# METROPOLITAN COAL LONGWALLS 311-316

# EXTRACTION PLAN









MAIN TEXT

# **Peabody**



# **METROPOLITAN COAL**

## **LONGWALLS 311-316**

## **EXTRACTION PLAN**

## **Revision Status Register**

| Section/Page/<br>Annexure | Revision<br>Number | Amendment/Addition                                                                                          | Distribution | DPHI Approval<br>Date |
|---------------------------|--------------------|-------------------------------------------------------------------------------------------------------------|--------------|-----------------------|
| All                       | EP-R01-A           | Original                                                                                                    | DPHI         | -                     |
| All                       | EP-R01-B           | Updated to reflect amendments to the<br>Longwalls 311-316 longwall layout and<br>to address agency comments | DPHI         | -                     |
| All                       | EP-R01-C           | Updated to reflect<br>Longwall 311 Approval                                                                 | DPHI         | -                     |
| All                       | EP-R01-D           | Updated to address IEAPM comments                                                                           | DPHI         | -                     |
| All                       | EP-R01-E           | Updated to include Giant Dragonfly<br>Monitoring Program                                                    | DPHI         | -                     |

### **TITLE BLOCK**

Applicant Peabody Energy Australia Pty Ltd

Mine Metropolitan Colliery

Project Approval Project Approval 08\_0149

Mining Leases Consolidated Coal Lease 703

Mining Lease 1610 Mining Lease 1702 Coal Lease 379

Mining Purpose Lease 320

Helde

Title Metropolitan Coal Longwalls 311-316 Extraction Plan

**Date** 16 July 2025

**Document Reference Number** EP-R01-E

General Description Management of potential subsidence effects,

subsidence impacts and environmental consequences during the mining of Longwalls 311-316 at Metropolitan Coal

Name of Authorised Representative Jon Degotardi

Title of Authorised Representative Approvals Manager

Signature of Authorised Representative

Name of Mining Engineering Manager Brenton Vermeulen

Signature of Mining Engineering

Manager

Name of General Manager James Hannigan

Signature of General Manager

Date of Signatures 16 July 2025

| Metropolitan Coal                                        | - Longwalls 311-316 Extraction Plan |  |
|----------------------------------------------------------|-------------------------------------|--|
| Revision No. EP-R01-E                                    | Page i                              |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                                     |  |

#### OVERVIEW AND SUMMARY OF COMMITMENTS

This document is an Extraction Plan that outlines the proposed management, mitigation, monitoring and reporting of potential subsidence impacts and environmental consequences from the secondary extraction of Longwalls 311 to 316 at the Metropolitan Colliery (Metropolitan Coal Mine).

The table on page iii summarises the surface and sub-surface features within the vicinity of Longwalls 311-316 and the relevant section of this Extraction Plan that details the management measures and monitoring for each feature.

The Trigger Action Response Plans (TARPs) provided in the component management plans will be further developed as this Extraction Plan is reviewed and revised. Table 18 of this Extraction Plan is designed to support both the TARPs in the component management plans and clearly outline actions and levels of responsibility within Metropolitan Collieries Pty Ltd (Metropolitan Coal).

In accordance with the Development Consent, Metropolitan Coal must ensure that underground mining complies with the subsidence impact performance measures outlined below. This Extraction Plan has been developed to meet these subsidence impact performance measures.

#### **Subsidence Impact Performance Measures**

| Water Resources                                                                                                                    |                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Catchment yield to the Woronora Reservoir                                                                                          | Negligible reduction to the quality or quantity of water resources reaching the Woronora Reservoir                                                                                                                 |
|                                                                                                                                    | No connective cracking between the surface and the mine                                                                                                                                                            |
| Woronora Reservoir                                                                                                                 | Negligible leakage from the Woronora Reservoir                                                                                                                                                                     |
|                                                                                                                                    | Negligible reduction in the water quality of Woronora Reservoir                                                                                                                                                    |
| Watercourses                                                                                                                       |                                                                                                                                                                                                                    |
| Waratah Rivulet between the full supply level<br>of the Woronora Reservoir and the maingate<br>of Longwall 23 (upstream of Pool P) | Negligible environmental consequences (that is, no diversion of flows, no change in the natural drainage behaviour of pools, minimal iron staining, and minimal gas releases)                                      |
| Eastern Tributary between the full supply level of the Woronora Reservoir and the maingate of Longwall 26                          | Negligible environmental consequences over at least 70% of the stream length (that is no diversion of flows, no change in the natural drainage behaviour of pools, minimal iron staining and minimal gas releases) |
| Biodiversity                                                                                                                       |                                                                                                                                                                                                                    |
| Threatened species, populations, or ecological communities                                                                         | Negligible impact                                                                                                                                                                                                  |
| Swamps 76, 77 and 92                                                                                                               | Set through condition 4 below                                                                                                                                                                                      |
| Land                                                                                                                               |                                                                                                                                                                                                                    |
| Cliffs                                                                                                                             | Less than 3% of the total length of cliffs (and associated overhangs) within the mining area experience mining-induced rock fall                                                                                   |
| Heritage                                                                                                                           |                                                                                                                                                                                                                    |
| Aboriginal heritage sites                                                                                                          | Less than 10% of Aboriginal heritage sites within the mining area are affected by subsidence impacts                                                                                                               |
| Items of historical or heritage significance at the Garrawarra Centre                                                              | Negligible damage (that is fine or hairline cracks that do not require repair), unless the owner of the item and the appropriate heritage authority agree otherwise in writing                                     |
| Built Features                                                                                                                     |                                                                                                                                                                                                                    |
| Built features                                                                                                                     | Safe, serviceable and repairable, unless the owner agrees otherwise in writing                                                                                                                                     |

Source: After Table 1 of the Project Approval (PA 08\_0149).

| Metropolitan Coal – Longwa                               | alls 311-316 Extraction Plan |
|----------------------------------------------------------|------------------------------|
| Revision No. EP-R01-E                                    | Page ii                      |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                              |

## Summary of Surface and Sub-surface Features and Relevant Extraction Plan Reference

| Feature                                                                                     | Section/Management Plan Reference                |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Natural Features                                                                            |                                                  |  |
| Streams                                                                                     | Section 4.2.1 and WMP (Appendix A)               |  |
| Cliffs and overhangs, Steep Slopes and Land in General (including rock ledges and outcrops) | Section 4.2.2 and LMP (Appendix B)               |  |
| Upland Swamps                                                                               | Section 4.2.3 and BMP (Appendix C)               |  |
| Natural Vegetation                                                                          |                                                  |  |
| Public Utilities and Other Infrastructure                                                   |                                                  |  |
| Woronora Reservoir                                                                          | Section 4.2.1 and WMP (Appendix A)               |  |
| Exploration Boreholes                                                                       |                                                  |  |
| Survey Control Marks                                                                        | Section 4.1.1 and Subsidence Report (Appendix H) |  |
| Fire Trails and Vehicular Tracks                                                            | Sections 4.2.2 and LMP (Appendix B)              |  |
| Areas of Archaeological and/or Heritage Significance                                        |                                                  |  |
| Known Aboriginal Heritage Sites                                                             | Section 4.2.4 and HMP (Appendix D)               |  |

| Metro                                                    | politan Coal – Longwalls 311-316 Extractio | n Plan   |
|----------------------------------------------------------|--------------------------------------------|----------|
| Revision No. EP-R01-E                                    |                                            | Page iii |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                                            |          |

## **TABLE OF CONTENTS**

| Section  |            |                                                                                                                                    | <u>Page</u> |
|----------|------------|------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1        | INTROD     | UCTION                                                                                                                             | 1           |
|          | 1.1        | PURPOSE AND SCOPE                                                                                                                  | 1           |
|          | 1.2        | STRUCTURE OF THE EXTRACTION PLAN                                                                                                   | 4           |
|          | 1.3        | MINE PLANNING AND DESIGN                                                                                                           | 7           |
|          |            | 1.3.1 Geology and Stratigraphy                                                                                                     | 7           |
|          |            | 1.3.2 Mining Geometry                                                                                                              | 11          |
|          |            | 1.3.3 Mining Method                                                                                                                | 13          |
|          |            | 1.3.4 Mining Parameters                                                                                                            | 13          |
|          |            | <ul><li>1.3.5 Mining Schedule</li><li>1.3.6 Previous and Future Mining</li></ul>                                                   | 13<br>14    |
| 2        | DEVELO     | DPMENT OF THE EXTRACTION PLAN                                                                                                      | 15          |
| _        | 2.1        | PLAN DEVELOPMENT                                                                                                                   | 15          |
|          |            | 2.1.1 Statutory Requirements                                                                                                       | 15          |
|          | 2.2        | RISK ASSESSMENTS                                                                                                                   | 17          |
|          |            | 2.2.1 Environmental Risk Assessment                                                                                                | 17          |
|          |            | 2.2.2 Risk Assessment on Geological Features with Potential to Affect Wat                                                          | ter         |
|          |            | Quantity Available to Woronora Reservoir and Aboriginal Heritage                                                                   | 19          |
|          |            | 2.2.3 Public Safety Management Plan Risk Assessment                                                                                | 19          |
|          | 2.3        | REVIEW OF RELEVANT INFORMATION OBTAINED SINCE PROJECT APPROVAL                                                                     | 20          |
|          | 2.4        | CONSULTATION                                                                                                                       | 24          |
|          | ۷.٦        | 2.4.1 NSW Government Agencies                                                                                                      | 24          |
|          |            | 2.4.2 Landholders                                                                                                                  | 25          |
|          |            | 2.4.3 Aboriginal Groups                                                                                                            | 26          |
|          |            | 2.4.4 Infrastructure Owners                                                                                                        | 26          |
|          |            | 2.4.5 Public Consultation                                                                                                          | 26          |
| 3        |            | ENCE ASSESSMENT                                                                                                                    | 28          |
|          | 3.1        | SUBSIDENCE PREDICTIONS                                                                                                             | 28          |
|          |            | 3.1.1 Review Of Predictions                                                                                                        | 30          |
|          |            | <ul><li>3.1.1.1 Predicted Subsidence Effects and Subsidence Impacts</li><li>3.1.1.2 Potential Environmental Consequences</li></ul> | 30<br>31    |
|          | 3.2        | SUBSIDENCE IMPACT PERFORMANCE MEASURES                                                                                             | 32          |
|          | 3.3        | SUBSIDENCE MANAGEMENT APPROACH                                                                                                     | 33          |
| 4        |            | DRING PROGRAMS                                                                                                                     | 40          |
| ·        | 4.1        | SUBSIDENCE MONITORING PROGRAM                                                                                                      | 40          |
|          | 7.1        | 4.1.1 Subsidence Monitoring                                                                                                        | 40          |
|          |            | 4.1.2 Survey Accuracy and Frequency                                                                                                | 41          |
|          |            | 4.1.3 Subsidence Effects Recording and Reporting                                                                                   | 42          |
|          | 4.2        | ENVIRONMENTAL MONITORING PROGRAM                                                                                                   | 42          |
|          |            | 4.2.1 Water Management                                                                                                             | 42          |
|          |            | <ul><li>4.2.1.1 Overview</li><li>4.2.1.2 Key Water Issues, Monitoring and Management Measures</li></ul>                            | 42<br>42    |
|          |            | 4.2.1.3 Assessment of Performance Indicators and Measures                                                                          | 44          |
|          |            | 4.2.1.4 Contingency Plan                                                                                                           | 47          |
|          |            | 4.2.2 Land Management                                                                                                              | 49          |
|          |            | 4.2.2.1 Overview                                                                                                                   | 49          |
|          |            | 4.2.2.2 Key Land Issues, Monitoring and Management Measures 4.2.2.3 Assessment of Performance Indicators and Measures              | 49<br>50    |
|          |            |                                                                                                                                    |             |
| Revision | No. EP-R01 | Metropolitan Coal – Longwalls 311-316 Extraction Plan  -E Pa                                                                       | ge iv       |
|          |            | ralls 311-316 Extraction Plan Main Text                                                                                            | J•          |

## **TABLE OF CONTENTS (Continued)**

|   |        |          |                    | Contingency Plan                                                      | 50       |
|---|--------|----------|--------------------|-----------------------------------------------------------------------|----------|
|   |        | 4.2.3    | Biodivers 4.2.3.1  | sity Management<br>Overview                                           | 52<br>52 |
|   |        |          | 4.2.3.1            | Key Biodiversity Issues, Monitoring and Management Measu              |          |
|   |        |          | 4.2.3.3<br>4.2.3.4 | Assessment of Performance Indicators and Measure<br>Contingency Plan  | 54<br>55 |
|   |        | 4.2.4    |                    | Management                                                            | 55       |
|   |        |          | 4.2.4.1            |                                                                       | 55       |
|   |        |          | 4.2.4.2            | Key Aboriginal Heritage Issues, Monitoring and Management<br>Measures | 56       |
|   |        |          | 4.2.4.3            | Assessment of Performance Indicators and Measure                      | 56       |
|   |        |          |                    | Contingency Plan                                                      | 57       |
|   |        | 4.2.5    |                    | tures Management                                                      | 57       |
|   |        | 4.2.6    |                    | afety Management                                                      | 57       |
|   |        |          | 4.2.6.1            | Overview                                                              | 57       |
|   |        |          | 4.2.6.2            | Key Public Safety Issues, Monitoring and Management                   |          |
|   |        |          | 4262               | Measures                                                              | 58       |
|   |        |          | 4.2.6.3<br>4.2.6.4 | Assessment of Performance Indicators and Measures Contingency Plan    | 59<br>59 |
|   |        | 4.2.7    |                    | ation Management                                                      | 60       |
|   |        | 4.2.8    |                    | ng Program Summary                                                    | 61       |
| 5 | MANAGE |          |                    | DN, REMEDIATION AND REPORTING MEASURES                                | 82       |
|   | 5.1    | ADAPTI\  | /E MANA            | GEMENT AND CONTINGENCY PLANNING                                       | 82       |
|   |        | 5.1.1    | Adaptive           | Management                                                            | 82       |
|   |        | 5.1.2    | Continge           | ency Response                                                         | 82       |
|   | 5.2    | INCIDEN  | ITS, COM           | IPLAINTS, EXCEEDANCES AND NON-COMPLIANCES                             | 83       |
|   |        | 5.2.1    | Incident I         |                                                                       | 83       |
|   |        | 5.2.2    |                    | hly Reporting                                                         | 85       |
|   |        | 5.2.3    | Annual R           | Review and End of Panel Reporting                                     | 85       |
|   |        | 5.2.4    | Complair           | nts                                                                   | 86       |
| 6 | PLAN A | DMINISTR | RATION A           | ND RESPONSIBILITIES                                                   | 87       |
|   | 6.1    | REVIEW   | OF OTH             | ER MANAGEMENT PLANS                                                   | 87       |
|   | 6.2    | REVIEW   | OF THE             | EXTRACTION PLAN                                                       | 87       |
|   | 6.3    | DISTRIB  |                    |                                                                       | 88       |
|   | 6.4    |          | SPONSIB            | ILITIES                                                               | 88       |
| _ |        |          | 51 011015          | 12.11.23                                                              |          |
| 7 | REFERE | NCES     |                    |                                                                       | 90       |
|   |        |          |                    |                                                                       |          |

