-ENV-MNP-503* (NMP, November 2020), prepared in accordance with the WCM and WCRS consents. Relevant sections of the NMP are reproduced in Appendix A.

2.5 Noise Criteria

Noise criteria detailed in Table 2.1 have been adopted for each monitoring location based on Phase 2 and 3 of the development consent (MOD 16) and the NMP.

Location	Day ^L Aeq,15minute	Evening/Night L _{Aeq,1} 5minute	Night ^L A1,1minute
N01 ¹	38	38	48
N16	35	35	45
N20A	35	35	45
N21 ²	39	39	49
N26	35	35	45

Table 2.1: WCM NOISE CRITERIA, dB(A)

Notes:

 $1. \qquad Noise\ criteria\ for\ the\ nearest\ privately-owned\ property\ (R003)\ have\ been\ adopted;\ and$

2. Noise criteria for the nearest privately-owned property (R025) have been adopted.

EPL noise criteria have not been updated for Phase 2 and 3 of operations. As noise criteria in the

development consent and NMP are now more conservative than those in the EPL, they have been adopted in Table 2.1.

2.6 Meteorological Conditions

Meteorological conditions required for noise criteria to apply are consistent between the consent and EPL.

2.6.1 Development Consent

Appendix 5 of MOD 16 details specific meteorological conditions required for noise criteria to be applicable:

APPENDIX 5 NOISE COMPLIANCE ASSESSMENT

Applicable Meteorological Conditions

- 1. The noise criteria in condition B12 are to apply under all meteorological conditions except the following:
 - (a) where 3°C/100 metres (m) lapse rates have been assessed, then:
 - (i) wind speeds greater than 3 metres/second (m/s) measured at 10m above ground level;
 - $(ii) \qquad temperature inversion conditions between 1.5^\circ C and 3^\circ C/100m and wind speeds greater than 2m/s \\ measured at 10m above ground level; or$
 - (iii) temperature inversion conditions greater than 3°C/100m.
 - (b) where Pasquill Stability Classes have been assessed, then:
 - (i) wind speeds greater than 3m/s at 10m above ground level;
 - (ii) stability category F temperature inversion conditions and wind speeds greater than 2m/s at 10m above ground level;
 - (iii) stability category G temperature inversion conditions.

As lapse rates (VTG) were not measured directly, meteorological conditions have been assessed against Pasquill stability classes detailed in 1.(b).

2.6.2 Environment Protection Licence

Condition L5.5 of the EPL details meteorological conditions required for noise limits to apply:

- L5.5 The noise limits set out in condition L5.1 apply under all meteorological conditions except for the following:
 - a) Wind speeds greater than 3 metres/second at 10 metres above the ground level;
 - b) Stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at
 - 10 metres above ground level; or
 - c) Stability category G temperature inversion conditions.

Condition L5.5 is consistent with stability category conditions outlined in Appendix 5, 1.(b) of MOD 16.

2.7 Modifying Factors

The EPA 'Noise Policy for Industry' (NPfI, 2017) was approved for use in NSW in October 2017. For assessment of modifying factors, the NPfI immediately superseded the 'Industrial Noise Policy' (INP, 2000), as outlined in the EPA document 'Implementation and transitional arrangements for the Noise Policy for Industry' (2017). Assessment and reporting of modifying factors has been undertaken in accordance with Fact Sheet C of the NPfI.

3 METHODOLOGY

3.1 Overview

Attended environmental noise monitoring was conducted in general accordance with Australian Standard AS1055 'Acoustics, Description and Measurement of Environmental Noise', relevant NSW EPA requirements, and the NMP. Meteorological data was obtained from the WCM automatic weather station (AWS) which allowed correlation of atmospheric parameters with measured noise levels.

3.2 Attended Noise Monitoring

During this survey, monthly attended monitoring was undertaken during the night period at each location. The duration of each measurement was 15 minutes. Atmospheric condition measurement was also undertaken at each monitoring location.

This survey presents noise levels gathered during attended monitoring that are the result of many sounds reaching the sound level meter microphone during monitoring. Received levels from various noise sources were noted during attended monitoring and particular attention was paid to the extent of WCM/WCRS's contribution, if any, to measured levels. At each receptor location, WCM/WCRS's $L_{Aeq,15minute}$ and $L_{A1,1minute}$ (in the absence of any other noise) was measured directly, where possible, or, determined by frequency analysis.

If the exact contribution of the source of interest (in this case WCM and/or WCRS) cannot be established, due to masking by other noise sources in a similar frequency range, but site noise levels are observed to be well below (more than 5 dB lower than) any relevant criterion, a maximum estimate of the potential contribution of the site might be made based on other measured site-only noise descriptors in accordance with Section 7.1 of the NPfI. This is generally expressed as a 'less than' quantity, such as <20 dB or <30 dB.

The terms 'Inaudible' (IA) or 'Not Measurable' (NM) may also be used in this report. When site noise is noted as IA, no site noise was audible at the monitoring location. When site noise is noted as NM, this means some noise was audible but could not be quantified. If site noise was NM due to masking but estimated to be significant in relation to a relevant criterion, we would employ methods (e.g. measure closer and back calculate) to determine a value for reporting.

All sites noted as NM in this report are due to one or more of the following reasons:

- Site noise levels were extremely low and unlikely, in many cases, to be even noticed;
- Site noise levels were masked by another relatively loud noise source that is characteristic of the environment (e.g. breeze in foliage or continuous road traffic noise) that cannot be eliminated by moving closer; and/or
- It was not feasible, nor reasonable to employ methods such as move closer and back calculate. Cases may include, but are not limited to, rough terrain preventing closer measurement, addition/removal

of significant source to receiver shielding caused by moving closer, and meteorological conditions where back calculation may not be accurate.