## LIST OF TABLES

| Table 1 | Summary of Longwall Dimensions for Longwalls 311-316                   |
|---------|------------------------------------------------------------------------|
| Table 2 | Key Mining Parameters                                                  |
| Table 3 | Provisional Extraction Schedule                                        |
| Table 4 | Extraction Plan Requirements                                           |
| Table 5 | Maximum Predicted Subsidence, Tilt and Curvature for Longwalls 311-316 |
| Table 6 | Subsidence Impact Performance Measures                                 |
| Table 7 | Surface and Sub-surface Features                                       |

| Metropolitan Coal                                        | - Longwalls 311-316 Extraction Plan |
|----------------------------------------------------------|-------------------------------------|
| Revision No.EP-R01-E                                     | Page v                              |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                                     |

## **TABLE OF CONTENTS (Continued)**

## LIST OF TABLES (Continued)

| Table 8  | Subsidence Parameter Monitoring Components                                                  |
|----------|---------------------------------------------------------------------------------------------|
| Table 9  | Management Issues for Water Resources and Watercourses during Longwalls 311-316 Extraction  |
| Table 10 | Summary of Water Resources and Watercourses Performance Measures and Performance Indicators |
| Table 11 | Management Issues for Land during Longwalls 311-316 Extraction                              |
| Table 12 | Management Issues for Biodiversity during Longwalls 311-316 Extraction                      |
| Table 13 | Biodiversity Performance Measure and Performance Indicators                                 |
| Table 14 | Management Issues for Aboriginal Heritage during Longwalls 311-316 Extraction               |
| Table 15 | Heritage Performance Measure and Performance Indicators                                     |
| Table 16 | Management Issues for Public Safety during Longwalls 311-316 Extraction                     |
| Table 17 | Longwalls 311-316 Environmental Monitoring Program Summary                                  |
| Table 18 | Summary of Reporting Framework                                                              |
| Table 19 | Key Extraction Plan Responsibilities                                                        |
|          |                                                                                             |

## **LIST OF FIGURES**

| Figure 1   | Longwalls 311-316 and Project Underground Mining Area                                                  |
|------------|--------------------------------------------------------------------------------------------------------|
| Figure 2   | Longwalls 311-316 Layout                                                                               |
| Figure 3   | Environmental Management Structure                                                                     |
| Figure 4   | Longwalls 311-316 Geological Structures Identified at Seam Level                                       |
| Figure 5   | Known Lineaments over Longwalls 311-316 and Surrounds                                                  |
| Figure 6   | Land Ownership within 600 m of Longwalls 311-316                                                       |
| Figure 7   | Predicted Total Subsidence Contours after Longwalls 311-316                                            |
| Figure 8   | Cliffs and Overhangs, Steep Slopes and Land in General within 600 m of Longwalls 311-316 and Surrounds |
| Figure 9   | Longwalls 311-316 Vegetation Mapping                                                                   |
| Figure 10  | Longwalls 311-316 Known Aboriginal Heritage Sites                                                      |
| Figure 11a | Surface Infrastructure Over and Adjacent to the Longwalls 311-316 Study Area                           |
| Figure 11b | Surface Infrastructure Over and Adjacent to the Longwalls 311-316 Study Area                           |
| Figure 12  | Monitoring of Environmental Consequences against Performance Indicators and Measures                   |
| Figure 13  | Meteorological Sites                                                                                   |
| Figure 14  | Surface Water Quantity Sites                                                                           |
| Figure 15  | Surface Water Quality Sites                                                                            |
| Figure 16  | Groundwater Level and/or Pressure Bore Locations                                                       |

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |
|----------------------------------------------------------|---------|--|
| Revision No.EP-R01-E                                     | Page vi |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |

## **TABLE OF CONTENTS (Continued)**

## LIST OF FIGURES (Continued)

| igure 17  | Upland Swamps Groundwater Piezometer Locations |
|-----------|------------------------------------------------|
| igure 18  | Groundwater Quality Sites                      |
| igure 19  | Riparian Vegetation Monitoring Locations       |
| igure 20  | Aquatic Ecology Sampling Locations             |
| Figure 21 | Amphibian Monitoring Locations                 |

## **LIST OF ATTACHMENTS**

Attachment 1 Statutory Requirements

Attachment 2 Program to Collect Baseline Data for Future Extraction Plans

Attachment 3 Relevant Consultation Records

Attachment 4 Key Contact Register

## **LIST OF APPENDICES**

| Appendix A | Water Management Plan         |
|------------|-------------------------------|
| Appendix B | Land Management Plan          |
| Appendix C | Biodiversity Management Plan  |
| Appendix D | Heritage Management Plan      |
| Appendix E | Public Safety Management Plan |
| Appendix F | Subsidence Monitoring Program |
| Appendix G | Coal Resource Recovery Plan   |
| Appendix H | Subsidence Report             |

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No.EP-R01-E Page vii                            |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

### 1 INTRODUCTION

The Metropolitan Colliery (Metropolitan Coal Mine) is owned and operated by Metropolitan Collieries Pty Ltd (Metropolitan Coal) which is a wholly owned subsidiary of Peabody Energy Australia Pty Ltd (Peabody). It is located adjacent to the township of Helensburgh (Figure 1) and approximately 30 kilometres (km) north of Wollongong in New South Wales (NSW). Metropolitan Coal is located within Consolidated Coal Lease (CCL) 703, Mining Lease (ML) 1610 and ML 1702. Metropolitan Coal is one of the earliest established and longest continually running coal mining operations in Australia, with a history dating back to the 1880s.

Metropolitan Coal was granted approval for the Metropolitan Coal Project (the **Project**) by the Minister for Planning under section 75J of the NSW *Environmental Planning and Assessment Act 1979* (**EP&A Act**) on 22 June 2009. A copy of the Project Approval is available on the Peabody website (<a href="http://www.peabodyenergy.com">http://www.peabodyenergy.com</a>). The Project comprises the continuation, upgrade and extension of underground coal mining operations and surface facilities at Metropolitan Coal.

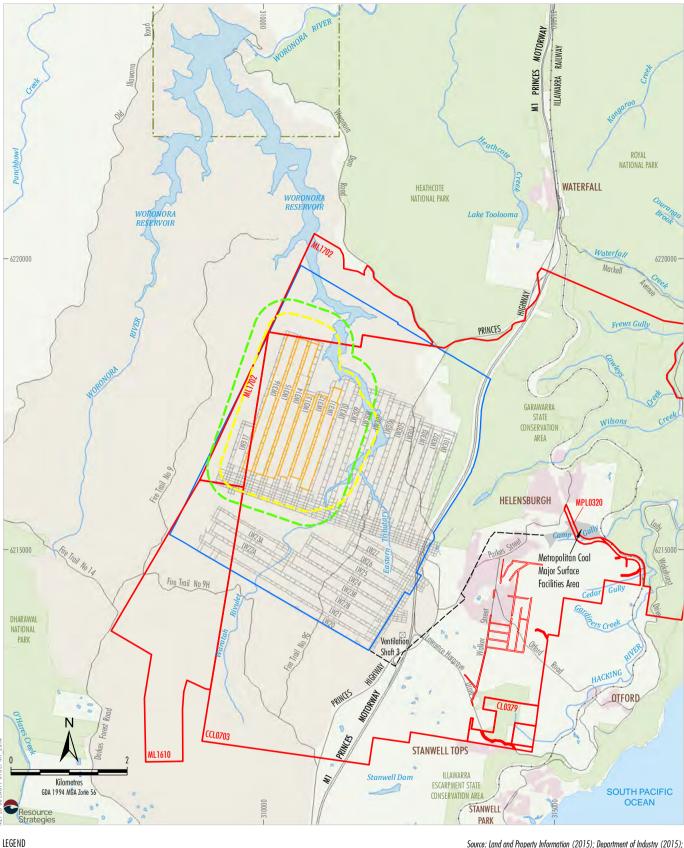
The Project involves the extraction of coal by longwall mining methods from the Bulli Seam. The potential environmental consequences of the Project were assessed in the *Metropolitan Coal Project Environmental Assessment* (the **Project EA**) (Helensburgh Coal Pty Ltd [HCPL], 2008) and the *Metropolitan Coal Project Project Report* (the **Preferred Project Report**) (HCPL, 2009).

Longwalls 311-316 are situated to the west of Longwalls 301-310 and define the next mining sub-domain within the Project underground mining area (Figures 1 and 2).

Following the submission of the March 2024 version of the Longwalls 311-316 Extraction Plan, additional in-seam exploration drilling ahead of first workings and development of first workings have proven further adverse gas and geological conditions such that would necessitate a variation to the installation face for Longwalls 311, 312 and 313 (i.e. a shortening of the longwalls). In addition, Longwalls 314, 315 and 316 have been shortened consistent with Longwalls 301 to 310 and in keeping with an observed degradation of the geological resource trending in a north-west orientation.

The revised longwall layout would reduce the secondary extraction area and, therefore, would reduce subsidence effects compared to the March 2024 version of the Longwalls 311-316 Extraction Plan. No additional subsidence or environmental impacts are anticipated due to the revised longwall layout, and in some cases, environmental impacts would be avoided or reduced.

The Longwalls 311-316 layout has been revised since the preparation of the March 2024 Subsidence Report. The updated subsidence predictions are provided in an Addendum Letter prepared by Mine Subsidence Engineering Consultants Pty Ltd (MSEC), which is provided in Appendix H.


#### 1.1 PURPOSE AND SCOPE

This Extraction Plan outlines the proposed management, mitigation, monitoring and reporting of potential subsidence impacts and environmental consequences in the Project underground mining area during the secondary extraction of Longwalls 311-316 at Metropolitan Coal.

This Extraction Plan has been prepared in consideration of the NSW Department of Planning and Environment (DPE) (now known as the Department of Planning, Housing and Infrastructure<sup>1</sup>) (2022) Extraction Plan Guideline.

The former Department of Planning and Environment (DPE) was renamed to the Department of Planning, Housing and Infrastructure (DPHI) on 1 January 2024. References to DPE have been retained throughout the remainder of this document.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |  |
|----------------------------------------------------------|--|--|--|--|
| Revision No.EP-R01-E Page 1                              |  |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |  |



Mining Lease Boundary Woronora Special Area Railway Project Underground Mining Area Longwalls 20-27 and 301-317 Longwalls 311-316 Secondary Extraction Longwalls 311-316 35° Angle of Draw and/or Predicted 20 mm Subsidence Contour 600 m from Longwalls 311-316Secondary Extraction Woronora Notification Area Existing Underground Access Drive (Main Drift)

Source: Land and Property Information (2015); Department of Industry (2015); Metropolitan Coal (2023); MSEC (2024)



M E T R O P O L I T A N COAL

> Longwalls 311-316 and **Project Underground Mining Area**



Mining Lease Boundary Woronora Special Area Project Underground Mining Area Longwalls 20-27 and 301-317 Longwalls 311-316 Secondary Extraction Longwalls 311-316 35° Angle of Draw and/or Predicted 20 mm Subsidence Contour 600 m from Longwalls 311-316 Secondary Extraction

Source: Land and Property Information (2015); Department of Industry (2015); Metropolitan Coal (2023); MSEC (2024)



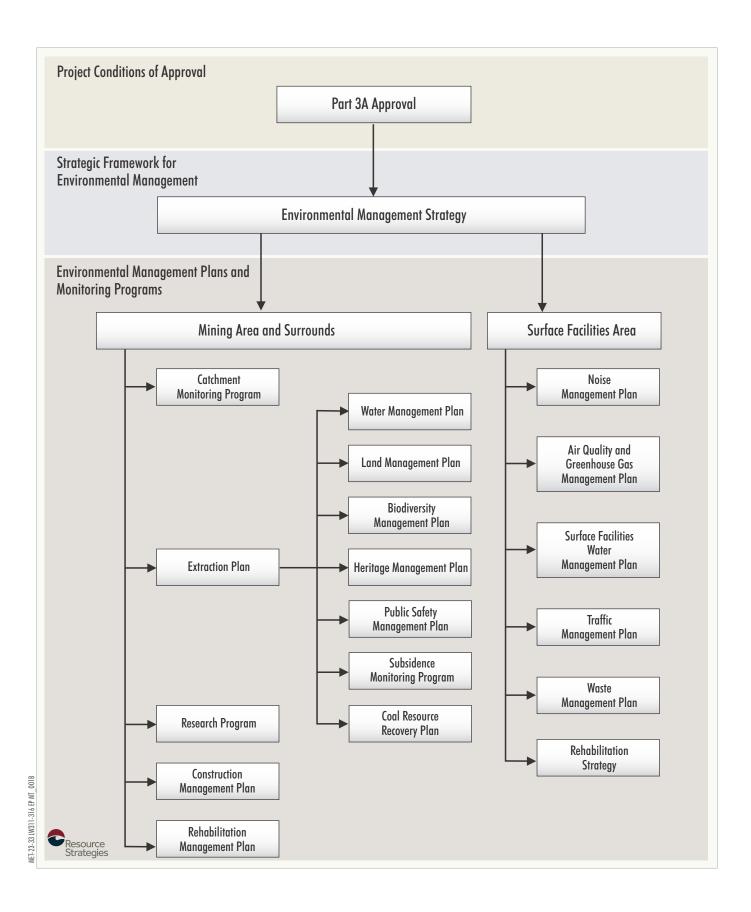
This Extraction Plan includes post-mining monitoring and management of potential subsidence impacts and environmental consequences for Longwalls 20-22, 23-27, 301-303, 304, 305-307 and 308-310. This Extraction Plan will supersede the previously approved Metropolitan Coal Longwalls 308-310 Extraction Plans consistent with the recommended approach in the DPE (2022) *Extraction Plan Guideline*.

The objectives of this Extraction Plan are to:

- provide detailed plans of Longwalls 311-316;
- outline potential subsidence effects, subsidence impacts and environmental consequences of Longwalls 311-316;
- provide a comprehensive assessment of potential subsidence impacts to Swamps 76. 77, and 92;
- describe the measures that will be implemented to manage, mitigate and remediate potential subsidence impacts and environmental consequences during the mining of Longwalls 311-316;
- detail the monitoring of subsidence effects, subsidence impacts and environmental consequences during the mining of Longwalls 311-316; and
- provide a contingency plan for subsidence impacts and environmental consequences in relation to the Project's subsidence impact performance measures.

The Extraction Plan area for Longwalls 311-316, based on a 35 degree (°) angle of draw and/or predicted 20 millimetre (mm) subsidence contour, is shown on Figures 1 and 2.

This Extraction Plan forms part of Metropolitan Coal's Environmental Management Strategy. The relationship of this Extraction Plan to the Metropolitan Coal Environmental Management Structure is shown on Figure 3.


## 1.2 STRUCTURE OF THE EXTRACTION PLAN

This Extraction Plan comprises a main text component (with Attachments) and supporting management plans and studies, which include Appendices A through to H. An overview of the Extraction Plan main text sections and Attachments is presented below:

| Section 1 | Provides an introduction to the Extraction Plan, including a description of the purpose |
|-----------|-----------------------------------------------------------------------------------------|
|           | and scope of the Extraction Plan and a summary of the mine plan and design.             |

- Section 2 Describes the process of development of the Extraction Plan, including the conduct of risk assessments, the review of relevant information obtained since Project Approval and a summary of consultation conducted with key stakeholders.
- Section 3 Provides a short overview of the subsidence impact assessment undertaken including the update and review of predicted subsidence effects and potential subsidence impacts and environmental consequences, subsidence predictions, subsidence impact performance measures and subsidence management approach.
- Section 4 Details all of the monitoring methods proposed to support the assessment of subsidence effects, impacts and environmental consequences.
- Section 5 Describes the measures that will be implemented to manage, mitigate, remediate and monitor potential subsidence impacts and environmental consequences on natural and built features.
- Section 6 Outlines the key elements of plan implementation, detailing the review protocol of the Extraction Plan and associated management plans, alongside reporting, regular review and key responsibilities.
- Section 7 Lists the references cited in Sections 1 to 6 of this Extraction Plan.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No.EP-R01-E Page 4                              |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |





METROPOLITAN COAL

Environmental Management Structure

Attachment 1 Outlines the relevant requirements under the Project Approval and provides the relevant section of this Extraction Plan where the requirements are addressed.

Attachment 2 Provides details of a program to collect baseline data for the next Extraction Plan.

Attachment 3 Relevant Consultation Records.

Attachment 4 Provides a key contact register for the Extraction Plan.

Appendices A to G contain component management and monitoring plans of the Extraction Plan. The Longwalls 311-316 layout has been revised since the preparation of the March 2024 Subsidence Report. The updated subsidence predictions are provided in Appendix H. Appendices A to H are listed below:

Appendix A Water Management Plan (WMP).

Appendix B Land Management Plan (LMP).

Appendix C Biodiversity Management Plan (BMP).

Appendix D Heritage Management Plan (HMP).

Appendix E Public Safety Management Plan (PSMP).

Appendix F Subsidence Monitoring Program (SMP).

Appendix G Coal Resource Recovery Plan (CRRP).

The following graphical plans have been prepared in accordance with the DPE (2022) *Extraction Plan Guideline*:

Plan 1 Existing, Proposed and Future Workings.
Plan 2 Longwalls 311-316 Surface Features.

Plan 3 Geological and Seam Data.

Appendix H

Plan 5 Mining Titles and Land Ownership.

Subsidence Report.

Plan 6 Geological Section and Geotechnical Logs.

Plan 7 Subsidence Monitoring Locations.

Plans 1, 2, 3, 5 and 6 are provided in Attachment 1 of the CRRP (Appendix G).

As there are currently no existing and/or planned future workings in seams above and/or below the proposed workings, Plan 4 (referred to in the DPE [2022] *Extraction Plan Guideline*) has not been prepared.

Plan 7 is provided in Attachment 1 of the SMP (Appendix F).

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |        |
|----------------------------------------------------------|--|--|--------|
| Revision No.EP-R01-E                                     |  |  | Page 6 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |        |

#### 1.3 MINE PLANNING AND DESIGN

## 1.3.1 Geology and Stratigraphy

Metropolitan Coal is located within the Southern Coalfield, within the southern part of the Sydney Basin, which is infilled with sedimentary rocks of Permian age (<270 million years ago) and of Triassic age (<225 million years ago) (HCPL, 2008).

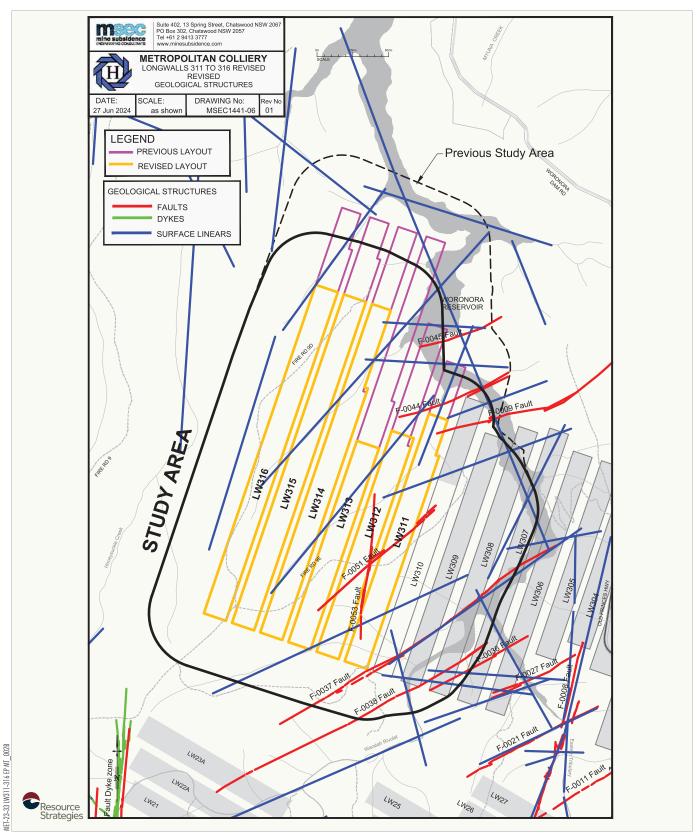
Three formally named coal seams of the Illawarra Coal Measures are present in the Southern Coalfield, namely the Bulli, Balgownie and Wongawilli Seams (HCPL, 2008).

Immediately overlying the Bulli Coal unit of the Illawarra Coal Measures are sandstones and claystones of the Narrabeen Group. The Narrabeen Group contains the Newport Formation (sometimes referred to as the Gosford Formation), the Bald Hill Claystone (also referred to as Chocolate Shale and formed as a result of laterite weathering Gerringong Volcanics), the Bulgo Sandstone, the Stanwell Park Claystone/Shale, the Scarborough Sandstone, the Wombarra Shale and the Coal Cliff Sandstone. At the top of the sequence in the area of interest is the Hawkesbury Sandstone (HCPL, 2008).

The Independent Expert Panel for Mining in the Catchment (IEPMC)<sup>2</sup> Initial Report on Specific Mining Activities at the Metropolitan and Dendrobium Coal Mines (IEPMC, 2018) (herein referred to as the IEPMC Initial Report) indicates that in recent years it has been identified in the Western Coalfield that surface subsidence, groundwater and surface water responses to longwall mining can be significantly modified in the vicinity of lineaments. Metropolitan Coal is unable to draw comparisons of lineament behaviour between the two geographically separated regions given the degree of variables potentially present. Metropolitan Coal believes that the depth to the basement rock is a key variable with likely substantive influence on behaviour of lineaments and markedly different between the shallow Western coalfields and deeper sedimentation of the Southern Coalfields (Appendix G).

Many features of the NSW Coalfields surface topography are directly correlated to the basement structure, the depth of the basement from the surface through many sedimentary epochs and the deformational episodes of the basement rock. The Palaeozoic granite basement rock underlies the Sydney Basin sedimentary rocks. At Metropolitan Coal the total depth of Sydney Basin sedimentation is 2.3 km (Appendix G). The major geological features mapped at seam level are shown on Figure 4<sup>3</sup>.

Surface lineaments are linear features in the surface landscape, preferentially eroded, that may be the surface expression of an underlying geological structure, fault or dyke or simply a result of surface joint sets. Lineaments are identified from aerial photography, LiDAR and from digital topographic sets.

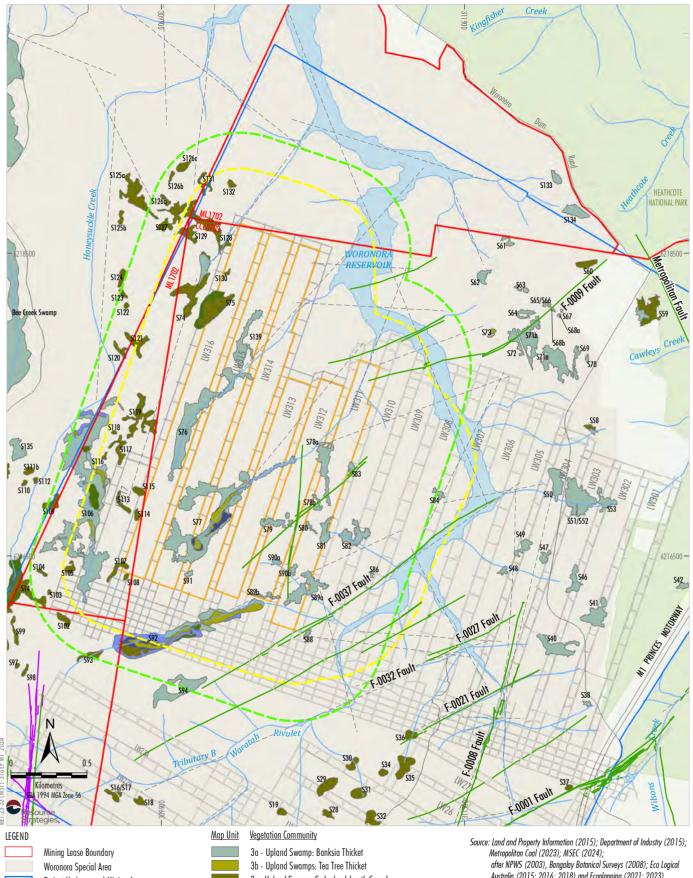

Lineaments mapped by Metropolitan Coal are shown on Figure 5. Additional LiDAR mapping was conducted by Metropolitan Coal in January and July 2023 to identify any new linear features within the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour. The 2023 LiDAR review confirmed the existing lineament mapping analysis with additional lineaments added to the dataset. Lineaments were examined for possible correlation to underground geological mapping in the study area of Longwalls 311-316.

Longwalls 311-316 are located approximately 1,280 metres (**m**) south-west of the Metropolitan Fault, at its closest point. The Metropolitan Fault has a north-northwest to south-southeast strike and dips to the south-west (Appendix G).

Figure 4 presents the July 2024 longwall layout. The revised longwall layout as of May 2025 are shown in Figure 2.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No.EP-R01-E Page 7                              |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

The IEPMC was established in November 2017 by the NSW Government to provide expert advice to the DPE on the impact of mining activities in the Greater Sydney Water Catchment Special Areas, with a focus on risks to the quantity of water in the catchment.