A measurement of $L_{A1,1minute}$ corresponds to the highest noise level generated for 0.6 second during one minute. In practical terms this is the highest noise level, or L_{Amax} , received from the site during the entire measurement period (i.e. the highest level of the worst minute during the 15 minute measurement).

Often extraneous noise events (for example, road traffic pass-bys and dogs) interfere with the measurement of site noise levels in the frequency range of interest. Where required, the sound level meter is paused during these occurrences to aid in quantification of the site only $L_{Aeq,15minute}$ level.

3.3 Modifying Factors

All measurements were evaluated for potential modifying factors in accordance with the NPfI. Specific methodology for assessment of each modifying factor is outlined in Fact Sheet C of the NPfI.

Assessment of modifying factors is undertaken at the time of measurement if the site was audible and directly quantifiable, such that the site-only L_{Aeq} was not "NM" or less than a maximum cut off value (e.g. "<20 dB" or "<30 dB").

If applicable, modifying factors have been reported and added to measured site-only L_{Aeq} noise levels when meteorological conditions satisfied requirements for site noise criteria to be applicable. Low-frequency modifying factors have only been applied to site-only L_{Aeq} levels if WCM/WCRS was the only contributing low-frequency noise source.

3.4 Meteorological Data

Meteorological data was obtained from the WCM meteorological station; this was logged at 10-minute intervals. Atmospheric parameters include wind speed, wind direction, rainfall and sigma theta. When meteorological data is provided in less than 15 minute intervals, an analysis must be conducted to determine the meteorological conditions present for the majority of each measurement period and whether those conditions result in noise criteria being applicable or not.

3.5 Attended Noise Monitoring Equipment

Equipment used to measure environmental noise levels are listed in Table 3.1. Calibration certificates are provided in Appendix B.

Table 3.1: ATTENDED NOISE MONITORING EQUIPMENT

Model	Serial Number	Calibration Due Date
Rion NA-28 sound level analyser	30131882	08/02/2023
Pulsar 105 acoustic calibrator	78226	08/02/2023

4 RESULTS

4.1 Total Measured Noise Levels

Overall noise levels measured at each location during attended measurements are provided in Table 4.1. Discussion as to the noise sources responsible for these measured levels is provided in Section 5 of this report.

Location	Start Date and Time	L _{Amax} dB	L _{A1} dB	L _{A10} dB	L _{Aeq} dB	L _{A50} dB	L _{A90} dB	L _{Amin} dB
N01	10/08/2021 22:54	50	41	39	37	36	34	32
N16	05/08/2021 23:09	64	56	41	43	29	22	20
N20A	06/08/2021 00:13	40	31	24	21	18	17	16
N21	10/08/2021 22:15	49	45	41	39	38	36	34
N26	05/08/2021 23:46	43	32	26	23	19	17	16

Table 4.1: MEASURED NOISE LEVELS – AUGUST 2021¹

Notes:

1. Levels in this table are not necessarily the result of activity at WCM or WCRS.

4.2 Modifying Factors

Measured site-only levels were assessed for the applicability of modifying factors in accordance with the NPfI and methodology described in Section 3.3.

There were no modifying factors, as defined in the NPfI, applicable during the survey.

4.3 Attended Noise Monitoring

Table 4.2 to Table 4.3 detail noise levels from WCM in the absence of other noise sources. Noise criteria are applicable if weather conditions during the measurement were within parameters outlined in the WCM development consent.

Table 4.2: LAeq,15minute GENERATED BY WCM AGAINST PROJECT APPROVAL METEOROLOGICAL CONDITIONS – AUGUST 2021

Location	Start Date and Time	Wind Speed m/s	5	Criterion L _{Aeq,15min} dB	Criterion Applies? ²	WCM L _{Aeq,15min} dB ^{3,4}	Exceedance 4,5
N01	10/08/2021 22:54	0.6	Е	38	Yes	IA	Nil
N16	05/08/2021 23:09	0.7	Ε	35	Yes	IA	Nil
N20A	06/08/2021 00:13	0.3	F	35	Yes	IA	Nil
N21	10/08/2021 22:15	0.6	F	39	Yes	IA	Nil
N26	05/08/2021 23:46	1.0	D	35	Yes	IA	Nil

Notes:

1. Stability Class calculated using sigma theta method provided by NPfI;

2. Noise emission limits identified in the above table apply under all meteorological conditions except wind speeds greater than 3 m/s at 10 metres above ground level; or stability category F temperature inversion conditions and wind speeds greater than 2 m/s at 10 metres above ground level, or stability category G temperature inversion conditions;

- 3. Site-only LAeq,15minute attributed to WCM, including modifying factors if applicable;
- 4. Bold results in red indicate an exceedance of relevant criterion; and

5. NA in exceedance column means atmospheric conditions outside conditions specified in development consent, therefore criterion was not applicable, or there is no applicable criterion.