Source: MSEC (2024)

## <u>Peabody</u>

METROPOLITAN COA

Longwalls 311-316 Geological Structures Identified at Seam Level



Project Underground Mining Area Longwalls 20-27 and 301-317 Longwalls 311-316 Secondary Extraction Longwalls 311-316 35° Angle of Draw and/or Predicted 20 mm Subsidence Contour 600 m from Longwalls 311-316 Secondary Extraction Faults (of note or greater than 1 km strike) Dykes Lineament

3c - Upland Swamp: Sedgeland-heath Complex 3d - Upland Swamp: Fringing Eucalypt Woodland 3e - Upland Swamp: Banksia / Tea Tree Thicket 3f - Upland Swamp: Restioid Heath

3g - Upland Swamp: Cyperoid Heath

The NSW Native Vegetation Interim Type Standard 2009 requires patches of vegetation to be mapped if the

to confirm the upland swamp vegetation communities present and to confirm or update the swamp

vegetation boundaries. It is noted that the revised boundaries of a number of upland swamps

dimensions of the representative polygon on a map sheet are 2 mm x 2 mm or greater (i.e. 0.25 hectares or greater at a scale of 1:25,000). Eco Logical Australia conducted field inspections of upland swamp vegetation previously mapped by Bangalay Botanical Surveys (2008) overlying or proximal to Longwalls 301-310

(Swamps 37, 38, 42, 48, 54, 58, 61, 63, 65/66, 67, 68a, 68b, 70, 73, 83, 86 and 88) are less than 0.25 hectares in area and consistent with NSW vegetation mapping guidelines are not required to be mapped. Notwithstanding, the revised swamp vegetation mapping boundaries (including those swamps less than 0.25 hectares in area) are shown on this figure to document the changes to previous vegetation mapping.

Australia (2015; 2016; 2018) and Ecoplanning (2021; 2023)

## Peabody

M E T R O P O L I T A N

Known Lineaments over Longwalls 311-316 and Surrounds

Figure 5

A strike slip fault, F0008 (Figure 4), with up to 1.2 m vertical displacement occurs over Longwalls 20-27, and this fault extended partially through Longwall 304. This fault is associated with a surface linear that aligns with the Eastern Tributary and then passes east of the Woronora Reservoir full supply level dissipating into the landscape (Figure 5). Longwalls 20-27 and Longwall 304 were extracted through this feature directly under the Eastern Tributary with no moisture evident at seam level and no change in mine water balance during the several years of extraction in the area.

A strike slip fault, F0027, with zero vertical displacement, has been mapped in the gate roads leading into Longwall 304 and 305. The associated surface linear is located approximately 250 m west of the end of the Eastern Tributary arm of Woronora Reservoir full supply level. No moisture has been evident where the F0027 structure intersects the seam.

A strike slip fault, F0037, with zero vertical displacement, has been mapped in the gate roads and the three longwalls extracted through this feature, being Longwalls 306, 307 and 308. The associated surface linear is aligned with the Waratah Rivulet arm of Woronora Reservoir. Similar to previous experience of mining through these features no moisture has been evident from F0037 structure in the seam. The Longwalls 311-316 Geological Features Risk Assessment participants were shown images of F0037 during longwall extraction with the structure displaying dry and dusty conditions.

F0009 is a normal fault with a displacement of 0 m - 18 m located north of Longwall 308 and with a south-west strike bisecting Longwall 309 and diminishing to 0 m displacement at Longwall 310. The displacement of F0009 combined with coal quality north of the structure led to an economic decision to reposition the Longwall 308 and 309 face line from the Preferred Project Layout to the Extraction Plan Layout. Longwall 310 is anticipated to be able to ramp through the structure.

A detailed seismic assessment of F0009 was commissioned to determine the vertical extent of the structure with multiple dedicated seismic lines installed to provide a suitable resolution throughout the stratigraphy. The Velseis (2018) report concluded:

The large normal fault F0009 can be seen to impact the Bulli Seam only, and there is no evidence from available seismic data that this normal fault extends to the shallower Bald Hill Claystone level in the stratigraphy.

From the detailed seismic report, the fault is not vertically extensive, residing at depth about the Illawarra Coal Measures. Whilst not vertically extensive, horizontally the structure extends north-west away from the extraction area towards the Metropolitan Fault. From the point where F0009 bisects Longwall 309 to the Metropolitan fault, the horizontal distance is approximately 1.5 km.

To demonstrate the structure poses negligible effects to the groundwater systems, a surface to seam borehole (2020EX02) was approved and installed in 2020. This hole, located along strike, approximately 700 m north-west of the intercept with Longwall 310, was designed to measure the horizontal permeability characteristics of F0009 by coring through the structure at depth. An assessment of the permeability characteristics found (Golder Associates Pty Ltd, 2020):

Hydraulic conductivities measured across the fault were comparable to those recorded for the unfractured host rock... there is negligible variance in horizontal flow characteristics associated with the fault measured at this location.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |         |
|----------------------------------------------------------|--|---------|
| Revision No.EP-R01-E                                     |  | Page 10 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |         |

Detailed surface mapping has not identified any associated surface linear with F0009. The Longwalls 311-316 Geological Features Risk Assessment participants were shown images of F0009 during development mining with the structure displaying dry and dusty conditions and a tight unbroken contact with the surrounding rock. Given the available data, it is highly unlikely that this feature would provide hydraulic connectivity either vertically or horizontally as a result of the extraction of Longwalls 311-316, similar to previous experiences of mining through other structures such as F0008, F0021, F0027 and F0037. The risk posed by F0009 was carefully considered and reviewed during the Longwalls 311-316 Geological Features Risk Assessment, with the continuation of a control to visually monitor F0009 for signs of moisture and further delineation to occur on roadway advancement (similar to controls previously used for structures passed through by mining).

A risk assessment workshop was held on 25 July 2023 to assess the potential for mining effects on geological features to impact on the quantity of water available to the Woronora Reservoir. The outcomes of the risk assessment are described in Section 2.2.2 and provided in Appendix G.

#### 1.3.2 Mining Geometry

During the NSW Government's assessment phase of the Project EA (HCPL, 2008), and in recognition of concerns raised by key stakeholders during the formal PAC assessment process, Metropolitan Coal considered it appropriate to reduce the proposed extent of the original Project longwall mining area (i.e. Longwalls 20-44).

The Project Approval granted by the Minister for Planning in June 2009 included a layout for Longwalls 20-27 and 301-317 referred to as the Preferred Project Layout (as described in the Preferred Project Report [HCPL, 2009]). Longwalls 301-317 included in the Preferred Project Layout comprised 163 m panel widths (void) with 45 m pillars (solid) beyond the 35° angle of draw from the full supply level of Woronora Reservoir, and 138 m panel widths (void) with 70 m pillars (solid) when mining beneath or within the angle of draw of the Woronora Reservoir.

Following further mine planning investigations, Metropolitan Coal identified that significant operational efficiencies and consequently a significant economic benefit would be achieved by rotating the first workings of Longwalls 301-317 to be square with the 300 Mains (a rotation of approximately six degrees). The Secretary of the DPE approved the revised first workings in accordance with Condition 5, Schedule 3 of the Project Approval in April 2015.

Subsequently, Metropolitan Coal proposed to consolidate the panel and chain pillar widths of Longwalls 301-304 to 163 m (void) panel widths and 45 m wide pillars (solid). Changes to the first workings of Longwalls 301-303 and Longwall 304 were approved by the DPE in May 2016 and November 2018, respectively.

Following submission of the Longwalls 305-307 Extraction Plan in October 2019, Metropolitan Coal requested approval from the Secretary of the NSW Department of Planning, Industry and Environment (DPIE) for a revision of the Longwalls 305 and 306 first workings layout. The revised layout included a reduction to the panel (void) lengths of Longwall 305 (from 1,596 m to 1,547 m) and Longwall 306 (from 1,956 m to 1,907 m) and associated changes to the cut-through positions for the Longwalls 305 and 306 maingates. The revised layout of Longwalls 305 and 306 did not change the panel widths, pillar widths or panel orientation.

In January 2021, Metropolitan Coal submitted an application to the DPIE requesting a 50 m extension to the panel (void) length of Longwall 307 at the commencing end (from 1,956 m to 2,006 m). The 50 m extension of Longwall 307 was approved by the DPIE in August 2021.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |
|----------------------------------------------------------|---------|--|
| Revision No.EP-R01-E                                     | Page 11 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |

With the submission of Longwalls 308-310 Extraction Plan in February 2022, Metropolitan Coal requested approval from the Secretary of the DPE for a revision to the first workings of Longwall 310 maingate and a reduction in extraction length of Longwall 308 from 3,110 m to 1,948 m, a reduction of 1,162 m. Approximately 1,568 m of the maingate pillar of Longwall 310 from the commencing end was decreased in width from 70 m to 45 m. The commencing positions (i.e. the northern end) of Longwall 309 and Longwall 310 were requested consistent with the Preferred Project Layout. Subsequent to the submission and during the assessment process, Metropolitan Coal requested to vary the first working layout of Longwall 309. The revised layout included a reduction of 1,288 m to the panel (void) length (from 3,118 m to 1,948 m). The revised layout of Longwall 309 was approved by the Secretary of the DPE on 15 November 2022. The Longwalls 308-310 Extraction Plan was approved by the Secretary of the DPE on 12 December 2022.

In November 2023, Metropolitan Coal requested approval from the Secretary of the DPE to vary the first working layout of Longwall 310 to reduce the extraction length from 3,118 m to 2,089 m (a reduction of 1,029 m). The revised layout of Longwall 310 was approved by the Secretary of the DPE on 27 November 2023.

Relevant to the Longwalls 311-316 Extraction Plan, the commencing positions (i.e. the northern end) of Longwalls 311, 312 and 313 are approximately 1,400 m, 1,597 m and 1,762 m, respectively, south of the modified Preferred Project Layout.

The finishing positions (i.e. the southern end) of Longwall 312 and Longwall 313 are approximately 130 m and 80 m, respectively, north of the 6 degree modified Preferred Project Layout position (shorter) due to the application of an environmental standoff to Swamp 92. Longwalls 311, 314, 315 and 316 are generally consistent with the modified Preferred Project Layout.

Following the submission of the Revised Longwalls 311-316 Layout Extraction Plan in July 2024, Metropolitan Coal proposes to reduce the length of Longwall 312 by 130 m at the finishing (southern) end of the longwall and Longwall 313 by 80 m. To recoup the sterilised coal, Longwall 313 has been extended northwards at the commencing end by 82 m (Figure 2).

A summary of the longwall dimensions for Longwalls 311-316 is provided in Table 1. The layout of Longwalls 311-316 includes both 163 m and 138 m panel widths (void) and 45 m and 70 m pillar widths (solid), consistent with the Preferred Project Layout (Figure 2). As the mine progresses west of the reservoir it will transition to 163 m panel widths, with 138 m panel widths remaining at the northern commencing ends beneath the reservoir.

Table 1
Summary of Longwall Dimensions for Longwalls 311-316

| Longwall | Longwall Length (m) | Total Void Width (m) | Tailgate Chain Pillar<br>Width (m) |
|----------|---------------------|----------------------|------------------------------------|
| LW311    | 1,829               | 138 / 163            | 45 / 70                            |
| LW312    | 1,502               | 138 / 163            | 45 / 70                            |
| LW313    | 1,488               | 138 / 163            | 45 / 70                            |
| LW314    | 2,427               | 138 / 163            | 45 / 70                            |
| LW315    | 2,427               | 138 / 163            | 45 / 70                            |
| LW316    | 2,427               | 138 / 163            | 45 / 70                            |

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No.EP-R01-E Page 12                             |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

### 1.3.3 Mining Method

Longwalls 311-316 extraction will occur from north to south. Longwalls 311-316 will be extracted using retreating longwall mining methods for secondary extraction. The longwall panel will be formed by driving two sets of gate roads (the tailgate and maingate roads). Each gate road requires two roadways (headings) to be driven parallel to each other. The two roadways will be used for ventilation purposes, with one of the roadways utilised as a transport road and the other roadway used to convey the coal that will be mined back to the main conveyors. Construction of development main headings and gate roads are mined using continuous miners.

The dimensions of the headings will be approximately 5.2 m wide and 3.2 m in height. The headings are connected approximately every 130 m by driving a cut-through from one heading to another which forms pillars of coal along the length of the gate road. The tailgate and maingate roads are separated by the longwall panel. The maingate roads and tailgate roads are then linked together by driving an installation road and bleeder road at the top end of the longwall panels. Run-of-mine (ROM) coal will be conveyed by the maingate conveyor to the main conveyor which will carry coal to the surface of the mine.

## 1.3.4 Mining Parameters

The Extraction Plan area and proposed mine plan is shown on Plan 1 of Attachment 1 in Appendix G and key dimensions are summarised in Table 2.

Table 2
Key Mining Parameters

| Parameter                                      | Longwalls 311-316 |
|------------------------------------------------|-------------------|
| ROM Coal Extracted (Mt)                        | Approximately 9.5 |
| Gate Road Width (m)                            | 5.2               |
| Gate Road Height (m)                           | 3.2               |
| Maingate Chain Pillar Width (m)                | 45 or 70          |
| Tailgate Chain Pillar Width (m)                | 45 or 70          |
| Longwall Void Width (m) (ribline of goaf edge) | 138 or 163        |
| Longwall Void Length (m)                       | 1,488 to 2,427    |
| Seam Thickness (m)                             | 2.5 to 2.65       |
| Extraction Height (m)                          | 2.8               |
| Depth of Cover (m)                             | 405 to 555        |

Mt = million tonnes.

## 1.3.5 Mining Schedule

Metropolitan Coal operates seven days a week, 24 hours a day on a rotating shift basis. The extraction of Longwalls 1 to 308 is complete, with extraction of Longwall 309 underway.

The provisional extraction schedule for Longwalls 311-316 is provided in Table 3.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |  |
|----------------------------------------------------------|---------|--|--|
| Revision No.EP-R01-E                                     | Page 13 |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |  |

Table 3
Provisional Extraction Schedule

| Longwall     | Estimated Start Date | Estimated Duration | Estimated Completion Date |
|--------------|----------------------|--------------------|---------------------------|
| Longwall 311 | October 2024         | 8 Months           | June 2025                 |
| Longwall 312 | July 2025            | 7 Months           | January 2026              |
| Longwall 313 | February 2026        | 7 Months           | September 2026            |
| Longwall 314 | November 2026        | 10 Months          | September 2027            |
| Longwall 315 | October 2027         | 11 Months          | September 2028            |
| Longwall 316 | October 2028         | 11 Months          | September 2029            |

The future Extraction Plans will consider the cumulative subsidence effects, subsidence impacts and/or environmental consequences. Note that the total cumulative predicted subsidence effects, subsidence impacts and/or environmental consequences at the completion of the Project are considered in the Project EA (HCPL, 2008) and the Preferred Project Report (HCPL, 2009).

#### 1.3.6 Previous and Future Mining

Mining at the Metropolitan Coal Mine commenced in the 1880s after the Bulli Seam was identified during exploration in 1884. Prior to the commencement of longwall mining in 1995, bord and pillar underground mining methods were primarily employed.

Currently there are no plans for mining other coal seams (i.e. other than the Bulli Seam) at the Metropolitan Coal Mine.

Previous longwall mining areas at the Metropolitan Coal Mine are located to the east and south of Longwalls 311-316 and include Longwalls 1-18, Longwalls 20-27, and Longwalls 301-310. Extraction of Longwalls 1-18 commenced in 1995 and was completed in 2009. Extraction of Longwalls 20-27 commenced in 2010 and was completed in early 2017. Extraction of Longwalls 301-310 commenced in mid-2017. Extraction of Longwall 309 commenced in August 2023 and is scheduled to be completed in February 2024 followed by Longwall 310. The location of historic and previous mining at the Metropolitan Coal Mine is shown on Plan 1 in Attachment 1 of the CRRP (Appendix G).

The current layout of Longwalls 311-316 is shown on Figure 1 in this document, and on Plan 1 in Attachment 1 of the CRRP (Appendix G) and includes narrow longwalls (138 m wide) beneath and within angle of draw of the full supply level of the Woronora Reservoir. The layout of Longwall 317 will however be subject to further review for future Extraction Plans in consideration of potential subsidence impacts and environmental consequences.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |         |
|----------------------------------------------------------|--|--|---------|
| Revision No.EP-R01-E                                     |  |  | Page 14 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |         |

#### 2 DEVELOPMENT OF THE EXTRACTION PLAN

## 2.1 PLAN DEVELOPMENT

This Extraction Plan has been prepared by Metropolitan Coal with assistance from a team of suitably qualified and experienced persons including MSEC, SLR Consulting Australia Pty Ltd (SLR Consulting), ATC Williams Pty Ltd (ATC Williams), Associate Professor Barry Noller, Ecoplanning Pty Ltd (Ecoplanning), Bio-Analysis Ptd Ltd (Bio-Analysis), Niche Environment and Heritage Pty Ltd (Niche), and Resource Strategies Pty Ltd (Resource Strategies).

Metropolitan Coal has engaged specialists to provide input into the Extraction Plan and provide a review on the predicted subsidence effects, subsidence impacts and environmental consequences of mining Longwalls 311-316.

Subsidence predictions of mining Longwalls 311-316 was undertaken by MSEC within *Metropolitan Coal Mine – Longwalls 311-316 Subsidence Predictions and Impact Assessments for the Natural and Built Features in Support of the Extraction Plan* (Attachment 1 of Appendix H). These subsidence predictions have been reviewed alongside recent subsidence monitoring data with the report provided by MSEC (2024). The Longwalls 311-316 layout has been revised since the preparation of the March 2024 Subsidence Report. The revisions to the layout involved a reduction of longwall panels. The updated subsidence predictions are provided in Appendix H.

## 2.1.1 Statutory Requirements

This Extraction Plan has been prepared in accordance with the conditions of the Project Approval (08\_0149) and in consideration of the DPE (2022) *Extraction Plans Guideline*.

The statutory requirements relevant to this Extraction Plan are summarised below.

## Project Approval (08\_0149)

This Extraction Plan has been prepared in accordance with Conditions 6 and 7, Schedule 3 of the Project Approval. The requirements of Conditions 6 and 7, Schedule 3 of the Project Approval are summarised in Table 4, along with the relevant section of this Extraction Plan in which the requirements are addressed.

Further detail on the requirements of the Project Approval is provided in Attachment 1.

Table 4
Extraction Plan Requirements

|     |                         | Project Approval (08_0149) Condition                                                                                                                                                  | Extraction Plan<br>Reference    |
|-----|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Col | Condition 6, Schedule 3 |                                                                                                                                                                                       |                                 |
| 6.  |                         | Proponent shall prepare and implement an Extraction Plan for all second workings in the ng area to the satisfaction of the Director-General <sup>[1]</sup> . This plan must:          | This document                   |
|     | (a)                     | be prepared by a team of suitably qualified experts whose appointment has been endorsed by the Director-General;                                                                      | Section 2.1 and<br>Attachment 3 |
|     | (b)                     | be approved by the Director-General before the Proponent is allowed to carry out the second workings covered by the Extraction Plan;                                                  | This Application                |
|     | (c)                     | include a detailed plan for the second workings, which has been prepared to the satisfaction of DRE <sup>[2]</sup> , and provides for adaptive management (from Longwall 23 onwards); | Section 1.3 and<br>Appendix G   |
|     | (d)                     | include detailed plans of any associated surface construction works;                                                                                                                  | N/A                             |

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |         |
|----------------------------------------------------------|--|---------|
| Revision No.EP-R01-E                                     |  | Page 15 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |         |

# Table 4 (Continued) Extraction Plan Requirements

|      |               |                  | Project Approval (08_0149) Condition                                                                                                                                                                                                                                                                                             | Extraction Plan<br>Reference       |
|------|---------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Cond | lition        | 6, Sc            | hedule 3 (Continued)                                                                                                                                                                                                                                                                                                             |                                    |
|      | (e)           | inclu            |                                                                                                                                                                                                                                                                                                                                  |                                    |
|      |               | •                | a coal resource recovery plan that demonstrates effective recovery of the available resource;                                                                                                                                                                                                                                    | Appendix G                         |
|      |               | •                | revised predictions of the conventional and non-conventional subsidence effects and subsidence impacts of the extraction plan, incorporating any relevant information that has been obtained since this approval; and                                                                                                            | Appendix H                         |
|      |               | •                | a Subsidence Monitoring Program to:                                                                                                                                                                                                                                                                                              | Section 4.1 and                    |
|      |               |                  | - validate the subsidence predictions; and                                                                                                                                                                                                                                                                                       | Appendix F                         |
|      |               |                  | <ul> <li>analyse the relationship between the subsidence effects and subsidence<br/>impacts of the Extraction Plan and any ensuing environmental consequences;</li> </ul>                                                                                                                                                        |                                    |
|      | (f)           | inclu            | de a:                                                                                                                                                                                                                                                                                                                            |                                    |
|      |               | •                | Water Management Plan, which has been prepared in consultation with OEH, SCA <sup>[3]</sup> and NOW <sup>[4]</sup> , to manage the environmental consequences of the Extraction Plan on watercourses (including the Woronora Reservoir), aquifers and catchment yield;                                                           | Appendix A                         |
|      |               | •                | Biodiversity Management Plan, which has been prepared in consultation with OEH and DRE (Fisheries) <sup>[5]</sup> , to manage the potential environmental consequences of the Extraction Plan on aquatic and terrestrial flora and fauna, with a specific focus on swamps;                                                       | Appendix C                         |
|      |               | •                | Land Management Plan, which has been prepared in consultation with SCA <sup>[3]</sup> , to manage the potential environmental consequences of the Extraction Plan on cliffs, overhangs, steep slopes and land in general;                                                                                                        | Appendix B                         |
|      |               | •                | Heritage Management Plan, which has been prepared in consultation with OEH and the relevant Aboriginal groups, to manage the potential environmental consequences of the Extraction Plan on heritage sites or values; and                                                                                                        | Appendix D                         |
|      |               | •                | Built Features Management Plan, which has been prepared in consultation with the owner of the relevant feature, to manage the potential environmental consequences of the Extraction Plan on any built features; and                                                                                                             | Section 4.2.5                      |
|      | (g)           | DRE              | de a Public Safety Management Plan, which has been prepared in consultation with [2] (for any mining within the DSC notification area), to ensure public safety in the ng area.                                                                                                                                                  | Appendix E                         |
|      | Extra<br>secc | action<br>and wo | ccordance with condition 12 of schedule 2, the preparation and implementation of<br>Plans for second workings may be staged, with each plan covering a defined area of<br>orkings. In addition, these plans are only required to contain management plans that<br>nt to the specific second workings that are being carried out. |                                    |
| Cond | lition        | 7, Sc            | hedule 3                                                                                                                                                                                                                                                                                                                         |                                    |
|      |               |                  | to standard requirements for management plans (see condition 2 of schedule 7), the shall ensure that the management plans required under condition 6(f) above include:                                                                                                                                                           |                                    |
|      | (a)           | a pro            | ogram to collect sufficient baseline data for future Extraction Plans;                                                                                                                                                                                                                                                           | Appendices A to E,<br>Attachment 2 |
|      | (b)           |                  | vised assessment of the potential environmental consequences of the Extraction Plan, rporating any relevant information that has been obtained since this approval;                                                                                                                                                              | Appendices A to E,<br>Section 3.1  |
|      | (c)           |                  | tailed description of the measures that would be implemented to remediate predicted acts; and                                                                                                                                                                                                                                    | Appendices A to E,<br>Section 4    |
|      | (d)           | a co             | ntingency plan that expressly provides for adaptive management.                                                                                                                                                                                                                                                                  | Appendices A to E,<br>Section 5.1  |

The Director-General of the DPE is now the Secretary of the DPE.

- <sup>2</sup> The NSW Division of Resources and Energy (DRE) is now the NSW Resource Regulator.
- The Sydney Catchment Authority (SCA) is now WaterNSW.
- <sup>4</sup> The NSW Office of Water (NOW) is now the Department of Planning and Environment Water (DPE Water).
- <sup>5</sup> DRE (Fisheries) is now the Department of Primary Industries Fisheries (DPI-Fisheries).

Condition 4, Schedule 3 of the Project Approval relating to the undermining of the Swamps 76, 77 and 92 is addressed in the Large Swamp Assessment (Metropolitan Coal, 2024).

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |  |
|----------------------------------------------------------|---------|--|--|
| Revision No.EP-R01-E                                     | Page 16 |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |  |

#### Licences, Permits and Leases

In addition to the Project Approval, all activities at or in association with Metropolitan Coal will be undertaken in accordance with the following licences, permits and leases which have been issued or are pending.

- The conditions of mining leases issued by the NSW Division of Resources and Geoscience (now Mining, Exploration and Geoscience), under the NSW *Mining Act 1992* (e.g. CCL 703, ML 1610, ML 1702, Coal Lease [CL] 379 and Mining Purpose Lease [MPL] 320).
- The conditions of Environment Protection Licence (EPL) No. 767 issued by the NSW Environment Protection Authority (EPA) under the NSW Protection of the Environment Operations Act 1997.
   Revision of the EPL will be required prior to the commencement of Metropolitan Coal activities that differ from those currently licensed.
- The prescribed conditions of specific surface access leases within CCL 703 for the installation of surface facilities as required.
- Water Access Licences (WALs) issued by the NSW Department of Industry Water (now DPE – Water) under the NSW Water Management Act 2000, including WAL 36475 under the Water Sharing Plan for the Greater Metropolitan Region Groundwater Sources 2023 and WAL 25410 under the Water Sharing Plan for the Greater Metropolitan Region Unregulated River Water Sources 2023.
- Mining and workplace health and safety related approvals granted by the NSW Resources Regulator and WorkCover NSW.
- Supplementary approvals obtained from WaterNSW for surface activities within the Woronora Special Area (e.g. fire road maintenance activities).

#### 2.2 RISK ASSESSMENTS

In accordance with the DPE (2022) *Extraction Plan Guideline*, a number of risk assessments have been undertaken for the Metropolitan Coal Longwalls 311-316 Extraction Plan to ensure that appropriate consideration was given to risk assessment and risk management in each component management plan.

## 2.2.1 Environmental Risk Assessment

An Environmental Risk Assessment (**ERA**) was conducted for four of the key component plans of this Extraction Plan *viz.* WMP, LMP, BMP and LMP.

The suitably qualified and experienced experts endorsed by the Secretary of the DPE for the preparation of the Metropolitan Coal Longwalls 311-316 Extraction Plan participated in the ERA<sup>4</sup>. The ERA process involved the key steps described below.

Participants included Mr Peter DeBono (MSEC, Subsidence and Land), Ms Ines Epari (SLR Consulting, Groundwater), Mr Anthony Marszalek and Dr Camilla West (ATC Williams, Surface Water), Associate Professor Barry Noller (The University of Queensland, Surface Water Quality), Dr Sharon Cummins (Bio-Analysis, Aquatic Fauna), Ms Elizabeth Norris (Ecoplanning, Flora), Mr Jamie Reeves (Niche Environment and Heritage, Heritage), Mr Jon Degotardi (Metropolitan Coal), Mr Stephen Love (Metropolitan Coal), Mr Nicolas Tucker (Metropolitan Coal), Mr Jamie Warwick (Resource Strategies), Ms Harper Mulloy (Resource Strategies) and Ms Abigail Ashford (Resource Strategies).

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No.EP-R01-E Page 17                             |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

#### Review of Relevant Documentation and Risk Identification

In preparation for the ERA workshop, the ERA participants reviewed a number of documents relevant to the risk assessment. This included (but was not limited to):

- The 2008 Environmental Risk Analysis (SP Solutions, 2008) conducted for the Project EA (Appendix O of the Project EA).
- The Preferred Project Report (HCPL, 2009). During the NSW Government's assessment phase of the Project EA, and in recognition of concerns raised by key stakeholders during the formal PAC assessment process, HCPL considered it appropriate to reduce the proposed extent of the original Project longwall mining area (i.e. Longwalls 20-44). This reduction in the extent of longwall mining resulted in a significant reduction to the extent of potential subsidence effects to the Waratah Rivulet and the Eastern Tributary and a reduction in the consequential potential environmental impacts.
- The Longwall 308-310 Environmental Risk Assessment Report (Risk Mentor, 2021) (which included consideration of the Longwalls 301-303, Longwall 304 and Longwalls 305-307 Environmental Risk Assessment Report).
- Figures showing the Longwalls 311-316 layout in relation to key surface features.
- Subsidence predictions for Longwalls 311-316 (including subsidence contours, Eastern Tributary, Waratah Rivulet, Woronora Reservoir, other streams, cliff sites, upland swamps and Aboriginal heritage sites).