Table 4.3: LA1.1minute GENERATED BY WCM AGAINST PROJECT APPROVAL METEOROLOGICAL CONDITIONS – AUGUST 2021

Location	Start Date and Time	Wind Speed m/s	Stability Category ¹	Criterion L _{A1,1min} dB	Criterion Applies? ²	WCM L _{A1,1min} dB ^{3,4}	Exceedance 4,5
N01	10/08/2021 22:54	0.6	Е	48	Yes	IA	Nil
N16	05/08/2021 23:09	0.7	Е	45	Yes	IA	Nil
N20A	06/08/2021 00:13	0.3	F	45	Yes	IA	Nil
N21	10/08/2021 22:15	0.6	F	49	Yes	IA	Nil
N26	05/08/2021 23:46	1.0	D	45	Yes	IA	Nil

Notes:

1. Stability Class calculated using sigma theta method provided by NPfl;

2. Noise emission limits identified in the above table apply under all meteorological conditions except wind speeds greater than 3 m/s at 10 metres above ground level; or stability category F temperature inversion conditions and wind speeds greater than 2 m/s at 10 metres above ground level, or stability category G temperature inversion conditions;

- 3. Site-only LA1,1minute attributed to WCM;
- 4. Bold results in red indicate an exceedance of relevant criterion; and
- 5. NA in exceedance column means atmospheric conditions outside conditions specified in development consent, therefore criterion was not applicable, or there is no applicable criterion.

4.4 Atmospheric Conditions

Atmospheric condition data measured by the operator during each measurement using a Kestrel hand-held weather meter is shown in Table 4.4. The wind speed, direction and temperature were measured at approximately 1.8 metres. Attended noise monitoring is not undertaken during rain, hail, or wind speeds above 5 m/s at microphone height.

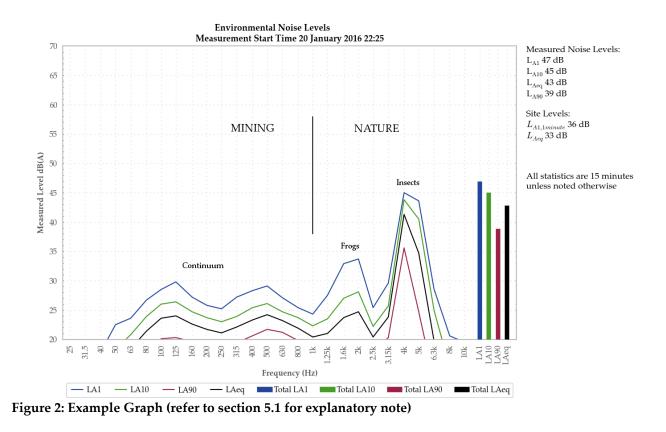
Location	Start Date and Time	Temperature ° C	Wind Speed m/s	Wind Direction [°] Magnetic North ¹	Cloud Cover 1/8s
N01	10/08/2021 22:54	8	0.0	-	1
N16	05/08/2021 23:09	7	0.0	-	0
N20A	06/08/2021 00:13	8	0.0	-	0
N21	10/08/2021 22:15	10	0.0	-	3
N26	05/08/2021 23:46	7	1.0	170	0

Table 4.4: MEASURED ATMOSPHERIC CONDITIONS – AUGUST 2021

Notes:

1. "-" indicates calm conditions at monitoring location.

Meteorological data used for compliance assessment is sourced from the WCM AWS.


5 DISCUSSION

5.1 Noted Noise Sources

During attended monitoring, the time variations (temporal characteristics) of noise sources are taken into account in each measurement via statistical descriptors. From these observations, summaries have been derived for each location and provided in this chapter. Statistical 1/3 octave-band analysis of environmental noise was undertaken and the following figures display frequency ranges of various noise sources at each location for L_{A1} , L_{A10} , L_{Aeq} , L_{A50} and L_{A90} descriptors. These figures also provide, graphically, statistical information for these noise levels.

An example is provided as Figure 2 where it can be seen that frogs and insects are generating noise at frequencies above 1000 Hz while mining noise is at frequencies less than 1000 Hz, which is typical. Adding levels at frequencies that relate to mining only allows separate statistical results to be calculated. This analysis cannot always be performed if there are significant levels of other noise at the same frequencies as mining, such as dogs, cows, or (most commonly) road traffic.

It should be noted that the method of summing statistical values up to a cut-off frequency can overstate the L_{A1} result by a small margin but is entirely accurate for L_{Aeq} .

5.1.1 NO1

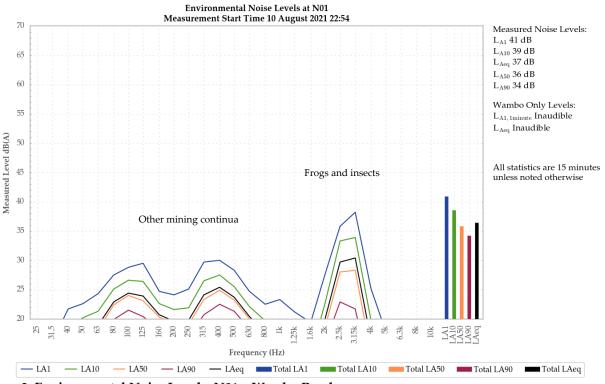


Figure 3: Environmental Noise Levels, N01 – Wambo Road

WCM was inaudible during the measurement.

Frogs and insects generated the measured L_{A1} and L_{A10} . Continua from other mining operations combined with frogs and insects to generate the measured $L_{Aeq'}$ L_{A50} , and L_{A90} .