The participants were asked to identify any additional (specific) issues/risks and/or changes to previously assessed levels of risk in preparation for the ERA workshop.

#### **ERA Workshop**

The ERA workshop for Longwalls 311-316 was conducted on 18 August 2023, with all participants attending via video conferencing. The ERA workshop was facilitated by an independent specialist, Dr Peter Standish of Risk Mentor and conducted in accordance with AS/NZS ISO 31000: 2009 Risk Management – Principles and Guidelines.

The general consensus of the workshop participants was the additional (specific) issues/risks identified for Longwalls 311-316 were broadly assessed and ranked as part of the 2008 Environmental Risk Analysis, Longwalls 301-303 ERA, Longwall 304 ERA, Longwalls 305-307 ERA and/or Longwalls 308-310 ERA. However, additional (specific) issues were identified by the workshop participants relevant to Longwalls 311-316. Each of the issues/risks were explained systematically by the relevant workshop participants and each carefully reviewed.

Loss scenarios for the key potential environmental issues were identified for upland swamps, aquatic biota, threatened amphibians, Waratah Rivulet and the Woronora Reservoir. The risk rankings are within the "low-medium" range and consequently the potential outcomes can be integrated into the existing management systems for effective review and monitoring.

### ERA Report Review

All ERA participants were asked to review the draft Longwalls 311-316 ERA report that was prepared to summarise the outcomes of the risk assessment. Participants' comments were incorporated into the final Risk Mentor (2023) report.

The WMP, LMP, BMP and HMP have been prepared to provide for effective management of the identified subsidence risks.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |         |
|----------------------------------------------------------|--|---------|
| Revision No.EP-R01-E                                     |  | Page 18 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |         |

# 2.2.2 Risk Assessment on Geological Features with Potential to Affect Water Quantity Available to Woronora Reservoir and Aboriginal Heritage

The IEPMC Initial Report recommended that the potential implications for water quantity of faulting, basal shear planes and lineaments be carefully considered and risk assessed at all mining operations in the Catchment Special Areas (IEPMC, 2018).

In relation to the Metropolitan Coal Mine, the IEPMC Initial Report concluded (p. 127):

In the case of Metropolitan Mine:

- .....
- the potential for water be diverted out of Woronora Reservoir and into other catchments through valley
  closure shear planes and geological structures including lineaments will require careful assessment in
  the future because it is planned that most of the remaining longwall panels in the approved mining area
  will pass beneath the reservoir.

A risk assessment workshop was held on 25 July 2023 to assess the potential for Longwalls 311-316 mining effects on geological features to impact on the quantity of water available to the Woronora Reservoir. The workshop participants identified and assessed the potential for mining effects on lineaments, joints, faulting, basal shear planes and dykes to impact on the quantity of water to the Woronora Reservoir, including the potential for water to be diverted out of Woronora Reservoir and into other catchments. Participants also assessed the impacts to Aboriginal heritage sites as a result of mining effects on geological features.

The participants considered the risk control measures and procedures to be reasonable to manage the identified risks. The risk assessment is provided in Attachment 2 of the CRRP (Appendix G).

Further information on the risk assessment is provided in the Longwalls 311-316 CRRP (Appendix G).

#### 2.2.3 Public Safety Management Plan Risk Assessment

A risk assessment was held on 5 December 2023 for the Longwalls 311-316 PSMP (Appendix E) to identify and address potential safety hazards to the public, including:

- potential subsidence impacts on built features;
- potential instability of cliff formations or steep slopes caused by subsidence;
- · deformations or fracturing of any land caused by subsidence; and
- any other impacts of subsidence.

Risk assessment attendees included representatives from Metropolitan Coal (Approvals Manager, Technical Services Manager, Environment & Community Superintendent, Environment and Community Coordinator and Senior Mining Engineer / Facilitator), MSEC and Resource Strategies.

Several risk control and management measures were identified during the risk assessment which considered the extraction of coal beneath land and infrastructure.

Metropolitan Coal considers all risk control measures and procedures to be feasible to manage all identified risks.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |
|----------------------------------------------------------|---------|--|
| Revision No.EP-R01-E                                     | Page 19 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |

#### 2.3 REVIEW OF RELEVANT INFORMATION OBTAINED SINCE PROJECT APPROVAL

The five management plans of this Extraction Plan (i.e. the WMP [Appendix A], LMP [Appendix B], BMP [Appendix C], HMP [Appendix D], and PSMP [Appendix E]) have been prepared in consideration of the information obtained since Project Approval (i.e. the results of monitoring of subsidence impacts and environmental consequences).

In particular, Appendices A to D provide a detailed summary of the information obtained since Project Approval by the Water, Land, Biodiversity and Heritage Management Plans, respectively.

A summary of the information obtained since the Project Approval most relevant to the Longwalls 311-316 Extraction Plan has been provided below.

### Eastern Tributary and Waratah Rivulet

The Preferred Project Report (HCPL, 2009) indicated that valley closure values of greater than 200 mm were predicted for a number of pools/rock bars on the Waratah Rivulet, Eastern Tributary and other streams. 'Negligible consequence' for a watercourse was considered by the Project Approval to mean, 'no diversion of flows, no change in the natural drainage behaviour of pools, minimal iron staining, and minimal gas releases', and was assumed to be achieved in circumstances where predicted valley closure was less than 200 mm. Subsidence impacts to a number of pools on the Eastern Tributary occurred during the mining of Longwalls 26 and 27 at predicted total valley closure values of less than 200 mm and resulted in the exceedance of the negligible environmental consequences performance measure for the Eastern Tributary.

The IEPMC Initial Report recommended that the concept of restricting predicted valley closure to a maximum of 200 mm to avoid significant environmental consequences be revised for watercourses (IEPMC, 2018). Metropolitan Coal agreed that the 200 mm valley closure concept required revision in relation to the Eastern Tributary, noting that the unexpected impacts are particular to the Eastern Tributary and not the Waratah Rivulet. Restricting predicted valley closure to 200 mm has been a successful design tool for mining in the vicinity of the Waratah Rivulet.

The negligible environmental consequences performance measure for watercourses as described above applied specifically for the Waratah Rivulet along the portion of the 'Waratah Rivulet between the full supply level of the Woronora Reservoir and the maingate of Longwall 23 (upstream of Pool P)'. This section of the Waratah Rivulet includes Pool T to Rock Bar W, located to the south-east of Longwalls 311-316.

The restriction of predicted valley closure to 200 mm has been a successful design tool on the Waratah Rivulet, with no impacts to pools and rock bars along the Waratah Rivulet at predicted total valley closure of less than 200 mm. Pool P to Rock Bar W have not exceeded the negligible environmental consequence performance measure for the Waratah Rivulet. Predicted total valley closure for Pool P to Rock Bar W was less than 200 mm for the extraction of Longwalls 20-27, 301-303, 304, 305-307 and did not increase for Longwalls 308-310.

Pool A to Pool O (a total of 16 pools) are located upstream of Pool P, and are therefore not subject to the Waratah Rivulet negligible environmental impact performance measure. It is noted that the majority of these pools were predicted to experience maximum predicted total closure of greater than 200 mm. However, of these pools, only two (Pools G1 and N) have experienced subsidence impacts that would have resulted in an exceedance of the negligible environmental impact performance measure. Impacts that have occurred at these pools have been the result of mining directly beneath the Waratah Rivulet or in close proximity (< 100 m) to the rock bars, at predicted total valley closure greater than 200 mm.

| Γ | Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |         |
|---|----------------------------------------------------------|--|---------|
| Г | Revision No.EP-R01-E                                     |  | Page 20 |
|   | Document ID: Longwalls 311-316 Extraction Plan Main Text |  |         |

Although subsidence impacts were observed at a number of pools on the Eastern Tributary at predicted total valley closure values of less than 200 mm during the mining of Longwalls 26 and 27, restricting predicted total valley closure to 200 mm is no longer applied for the Eastern Tributary.

A geotechnical study of the Waratah Rivulet investigated the geological characteristics of the stream bed, with the aim of identifying any characteristics that would make the Waratah Rivulet more susceptible to subsidence movements (similar to the Eastern Tributary). The study focussed on Pool P to Rock Bar W on the Waratah Rivulet, and compared these sites to Pool ETAM on the Eastern Tributary, which has experienced subsidence movements due to historical mining.

The geotechnical study identified a thick unit (approximately 25 m) of thinly bedded sandstone along the Eastern Tributary at the location of Pool ETAM. The thinly bedded sandstone is considered to be of lower strength, and more weathered than adjoining thickly bedded sandstone units and therefore more prone to impact from valley closure movements. In addition, a higher frequency of seam level faults and surface lineaments have been identified in the vicinity of the Eastern Tributary. The thinly bedded units identified along the along Waratah Rivulet were limited to less than 5 m thickness and the frequency of seam level faults and surface lineaments was considerably less.

Based on the results of the assessment, the geological features identified along the Eastern Tributary are considered to be unique, compared to the Waratah Rivulet. The Eastern Tributary is therefore more likely to be susceptible to subsidence movements. Restricting valley closure to 200 mm therefore continues to be an appropriate design tool for the Waratah Rivulet. Further discussion on the subsidence predictions and 200 mm valley closure design tool for Longwalls 311-316 is provided in the WMP (Appendix A).

Metropolitan Coal developed a monitoring and adaptive management approach to the mining of Longwall 303 towards the Eastern Tributary. As Longwall 303 mined towards the Eastern Tributary, Metropolitan Coal used a Trigger Action Response Plan (TARP) designed to monitor valley closure movements on the Eastern Tributary. The Eastern Tributary Valley Closure TARP has been successfully implemented by Metropolitan Coal for Longwalls 303, 304 and 305. The Waratah Rivulet is monitored by the same Global Navigation Satellite System (GNSS) valley closure monitoring methods used for the Eastern Tributary with consideration of the 200 mm valley closure design tool (as described in the Longwalls 308-310 Extraction Plan) (Appendix A).

#### Woronora Reservoir

Condition 2 of the Longwalls 301 and 302 approval required Metropolitan Coal to conduct further investigation into potential impacts on the Woronora Reservoir. Metropolitan Coal engaged independent experts to prepare a Woronora Reservoir Impact Strategy to provide a staged plan of action for further investigations and a report into the impacts of mining near the reservoir. Professor Bruce Hebblewhite (B. K. Hebblewhite Consulting), Dr Frans Kalf (Kalf and Associates Pty Ltd) and Emeritus Professor Thomas McMahon (University of Melbourne) were endorsed by the DPIE for the Woronora Reservoir Impact Strategy in May 2017.

The Woronora Reservoir Strategy Report – Stage 1 (Hebblewhite et al., 2017) was provided by the independent experts to the DP&E in September 2017. The Stage 1 report included recommendations for further groundwater and surface water investigations and monitoring and was approved by the Secretary for Planning in December 2017.

The Woronora Reservoir Strategy Report – Stage 2 (Hebblewhite et al., 2019) was provided by the independent experts to the DPIE in June 2019. The Stage 2 report includes additional recommendations in regard to groundwater and surface water investigations and monitoring, based on further data and analysis arising from the ongoing monitoring programs, including those recommended in the original Stage 1 report.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |         |
|----------------------------------------------------------|--|---------|
| Revision No.EP-R01-E                                     |  | Page 21 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |         |

The Stage 1 report included recommendations for further groundwater and surface water investigations and monitoring. The key outcomes and recommendations of the Stage 1 report were considered in the Longwall 304 Extraction Plan.

The Stage 2 report represents the second stage of the Woronora Reservoir Impact Strategy, based on further data and analysis arising from the ongoing monitoring programs, including those recommended in the Stage 1 report.

The surface water and groundwater monitoring locations that have been installed as a component of the Woronora Reservoir Impact Strategy are described in the WMP (Appendix A).

The additional monitoring sites and environmental investigations for the Woronora Reservoir Impact Strategy included the installation of two streamflow monitoring stations in sub-catchments I and K to the west of Longwalls 301-303 and the installation of a pluviometer in the vicinity of the northern end of Longwall 307. The Stage 2 report recommended that further analysis of the data obtained from these monitoring sites (that covers at a minimum the initial 12-month period) be conducted. A summary of the outcomes of this assessment is provided below.

Data collected from the flumes on sub-catchments I and K commenced on 31 May 2018 and 3 June 2018, respectively (the flumes were installed on 17 May 2018 and 16 May 2018, respectively). Secondary extraction from Longwall 302 was occurring at the commencement of monitoring. Sub-catchment I overlies Longwall 301 to Longwall 305 while Sub-Catchment K predominately overlies Longwall 306 and Longwall 307. Sub-Catchment K formed a control for the assessment of potential impacts to streamflow in Sub-Catchment I associated with secondary extraction from Longwall 301 to Longwall 304.

Streamflow monitoring in sub-catchments I and K is proposed to continue up to the completion of Longwall 310.