Page 13

5.1.2 N16

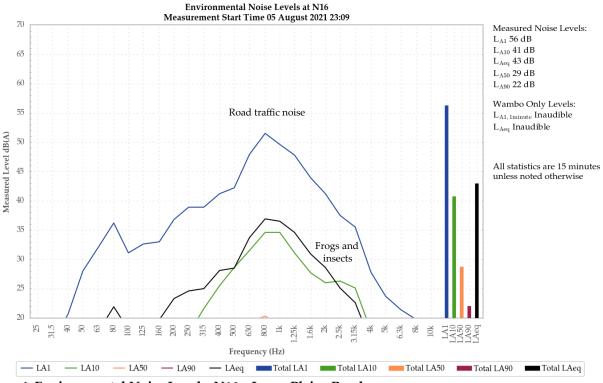


Figure 4: Environmental Noise Levels, N16 - Jerrys Plains Road

WCM was inaudible during the measurement.

Road traffic noise was responsible for the measured noise levels.

Frogs and insects were also noted.

5.1.3 N20A

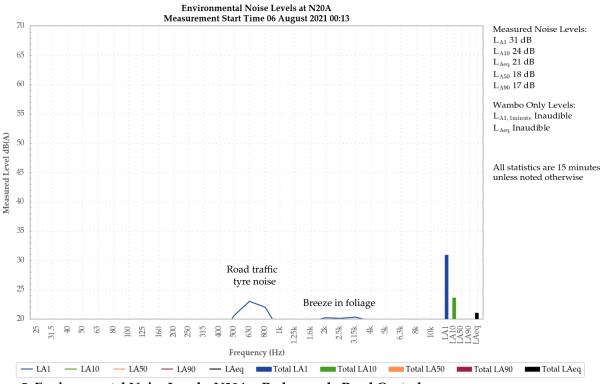


Figure 5: Environmental Noise Levels, N20A – Redmanvale Road Central

WCM was inaudible during the measurement.

Road traffic tyre noise was responsible for the measured L_{A1} and contributed to the measured L_{A10} and L_{Aeq} . Breeze in foliage also contributed to the measured L_{A10} and L_{Aeq} . Breeze in foliage and the noise floor of the measurement instrument were responsible for the measured L_{A50} and L_{A90} .

5.1.4 N21

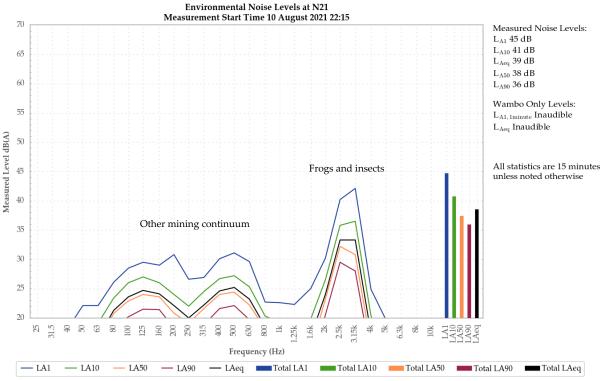


Figure 6: Environmental Noise Levels, N21 – Wambo South

WCM was inaudible during the measurement.

Frogs and insects were primarily responsible for the measured noise levels. Continuum from another mining operation contributed to the measured $L_{Aeq'} L_{A50}$, and L_{A90} .

5.1.5 N26

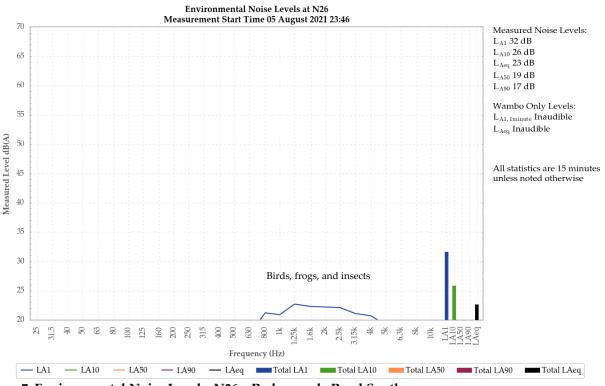


Figure 7: Environmental Noise Levels, N26 – Redmanvale Road South

WCM was inaudible during the measurement.

Birds, frogs, and insects were responsible for the measured L_{A1} and contributed to the measured L_{A10} and L_{Aeq} . Local pump noise also contributed to the measured L_{A10} and L_{Aeq} . Distant road traffic tyre noise and the noise floor of the measurement instrument were responsible for the measured L_{A50} and L_{A90} .

6 SUMMARY

Global Acoustics was engaged by WC to conduct a monthly noise survey of operations at WCM and WCRS. The purpose of the survey is to quantify and describe the existing acoustic environment and compare results with relevant limits.

Attended environmental noise monitoring described in this report was undertaken during the night of 5/6 and 10/11 August 2021 at five monitoring locations. Monitoring was not completed on the first night of monitoring due to fatigue management controls.

Noise levels from WCM and WCRS complied with relevant criteria at all monitoring locations during the August 2021 survey. Criteria may not always be applicable due to meteorological conditions at the time of monitoring.

Global Acoustics Pty Ltd

APPENDIX

A REGULATOR DOCUMENTS

A.1 WAMBO COAL MINE DEVELOPMENT CONSENT

B13. During Phase 2 and Phase 3, the Applicant must ensure that the noise generated by the Wambo Mining Complex does not exceed the criteria in Table 4 at any residence^a on privately-owned land.

Noise Assessment Area	Noise Assessment Location	Day LAeq (15 min)	Evening L _{Aeq (15 min)}	Night L _{Aeq (15 min)}	Night La1 (1 min)
	R003	38	38	38	48
Area 1 - North Bulga	R007 R379	37	37	37	47
Dunga	All other privately- owned residences	35	35	35	45
Area 2 - South	R025	39	39	39	49
Wambo	R035a	37	37	37	47
	All other privately- owned residences	35	35	35	45
Area 3 -	R019	59	59	59	69
Warkworth Village	All other privately- owned residences	44	44	43	53
All other areas	All privately- owned residences	35	35	35	45

Table 4: Operational noise criteria dB(A) for Phase 2 and Phase 3

Noise Management Plan

- B17. The Applicant must prepare a Noise Management Plan for the Wambo Mining Complex to the satisfaction of the Planning Secretary. This plan must:
 - be prepared by a suitably qualified and experienced person/s;
 - (b) be prepared in consultation with the EPA;
 - (c) describe the measures to be implemented to ensure:
 - (i) compliance with the noise criteria and operating conditions in this consent;
 - (ii) best practice management is being employed; and
 - (iii) noise impacts of the development are minimised during noise-enhancing meteorological conditions under which the noise criteria in this consent do not apply (see Appendix 5);
 - seek to minimise road traffic noise generated by employee commuter vehicles on public roads;
 - (e) describe the noise management system in detail; and
 - (f) include a monitoring program that:
 - uses a combination of real-time and supplementary attended monitoring to evaluate the performance of the development;
 - (ii) includes a program to calibrate and validate the real-time noise monitoring results with the attended monitoring results over time;
 - (iii) adequately supports the noise management system; and
 - (iv) includes a protocol for distinguishing noise emissions between the Wambo Mining Complex and United Wambo open cut coal mine; and
 - includes a protocol for identifying any noise-related exceedance, incident or non-compliance and for notifying the Department and relevant stakeholders of any such event.
- B18. The Applicant must not commence Phase 2 until the Noise Management Plan is approved by the Planning Secretary.
- B19. The Applicant must implement the Noise Management Plan as approved by the Planning Secretary.

A.2 WAMBO RAIL SPUR DEVELOPMENT CONSENT

NOISE

Noise Operating Conditions

- B1. The Applicant must:
 - take all reasonable steps to minimise all noise associated with the development, including during noiseenhancing meteorological conditions;
 - (b) operate a noise management system commensurate with the risk of impact to ensure compliance with the relevant conditions of this consent;
 - (c) only use locomotives and rolling stock that are approved to operate on the NSW rail network in accordance with the noise limits in ARTC's EPL and use reasonable endeavours to ensure that rolling stock is selected to minimise noise;
 - use all reasonable efforts to co-ordinate noise management on the site with the noise management at Wambo mine; and
 - (e) carry out regular attended noise monitoring to determine whether the development is complying with the relevant conditions of this consent.

ACQUISITION UPON REQUEST

C1. Upon receiving a written request for acquisition from the owner of the privately-owned land^a listed in Table 3, the Applicant must acquire the land in accordance with the procedures in conditions C3 to C10, inclusive.

Table 3: Land subject to acquisition upon request

R019

^a The location of the land referred to in Table 3 is shown on the figure in Appendix 3.

A.3 ENVIRONMENT PROTECTION LICENCE 529

L5 Noise limits

L5.1 Noise generated at the premises must not exceed the noise limits presented in the table below. The noise limits in the table below represent the noise contribution from the premises.

Receiver Land Number	Day LAeq(15 minute)	Evening LAeq(15 minute)	Night LAeq(15 minute)	Night LA1(1 minute)
EPA Point 20 in NMG1	40	40	40	50
EPA Point 21 in NMG2	40	40	40	50
EPA Point 22 in NMG3	40	40	40	50
EPA Point 23 in NMG4	38	38	38	50
Residence 019	59	59	59	
Residence 003 and 025 in NMG3	40	40	40	50
Residence 016 and 039 in NMG1	40	40	40	50
Residence 029, 042 and 345 in NMG4	40	40	40	50
Residence 033 and 320 in NMG2	40	40	40	50
Residence 006 and 007 in NMG3	39	39	39	50
Residence 048 and 343	39	39	39	50
Residence 017 in NMG1	38	38	38	50
Residence 030, 035, 049, 075 and 379	38	38	38	50
Residence 346 and 348 in NMG4	38	38	38	50
Residence 344 in NMG2	37	37	37	50
Residence 043, 163, 380 and 381	37	37	37	50
All other privately owned residences in Appendix 4 of DA 305-7-2003 29 August 2019	35	35	35	50

- L5.2 Limits and Residences referenced in condition L5.1 are from Appendix 4 and Table 3 Phase 1 in DA 305-7-2003 dated 29 August 2019 (EPA Reference DOC19/1117963).
- L5.3 Noise monitoring groups (NMG) referenced in Condition 5.1 are from the document titled "Wambo Coal Mine Noise Monitoring Groups Noise Modelling Evaluation" Global Acoustics dated 16 August 2019, EPA Reference DOC19/704212.
- L5.4 For the purpose of Condition L5.1:
 a) Day is defined as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays;
 - b) Evening is defined as the period from 6pm to 10pm; and

c) Night is defined as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sundays and Public Holidays.

- L5.5 The noise limits set out in condition L5.1 apply under all meteorological conditions except for the following:
 - a) Wind speeds greater than 3 metres/second at 10 metres above the ground level;
 - b) Stability category F temperature inversion conditions and wind speeds greater than 2 metres/second at 10 metres above ground level; or
 - c) Stability category G temperature inversion conditions.
- L5.6 For the purposes of condition L5.5:

 a) Data recorded by the closest and most representative meteorological station installed on the premises at EPA Identification Point 17 must be used to determine meteorological conditions; and

b) Temperature inversion conditions (stability category) are to be determined by the methods referred to in Fact Sheet D of the Noise Policy for Industry (2017).