Assessments of the dry weather recessions recorded at the flumes on sub-catchments I and K show consistent behaviour with time, although the recorded streamflow recession during low flow periods appears to be more rapid at the gauging station on Sub-Catchment K than on Sub-Catchment I. There is no visual indication of a change in recessionary behaviour (i.e. rate of recession) for Sub-Catchment I and no indication from the recorded stage and streamflow data that mining of Longwall 301 to Longwall 305 has impacted streamflow at the Sub-Catchment I gauging station. Additionally, there is no visual indication of a change in recessionary behaviour (i.e. rate of recession) for Sub-Catchment K and no indication from the recorded data that mining of Longwall 306 or Longwall 307 has impacted streamflow at the Sub-Catchment K gauging station (to June 2023), noting the Sub-Catchment K gauging was inundated by backwater from the Woronora Reservoir for periods of 2023. This is consistent with the results of monitoring of the quantity of water resources reaching the Woronora Reservoir for the Waratah Rivulet and Eastern Tributary.

A preliminary water balance of the Woronora Reservoir has been developed as a component of the Woronora Reservoir Impact Strategy. The primary purpose of the water balance analysis was to establish whether the inputs to and outputs from the Woronora Reservoir could be measured sufficiently and accurately to estimate a loss through the bed of the reservoir because of longwall mining being undertaken in the catchment and/or from other activities that may affect the water balance. The issues identified in the water balance suggest that the magnitude of bias and uncertainty in the data used in the analysis is such that it is doubtful that the water balance values provide a satisfactory baseline for assessing the potential loss of reservoir water through the bed and it was recommended that a Stage 2 water balance study be undertaken.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |
|----------------------------------------------------------|---------|--|
| Revision No.EP-R01-E                                     | Page 22 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |

The Stage 2 report recommended groundwater model-derived cross sections be generated to display the pressure head profiles before and after mining specific panels with the zero pressure heads clearly displayed. Representative north-south and east-west cross sections have been prepared for Longwalls 311-316 using the re-calibrated model with stacked drains (Appendix 6 of the WMP).

In December 2019, the WRIS Panel prepared a letter report which provides a summary of the key conclusions from the Stage 1 and Stage 2 reports and considers the IEPMC *Report on Coal Mining Impacts in the Special Areas of the Greater Sydney Water Catchment* (dated 14 October 2019). It also considers feedback from the WRIS Panel's meeting with the DPIE, Water NSW and Metropolitan Coal on 11 November 2019. The key findings of this report were:

- 1. Connective fracturing/depressurisation and depressurisation alone extends up to approximately 195 m above the current 163 m wide longwall extraction zone (Figure 1).
- 2. There is virtually no pressure head propagation (i.e. depressurisation), that is pressure head loss, extending upwards beyond about 80 m from the surface and very little above 150 m from the surface (Figure 1). The depressurisation zone below 150m is recovering due to lateral groundwater flow.
- 3. There is no evidence of surface to longwall panel connectivity at the Metropolitan Mine, with inflows averaging 0.01 ML/day between January 2009 and April 2019.
- 4. There is a clear benefit in using narrower panels and wider chain pillars near and beneath the Woronora Reservoir as it substantially reduces subsidence predictions.
- 5. The ratios of 'width of panel' and 'depth of cover' at the Metropolitan Mine proposed for mining under the Woronora Reservoir (0.32 to 0.35) are similar to those used for the previously successful mining conducted with very low inflow reported at the South Bulli Mine and Bellambi West Colliery below the Cataract Reservoir (0.34 to 0.41).
- 6. Mining in the upper reaches of sub-catchment I has not impacted on flows recorded at the flume further downstream, consistent with the results of monitoring of the quantity of water resources reaching the Woronora Reservoir for the Waratah Rivulet and Eastern Tributary.
- 7. Water balance modelling of inputs to and outputs from the Woronora Reservoir indicates that the combined average loss from groundwater outflow under the dam wall and loss through the bed of the Woronora Reservoir is 2.9 ML/day with a 95% uncertainty band between 0.4 ML/day to 5.4 ML/day, in which ungauged inflows to the reservoir and reservoir evaporation are the major contributors to the uncertainty. The 2.9 ML/day equates to 3.6% of the total outputs modelled from the Woronora Reservoir. Taking into account the facts that groundwater outflow under than dam wall could not be adequately modelled, that there are problems in stream gauging a large proportion of the current ungauged area, and there are difficulties in estimating reservoir evaporation, it is recommended that a Stage 2 water balance study be not undertaken.
- 8. Based on the review of available data, analytical predictions and monitoring bore evidence at LW302, together with the use of narrower panels and wider chain pillars beneath the reservoir, the proposed longwall mining is not expected to result in connective cracking between the longwalls and surface or significant inflows from Woronora Reservoir to the mine extraction zone.
- The existing monitoring regime should be continued, together with the additional monitoring recommended above. All monitoring results should be regularly reviewed against predicted values to provide ongoing confidence in the performance of the mining operation and its impacts.

Metropolitan Coal understands that the WRIS Panel is no longer required to conduct investigations into potential impacts on the Woronora Reservoir and that these investigations will instead be conducted by the Independent Expert Advisory Panel for Mining (IEAPM).

|                                                          | Metropolitan Coal – Longwalls 311-316 Extraction Plan |  |         |
|----------------------------------------------------------|-------------------------------------------------------|--|---------|
| Revisio                                                  | n No.EP-R01-E                                         |  | Page 23 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                                                       |  |         |

#### 2.4 CONSULTATION

Metropolitan Coal was granted Project Approval (08\_0149) for the Project in June 2009. Since then, extensive consultation with stakeholders has been undertaken in relation to the Extraction Plans and component management plans prepared for Longwalls 20-22, 23-27, 301-303, 304, 305-307 and 308-310 in accordance with Condition 6, Schedule 3 of the Project Approval. This consultation has informed the development of the Longwalls 311-316 Extraction Plan and component management plans.

Consultation undertaken with stakeholders to date in relation to the Longwalls 311-316 Extraction Plan is described below and provided in Attachment 3.

## 2.4.1 NSW Government Agencies

Metropolitan Coal requested the endorsement of the Extraction Plan team as suitably qualified and experienced experts on 21 July 2023. The Extraction Plan team was endorsed by the DPE on 31 July 2023.

During the preparation of previous Metropolitan Coal extraction plans (i.e. the Longwalls 20-22, 23-27, 301-303, 304, 305-307 Extraction Plans), component management plans were distributed to stakeholders for comment prior to submission to the DPE. To allow for the timely assessment of the Longwalls 311-316 Extraction Plan by the DPE, and to ensure continuation of mining at the Metropolitan Coal Mine, stakeholder consultation will be conducted in parallel with the DPE's assessment of the Longwalls 311-316 Extraction Plan, similarly to the process undertaken for the Longwalls 308-310 Extraction Plan.

During the preparation of this Extraction Plan, Metropolitan Coal consulted the following NSW government agencies and independent bodies in regard to the Large Swamp Assessment (Metropolitan Coal, 2024):

- DPE;
- WaterNSW; and
- IEAPM.

In June 2023, Metropolitan Coal provided the DPE with a briefing paper titled *Large Swamp Assessment – Metropolitan Coal Longwalls 311-316 Extraction Plan* (the Briefing Paper). The Briefing Paper outlined existing monitoring programs and the proposed environmental assessments to be included in the Large Swamp Assessment, which will address Condition 4, Schedule 3 of the Project Approval.

Following the receipt of the Briefing Paper, DPE consulted the IEAPM and sought advice on whether the proposed scope of the Large Swamp Assessment demonstrates an appropriate array of environmental assessment, an adequate network of monitors in representative locations and there is sufficient baseline data.

The IEAPM undertook a site inspection, alongside WaterNSW, Metropolitan Coal and consultants, to inspect the Large Swamps 76, 77 and 92, gauging stations downstream of Swamps 76 and 92 and groundwater monitoring locations on 23 October 2023.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |
|----------------------------------------------------------|---------|--|
| Revision No.EP-R01-E                                     | Page 24 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |

On 23 November 2023, the DPE provided IEAPM's advice to Metropolitan Coal regarding the Longwalls 311-316 Extraction Plan and scope of the Large Swamp Assessment. The Metropolitan Coal Mine: High Level Review - Large swamp environmental assessment requirements for the Extraction Plan for Longwalls 311 to 316 (IEAPM, 2023) included a total of 26 recommendations, pertaining to a variety of environmental aspects, including subsidence, surface water, groundwater and biodiversity.

On 29 March 2024, Metropolitan Coal distributed the Longwalls 311-316 Extraction Plan for comment to the following agencies:

- WaterNSW.
- Heritage NSW.
- DPI-Fisheries.
- Mining, Exploration and Geoscience.
- Department of Climate Change, Energy, the Environment and Water Water Group.
- Dam Safety NSW.
- Subsidence Advisory NSW.
- Biodiversity, Conservation and Science Group.
- Wollongong City Council.

Comments received from the above NSW government agencies were incorporated into the revised Longwalls 311-316 Extraction Plan in July 2024.

Further comments were provided by NSW Government agencies on the revised Longwalls 311-316 Extraction Plan. The majority of issues raised in the comments were the same or similar to those previously provided by the agencies and considered by Metropolitan Coal in the preparation of the revised Extraction Plan (July 2024 version). A response to new issues raised in the NSW Government agencies comments were provided to the DPHI on 19 August 2024.

On 9 September 2024, the DPHI provided IEAPM's advice to Metropolitan Coal regarding the Longwalls 311-316 Extraction Plan. The Metropolitan Coal Mine: Stage 1: Longwalls 311 312 included a total of 42 recommendations regarding the Longwalls 311-316 Extraction Plan (IEAPM 2024). The advice received has been incorporated into this revised Longwalls 311-316 Extraction Plan.

A nominee of the Planning Secretary approved the secondary extraction of Longwall 311 on 19 October 2024. Further advice is expected from the IEAPM on the proposed secondary extraction of Longwalls 312-316. Metropolitan Coal will update this Extraction Plan in response to this advice, as necessary.

## 2.4.2 Landholders

A land ownership plan is provided on Figure 6. In summary, one lot is located within 600 m of Longwalls 311-316, and is owned by WaterNSW.

As described in Section 2.4.1, stakeholder consultation will be conducted in parallel with the DPE's assessment of the Longwalls 311-316 Extraction Plan. Metropolitan Coal will provide a copy of the Longwalls 311-316 Extraction Plan to WaterNSW on submission of the Extraction Plan.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |
|----------------------------------------------------------|---------|--|
| Revision No.EP-R01-E                                     | Page 25 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |

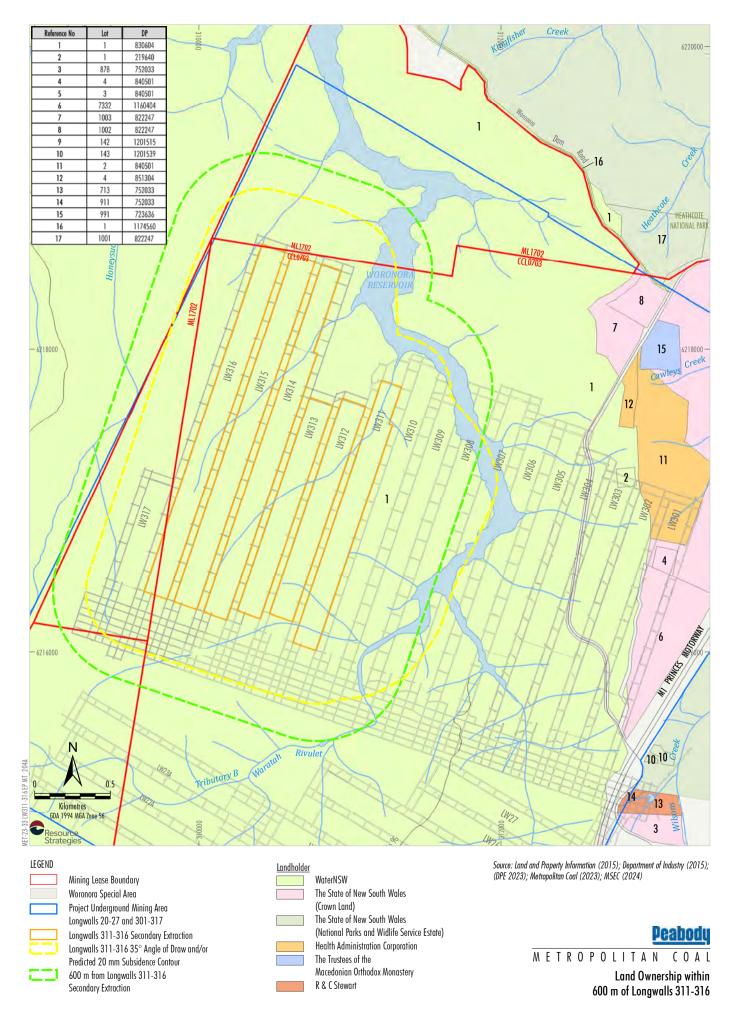
### 2.4.3 Aboriginal Groups

As described in Section 2.4.1, stakeholder consultation will be conducted in parallel with the DPE's assessment of the Longwalls 311-316 Extraction Plan. A draft of the Longwalls 311-316 HMP was provided to the Aboriginal stakeholders registered at Metropolitan Coal on 19 April 2024 for their review and comment. Comments received from Aboriginal stakeholders were incorporated into the revised Longwalls 311-316 HMP.

#### 2.4.4 Infrastructure Owners

Extensive consultation with each infrastructure owner/manager was conducted for the Longwalls 301-303, Longwall 304, Longwalls 305-307 and Longwalls 308-310 Extraction Plans.

No built features are located within the Longwalls 311-316 35° angle of draw and/or 20 mm subsidence contour or in the vicinity the Longwalls 311-316 35° angle of draw and/or 20 mm subsidence contour that necessitate a Built Features Management Plan (BFMP). As extraction is moving away from previously considered built features, the number of BFMPs has been reduced over time as monitoring indicates the reduction of subsidence to negligible levels post mining.


The final Transport for NSW (TfNSW) BFMP will be concluded at the end of Longwall 310 which is expected to be four consecutive longwalls recording negligible subsidence.