M9 Noise monitoring

M9.1 To assess compliance with the noise limits specified within this licence, the licensee must undertake operator attended noise monitoring at each specified noise monitoring point in accordance with the table below.

POINT 20,21,22,23

Assessment period	Minimum frequency in a	Minimum duration within	Minimum number of
	reporting period	assessment period	assessment period
Night	Monthly	15 minutes	1 operation day

M9.2 To assess compliance with condition L5.1, attended noise monitoring must be undertaken in accordance with Conditions L5.4 to L5.6:

a) at the EPA points 20,21,22 and 23 identified in P1.3;

b) occur every calendar month in a reporting period; and

c) occur during one night time period as defined in the Noise Policy for Industry 2017 for a minimum of 15 minutes at each location from a), and when relevant b) during the night.

M9.3 For the purposes of compliance monitoring and determining the noise generated at the premises the modification factors in the EPA's Fact Sheet C of the Noise Policy for Industry (2017) must be applied, as appropriate, to the noise levels measured by noise monitoring equipment.

Definitions

Noise refers to 'sound pressure levels' for the purpose of conditions L5.1 to L5.6 and condition M10.

A.4 WCM Noise Management Plan

5.0 Noise Monitoring Program

5.1 Attended Noise Monitoring

WCPL attended noise monitoring is carried out monthly. The monitoring is conducted by a WCPL appointed acoustic specialist who measures and describes the acoustic environment at each attended monitoring location. The attended noise monitoring results are compared with noise impact assessment criteria (as defined in Section 3.1) to assess compliance. Attended noise monitoring is considered the preferred method for determining compliance with prescribed limits because it allows for an accurate determination of the contribution, if any, made by industrial noise sources to measured ambient noise levels.

Operator attended noise measurements are conducted during night period³ operations to quantify noise emissions from WCPL as well as the overall level of ambient noise.

Noise levels (LA_{max} and LA_{eq}) from the Mine are quantified over a 15 minute measurement period. In addition, the overall levels of ambient noise (i.e. LA_{max}, LA₁, LA₁₀, LA₆₀, LA₆₀, and LA_{eq}) over the 15 minute period will be quantified and characterised.

Attended noise monitoring will be conducted at a representative location in accordance with the NPfI and Australian Standard AS 1055 'Acoustics, Description and Measurement of Environmental Noise'.

Attended noise monitoring is undertaken at five locations as shown in Table 5. The attended noise monitoring network locations have been strategically chosen to provide sufficiently appropriate noise monitoring coverage (refer to Figure 5).

Noise Assessment	Site Ref	EPL529 ID	Description	Co-	roximate ordinates A 94, z56)	Representative
Area'				Easting	Northing	Addresses
1	N01	N/A	North Bulga	313352	6388696	3, 7, 379
2	N21	22	South Wambo	310586	6390149	25, 35a
· · .	N16	20	Jerrys Plains Road	306000	6399785	Privately owned residences near Jerry's Plains
	N20A	21	Redmanvale Road Central	304666	6399100	Privately owned residences near Jerry's Plains
	N26	23	Redmanvale Road South	304172	6396160	Privately owned residences near Jerry's Plains

Table 5: Attended Noise Monitoring Locations

Notes for Table 5

' The Noise Assessment Areas are shown on Figure 5

³In general, weather enhancing conditions are more likely to occur at night which has the greatest potential to cause an exceedance. This approach is consistent with the *NSW Draft Guidelines: Mining Noise Monitoring Application Note*. However WCPL will review the data in accordance with this Noise Management Plan to determine if there are compelling reasons to revert back to day time attended monitoring. Please note that evening and night time noise level criteria are the same.

Measurement of rail pass-by noise levels was removed from the monitoring program in Version 5 of the NMP, following a demonstrated history of compliance. Monitoring will be recommenced if triggered by complaint or change in rolling stock used to transport coal from WCPL.

Meteorological data from the WCPL meteorological station will be utilised to correlate atmospheric parameters and measured noise levels. Ground level atmospheric condition measurement is also undertaken during attended monitoring. Noise criteria only apply in meteorological conditions specified in the conditions. A detailed Compliance Assessment Methodology has been developed to determine the individual noise contributions of the separate United Wambo and Wambo operations (Section 6.1).

Modifying factors will be assessed in accordance with the NPfl.

APPENDIX

B CALIBRATION CERTIFICATES

	Acousti Researc Labs my L	h Nort	36/14 Loyalty Rd h Rocks NSW AU 61294840800 A.E w.acousticrese	N. 65 160 399 119	
		nd Lev	vel Meter		
			Certificat	۵	
	Calibration Nur			C	
	Cambration Hur		.1056		
	Client De	12/	bal Acoustics Pty Lto 6 Huntingdale Drive prnton NSW 2322		
Equ	ipment Tested/ Model Num		n NA-28		
	Instrument Serial Num Microphone Serial Num		31882 39		
	Pre-amplifier Serial Num				
Ambient 7 Relati	Atmospheric ConditionsFemperature :23.5°Cve Humidity :46.7%tric Pressure :100.28kPa		Ambier Rel	ative Humidity: 47.	3°C 7%).25kPa
Calibration Tee Calibrati	chnician : Jeff Yu ion Date : 8 Feb 2021		Secondary Che Report Issue Dat	ck: Max Moore	
		ory :	Secondary Che	ck: Max Moore te: 9 Feb 2021	en Willi
Calibrati	ion Date : 8 Feb 2021 Approved Signat racteristic Tested	Result	Secondary Che Report Issue Dat Report Issue Dat Clause and Char	ck: Max Moore te : 9 Feb 2021 Ke acteristic Tested	en Willi Re
Calibrati Clause and Chan 12: Acoustical Sig.	ion Date : 8 Feb 2021 Approved Signat	12	Secondary Che Report Issue Dat Clause and Char 17: Level linearity in	ck: Max Moore te: 9 Feb 2021 Ke acteristic Tested cl. the level range control	
Calibrati Clause and Char 12: Acoustical Sig. 13: Electrical Sig. t 14: Frequency and t	ion Date : 8 Feb 2021 Approved Signate acteristic Tested tests of a frequency weighting ests of frequency weightings time weightings at 1 kHz	Result Pass Pass Pass	Secondary Che Report Issue Dat Clause and Char 17: Level linearity in 18: Toneburst respor 19: C Weighted Peak	ck: Max Moore te : 9 Feb 2021 Ke acteristic Tested cl. the level range control se Sound Level	Re Pi Pi
Calibrati Clause and Char 12: Acoustical Sig. 13: Electrical Sig. ti 14: Frequency and 15: Long Term Stat	ion Date : 8 Feb 2021 Approved Signate acteristic Tested tests of a frequency weighting ests of frequency weightings time weightings at 1 kHz	Result Pass Pass	Secondary Che Report Issue Dat Clause and Char 17: Level linearity in 18: Toneburst respon	ck: Max Moore te : 9 Feb 2021 Ke acteristic Tested cl. the level range control ise Sound Level ion	Re Pi Pi Pi
Calibrati Clause and Char 12: Acoustical Sig. 13: Electrical Sig. to 14: Frequency and 15: Long Term Stat 16: Level linearity of	ion Date : 8 Feb 2021 Approved Signate racteristic Tested tests of a frequency weighting ests of frequency weightings time weightings at 1 kHz on the reference level range r submitted for testing has successful	Result Pass Pass Pass Pass Pass Pass	Secondary Che Report Issue Dat Clause and Char 17: Level linearity in 18: Toneburst respon 19: C Weighted Peak 20: Overload Indicat 21: High Level Stabi	ck: Max Moore te : 9 Feb 2021 Ke acteristic Tested cl. the level range control se Sound Level ion lity	Re P P P P
Calibrati Clause and Char 12: Acoustical Sig. 13: Electrical Sig. to 14: Frequency and 1 15: Long Term Stat 16: Level linearity of The sound level mete As public evidence performed in accord	ion Date : 8 Feb 2021 Approved Signate racteristic Tested tests of a frequency weighting ests of frequency weightings time weightings at 1 kHz on the reference level range r submitted for testing has successful	Result Pass Pass Pass Pass Pass ly completed i nder which the esting organis sonstrate that th	Secondary Che Report Issue Dat Clause and Char 17: Level linearity in 18: Toneburst respor 19: C Weighted Peak 20: Overload Indicat 21: High Level Stabi the class 1 periodic tests of tests were performed. ation responsible for approc	ck: Max Moore te : 9 Feb 2021 Ke acteristic Tested cl. the level range control se Sound Level ion lity TEC 61672-3:2013, for the e ving the results of pattern eva ter fully conformed to the rec	Re Pa Pa Pa Pa nvironme
Calibrati Clause and Char 12: Acoustical Sig. 13: Electrical Sig. to 14: Frequency and 1 15: Long Term Stat 16: Level linearity of The sound level mete As public evidence performed in accorda IEC 61672-	ion Date : 8 Feb 2021 Approved Signation acteristic Tested tests of a frequency weighting ests of frequency weightings ime weightings at 1 kHz billity on the reference level range r submitted for testing has successful conditions u was available, from an independent to unce with IEC 61672-22013, to demu 1:2013, the sound level meter submitting test of the submitting of the submitting of the submitting test of the submitting of the submitting of the submitting test of the submitting of the submitt	Result Pass Pass Pass Pass Pass Pass Pass Pas	Secondary Che Report Issue Dat Clause and Char 17: Level linearity in 18: Toneburst respor 19: C Weighted Peak 20: Overload Indicat 21: High Level Stabi the class 1 periodic tests of tests were performed. ation responsible for appro e model of sound level me conforms to the class 1 rec	ck: Max Moore te : 9 Feb 2021 Ke acteristic Tested cl. the level range control se Sound Level ion lity TEC 61672-3:2013, for the e ving the results of pattern eva ter fully conformed to the rec	Re Pr Pr Pr Pr Pr Pr Pr aluation t
Calibrati Clause and Char 12: Acoustical Sig. 1 13: Electrical Sig. 1 14: Frequency and 1 15: Long Term Stat 16: Level linearity of The sound level meter As public evidence performed in accorde IEC 61672- Acoustic Tests 125Hz	ion Date : 8 Feb 2021 Approved Signation acteristic Tested tests of a frequency weighting ests of frequency weightings sets of frequency weightings inter weightings at 1 kHz billity on the reference level range r submitted for testing has successful conditions u was available, from an independent to unce with IEC 61672-22013, to demu 1:2013, the sound level meter submitt Least T ±0.12dB	Result Pass Pass Pass Pass Pass Pass Pass Pas	Secondary Che Report Issue Dat Clause and Char 17: Level linearity in 18: Toneburst respor 19: C Weighted Peak 20: Overload Indicat 21: High Level Stabi the class 1 periodic tests of tests were performed. ation responsible for appro- e model of sound level me conforms to the class 1 reconforms to the class 1 reconforms to the class 1 reconformed.	ck: Max Moore te : 9 Feb 2021 Ke acteristic Tested cl. the level range control se Sound Level ion lity TEC 61672-3:2013, for the e ving the results of pattern eva ter fully conformed to the ree juirements of IEC 61672-1:20 $\pm 0.2^{\circ}C$	Re Pa Pa Pa Pa nvironme
Calibrati Clause and Char 12: Acoustical Sig. 13: Electrical Sig. ti 14: Frequency and ti 15: Long Term Stat 16: Level linearity of The sound level mete As public evidence performed in accorda IEC 61672- Acoustic Tests 125Hz 1kHz 8kHz	ion Date : 8 Feb 2021 Approved Signation racteristic Tested tests of a frequency weighting sets of frequency weightings time weightings at 1 kHz bility on the reference level range r submitted for testing has successful conditions u was available, from an independent to unce with IEC 61672-2:2013, to demo 1:2013, the sound level meter submitted ±0.12dB ±0.12dB ±0.13dB	Result Pass Pass Pass Pass Pass Pass Pass Pas	Secondary Che Report Issue Dat Clause and Char 17: Level linearity in 18: Toneburst respor 19: C Weighted Peak 20: Overload Indicat 21: High Level Stabi the class 1 periodic tests of tests were performed. ation responsible for appro e model of sound level me conforms to the class 1 reconforms to the class 1 reconformation of Measurement - ronmental Conditions	ck: Max Moore te : 9 Feb 2021 Ke acteristic Tested cl. the level range control ise Sound Level ion lity TEC 61672-3:2013, for the e ving the results of pattern eva ter fully conformed to the req juirements of IEC 61672-1:20	Re Pr Pr Pr Pr Pr Pr Pr aluation t
Calibrati Clause and Char 12: Acoustical Sig. 1 13: Electrical Sig. 1 14: Frequency and 1 15: Long Term Stat 16: Level linearity of The sound level mete As public evidence performed in accorda IEC 61672- Acoustic Tests 125Hz 1kHz	ion Date: 8 Feb 2021 Approved Signation racteristic Tested tests of a frequency weighting ests of frequency weightings ime weightings at 1 kHz bility on the reference level range r submitted for testing has successful conditions u was available, from an independent to ince with IEC 61672-2:2013, to demo 1:2013, the sound level meter submitted ±0.12dB ±0.12dB ±0.12dB	Result Pass Pass Pass Pass Pass Pass Pass Pas	Secondary Che Report Issue Dat Clause and Char 17: Level linearity in 18: Toneburst respor 19: C Weighted Peak 20: Overload Indicat 21: High Level Stabi the class 1 periodic tests of tests were performed. ation responsible for appro- e model of sound level me conforms to the class 1 reconforms to the class 1 reconforms to the class 1 reconformed.	ck: Max Moore te : 9 Feb 2021 Ke acteristic Tested cl. the level range control se Sound Level ion lity TEC 61672-3:2013, for the e ving the results of pattern eva ter fully conformed to the ree juirements of IEC 61672-1:20 ±0.2°C ±2.4%	Re P P P P P nvironma
Calibrati Clause and Char 12: Acoustical Sig. 13: Electrical Sig. ti 14: Frequency and ti 15: Long Term Stat 16: Level linearity of The sound level mete As public evidence performed in accorda IEC 61672- Acoustic Tests 125Hz 1kHz 8kHz	ion Date : 8 Feb 2021 Approved Signation racteristic Tested tests of a frequency weighting sets of frequency weightings time weightings at 1 kHz bility on the reference level range r submitted for testing has successful conditions u was available, from an independent to unce with IEC 61672-2:2013, to demo 1:2013, the sound level meter submitted ±0.12dB ±0.12dB ±0.13dB	Result Pass Pass Pass Pass Pass Pass Pass Pas	Secondary Che Report Issue Dat Clause and Char 17: Level linearity in 18: Toneburst respor 19: C Weighted Peak 20: Overload Indicat 21: High Level Stabi the class 1 periodic tests of tests were performed. ation responsible for appro- e model of sound level me conforms to the class 1 reconforms to the class 1 reconformental Conditions Temperature Relative Humidity Barometric Pressure	ck: Max Moore te : 9 Feb 2021 Ke acteristic Tested cl. the level range control ise Sound Level ion lity TEC 61672-3:2013, for the e ving the results of pattern eva ter fully conformed to the req juirements of IEC 61672-1:20 $\pm 0.2^{\circ}C$ $\pm 2.4\%$ $\pm 0.015kPa$	Re Pr Pr Pr Pr Pr Pr Pr aluation t

Acoustic Research Labs Pty Ltd is NATA Accredited Laboratory Number 14172. Accredited for compliance with ISO/IEC 17025 - calibration.


The results of the tests, calibrations and/or measurements included in this document are traceable to SI units

NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

PAGE 1 OF 1

já.

Global Acoustics Pty Ltd | PO Box 3115 | Thornton NSW 2322 Telephone +61 2 4966 4333 | Email global@globalacoustics.com.au ABN 94 094 985 734

PAGE 1 OF 1