TfNSW were consulted on this approach and endorsed the discontinuation of the Metropolitan Coal BFMP after the conclusion of Longwall 310 (Appendix 1 of the PSMP).

#### 2.4.5 Public Consultation

The Metropolitan Coal Community Consultative Committee (CCC) was advised of the development of the Extraction Plan at a meeting on 21 November 2023. The CCC was informed that submission of the Extraction Plan was anticipated in Quarter 1, 2024 and received regular updates at subsequent meetings.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |         |
|----------------------------------------------------------|--|--|---------|
| Revision No.EP-R01-E                                     |  |  | Page 26 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |         |



#### 3 SUBSIDENCE ASSESSMENT

#### 3.1 SUBSIDENCE PREDICTIONS

Revised predictions of subsidence effects for Longwalls 311-316 were developed by MSEC (2024) (Appendix H). The process for the development of these predictions is described below.

#### Predicted Conventional Subsidence Movements

MSEC (2024) provides a detailed description of the development of mine subsidence and the method used to predict the mine subsidence movements resulting from the extraction of Longwalls 311-316. The report includes the maximum predicted conventional subsidence parameters for Longwalls 311-316 including:

- Incremental Subsidence Parameters, which are the predicted subsidence parameters due to the extraction of Longwalls 311-316.
- Total Subsidence Parameters, which include the accumulated subsidence parameters after the completion of a series of longwalls.

The maximum predicted incremental and total subsidence, tilt and curvatures for Longwalls 311-316 are summarised in Table 5. Figure 7 provides the predicted total subsidence contours after Longwalls 311-316 extraction<sup>5</sup>.

Table 5
Maximum Predicted Subsidence, Tilt and Curvature for Longwalls 311-316

|                                                  | Incremental Subsidence Predictions |                 |                 |                 |                 |                 | Total                                             |
|--------------------------------------------------|------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------------------------------------------|
| Subsidence<br>Parameter                          | Longwall<br>311                    | Longwall<br>312 | Longwall<br>313 | Longwall<br>314 | Longwall<br>315 | Longwall<br>316 | Subsidence<br>Predictions<br>(after<br>LW311-316) |
| Maximum<br>Subsidence (mm)                       | 600                                | 600             | 600             | 600             | 600             | 600             | 1,500                                             |
| Maximum Tilt (mm/m)                              | 3.0                                | 3.0             | 3.0             | 4.5             | 4.5             | 4.5             | 7.0                                               |
| Maximum Hogging<br>Curvature (km <sup>-1</sup> ) | 0.02                               | 0.02            | 0.02            | 0.05            | 0.05            | 0.04            | 0.08                                              |
| Maximum Sagging<br>Curvature (km <sup>-1</sup> ) | 0.04                               | 0.04            | 0.04            | 0.08            | 0.08            | 0.08            | 0.09                                              |

Source: after MSEC (2024) (Appendix H).

mm/m = millimetres per metre.

km<sup>-1</sup> = 1/kilometres.

The predictions of conventional subsidence parameters do not include the valley related upsidence and closure movements.

#### Non-Conventional Ground Movements

MSEC (2024) (Appendix H) considers it likely that non-conventional ground movements will occur due to near surface geological conditions, steep topography and valley related movements, which are often accompanied by elevated tilts and curvatures. The potential subsidence impacts from non-conventional subsidence movements are described for natural and built features in Appendix H.

Predicted subsidence contours are based on the July 2024 longwall layout. Refer to Appendix H for more details.

| 1 Todaletod edeberdence controlle and bacod on the bathy 2021 foriginal layouth Note: to Appendix 11 for more detailed |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Metropolitan Coal – Longwalls 311-316 Extraction Plan                                                                  |  |  |  |  |
| Revision No.EP-R01-E Page 28                                                                                           |  |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text                                                               |  |  |  |  |



Source: MSEC (2024)



METROPOLITAN COAL

Predicted Total Subsidence Contours after Longwalls 311-316

In most cases, it is not possible to predict the exact locations or magnitudes of the non-conventional anomalous movements due to near surface geological conditions. For this reason, the strain predictions provided in Appendix H are based on a statistical analysis of measured strains in the Southern Coalfield, including both conventional and non-conventional anomalous strains.

#### Predicted Far-Field Movements

Based on an empirical model for the Southern Coalfield, MSEC (2024) (Appendix H) concluded that the predicted far-field horizontal movements resulting from Longwalls 311-316 extraction are very small and could only be detected by precise surveys. While the impacts of far-field horizontal movements on natural and built features within the vicinity of Longwalls 311-316 are not expected to be significant, there are structures which are sensitive to small differential movements, including roads and road bridges to the east of Longwall 301 (Appendix H).

#### 3.1.1 Review Of Predictions

The predicted subsidence effects, subsidence impacts and environmental consequences of the Project were assessed in the Project EA and Preferred Project Report. This section describes the process of reviewing and updating these predictions to consider the Extraction Plan Layout.

#### 3.1.1.1 Predicted Subsidence Effects and Subsidence Impacts

A detailed subsidence assessment for Longwalls 311-316 has been prepared in support of this Extraction Plan by MSEC (2024), with the outcomes of this assessment incorporated into the management plans in Appendices A to E. The Subsidence Report by MSEC (2024) is provided in Appendix H.

#### Review of Subsidence Prediction Methodology

The predictions of subsidence effects for Longwalls 311-316 were developed by MSEC (2024) using the Incremental Profile Method, calibrated using observed monitoring data above the previously extracted longwalls at Metropolitan Coal (Appendix H). The Incremental Profile Method is based on a large database of observed subsidence movements in the Southern Coalfield and has been found, in most cases, to give reasonable, if not conservative, predictions of maximum subsidence, tilt and curvature.

Based on monitoring data from the Southern Coalfield, there is an approximate 90 percent (%) confidence level that the maximum observed incremental subsidence will be less than the maximum predicted incremental subsidence using the standard model (Appendix H).

#### Comparison with Previous Predictions of Subsidence Effects

MSEC (2024) (Appendix H) provides a comparison of the maximum predicted conventional total subsidence parameters for the Extraction Plan Layout and the Preferred Project Layout for Longwalls 311-316. The values are the maxima anywhere above the longwall layouts. The maximum predicted total subsidence and tilt based on the Extraction Plan Layout for Longwalls 311-316 are greater than the maxima predicted based on the Preferred Project Layout. The increased subsidence is the result of calibration of the Incremental Profile Method model (MSEC, 2024). The predicted tilt based on the Extraction Plan Layout is greater than the Preferred Project Layout near the finishing ends of Longwalls 311-316 but is similar to the predicted tilt based on the Preferred Project Layout elsewhere. The maximum predicted total hogging and sagging curvature for the Extraction Plan Layout are similar to the predicted based on the Preferred Project Layout (Appendix H).

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |  |
|----------------------------------------------------------|--|--|--|--|
| Revision No.EP-R01-E Page 30                             |  |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |  |

A feature of the Preferred Project Layout is increased pillar widths beneath and in close proximity to the Woronora Reservoir. As a result, the maxima based on the Preferred Project Layout occurred in the north-east and west of the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour, however, the area in the north-east have been left unmined by the shortening of Longwalls 311-316 for the Extraction Plan Layout (Appendix H).

The Woronora Reservoir full supply level is located above the commending ends Longwalls 311-313. The maximum predicted vertical subsidence based on the Extraction Plan Layout, is greater than the maximum predicted based on the Preferred Project Layout. The increased subsidence is the result of calibration of the Incremental Profile Method model (MSEC, 2024). The maximum predicted upsidence and closure for the Woronora Reservoir full supply level, based on the Extraction Plan Layout, are less than the maxima predicted based on the Preferred Project Layout (Appendix H).

The Eastern Tributary flows in a northerly direction into the full supply level of the Woronora Reservoir approximately 1.4 km (at the full supply level) to the east of Longwall 311 (Figure 2). The Eastern Tributary is not predicted to experience measurable valley related movements and conventional subsidence movements during the extraction of Longwalls 311-316 (Appendix H).

The Waratah Rivulet flows to the north-east and into the full supply level of the Woronora Reservoir, approximately 550 m (at the full supply level) to the south-east of Longwalls 311-316 (Figure 2). The maximum predicted vertical subsidence, upsidence and closure for the Waratah Rivulet, based on the Extraction Plan Layout, are similar to or less than the maxima predicted based on the Preferred Project Layout (Appendix H).

#### **Predicted Subsidence Impacts**

MSEC (2024) (Appendix H) has conducted a detailed assessment of potential subsidence impacts for each of the natural and built features identified in the vicinity of Longwalls 311-316. Potential subsidence impacts identified by MSEC (2024) are consistent with those identified in the Project EA and Preferred Project Report and include:

- surface cracking, heaving, buckling, humping and stepping;
- sub-surface fracturing;
- changes in gradients, ponding, scouring/erosion and changes in stream alignment; and
- instability of land features, including rock falls.

Potential impacts with respect to structures include cracking of road surfaces, opening of joints in pipelines, alteration of tension of electricity transmission lines and cracks in masonry.

The revised subsidence predictions for the Extraction Plan Layout do not change the subsidence impact assessments provided in the Project EA and Preferred Project Report (Appendix H).

#### 3.1.1.2 Potential Environmental Consequences

Detailed discussion of potential environmental consequences is provided in the management plans in Appendices A to F. The suitably qualified experts conducted a review of the potential environmental consequences due to Longwalls 311-316 extraction for the preparation of each management plan.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No.EP-R01-E Page 31                             |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

The IEPMC Initial Report indicates that in recent years it has been identified in the Western Coalfield that surface subsidence, groundwater and surface water responses to longwall mining can be significantly modified in the vicinity of lineaments. Further to advice from the IEPMC, the DPIE requested that specific regard be given to the potential impacts of mining near and under lineaments on surface water features, including swamps and waterfalls. This consideration of lineaments is included in the BMP (Appendix C) and WMP (Appendix A), respectively.

The potential impacts of mining effects on geological features on the quantity of water resources to the reservoir are assessed in the CRRP (Appendix G).

#### 3.2 SUBSIDENCE IMPACT PERFORMANCE MEASURES

The Project Approval requires Metropolitan Coal not to exceed the subsidence impact performance measures outlined in Table 1 of Condition 1, Schedule 3 of the Project Approval. The subsidence impact performance measures are detailed in Table 6.

Table 6
Subsidence Impact Performance Measures

| w                                                                                                                                  |                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Resources                                                                                                                    |                                                                                                                                                                                                                    |
| Catchment yield to the Woronora Reservoir                                                                                          | Negligible reduction to the quality or quantity of water resources reaching the Woronora Reservoir                                                                                                                 |
|                                                                                                                                    | No connective cracking between the surface and the mine                                                                                                                                                            |
| Woronora Reservoir                                                                                                                 | Negligible leakage from the Woronora Reservoir                                                                                                                                                                     |
|                                                                                                                                    | Negligible reduction in the water quality of Woronora Reservoir                                                                                                                                                    |
| Watercourses                                                                                                                       |                                                                                                                                                                                                                    |
| Waratah Rivulet between the full supply level<br>of the Woronora Reservoir and the maingate<br>of Longwall 23 (upstream of Pool P) | Negligible environmental consequences (that is, no diversion of flows, no change in the natural drainage behaviour of pools, minimal iron staining, and minimal gas releases)                                      |
| Eastern Tributary between the full supply level of the Woronora Reservoir and the maingate of Longwall 26                          | Negligible environmental consequences over at least 70% of the stream length (that is no diversion of flows, no change in the natural drainage behaviour of pools, minimal iron staining and minimal gas releases) |
| Biodiversity                                                                                                                       |                                                                                                                                                                                                                    |
| Threatened species, populations, or ecological communities                                                                         | Negligible impact                                                                                                                                                                                                  |
| Swamps 76, 77 and 92                                                                                                               | Set through condition 4 below                                                                                                                                                                                      |
| Land                                                                                                                               |                                                                                                                                                                                                                    |
| Cliffs                                                                                                                             | Less than 3% of the total length of cliffs (and associated overhangs) within the mining area experience mining-induced rock fall                                                                                   |
| Heritage                                                                                                                           |                                                                                                                                                                                                                    |
| Aboriginal heritage sites                                                                                                          | Less than 10% of Aboriginal heritage sites within the mining area are affected by subsidence impacts                                                                                                               |
| Items of historical or heritage significance at the Garrawarra Centre                                                              | Negligible damage (that is fine or hairline cracks that do not require repair), unless the owner of the item and the appropriate heritage authority agree otherwise in writing                                     |
| Built Features                                                                                                                     |                                                                                                                                                                                                                    |
| Built features                                                                                                                     | Safe, serviceable and repairable, unless the owner agrees otherwise in writing                                                                                                                                     |

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |
|----------------------------------------------------------|--|--|
| Revision No.EP-R01-E Page 32                             |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |

#### 3.3 SUBSIDENCE MANAGEMENT APPROACH

Potential environmental consequences during the mining of Longwalls 311-316 will be managed in accordance with the relevant requirements of the Project Approval and other approvals, through:

- **Mine Planning and Design** The design of the mine, including avoidance and subsidence mitigation measures (Section 1.3).
- **Subsidence Monitoring** Monitoring to confirm predictions of subsidence effects and potential subsidence impacts and environmental consequences (Section 4.1).
- **Management Measures and Remediation** Implementation of management measures and/or remediation, as required, to address subsidence impacts and/or environmental consequences.
- Adaptive Management The implementation of adaptive management where appropriate (Section 5.1.1).
- Contingency Plans Implementation of Contingency Plans in the event an exceedance of a subsidence impact performance measure or an unexpected impact is detected (Section 5.1.2), including consideration of identified potential contingency measures (Sections 4.2.1 to 4.2.8).

Surface and sub-surface features within the vicinity of Longwalls 311-316 are listed in Table 7. Features within the Longwalls 311-316 35° angle of draw and/or 20 mm predicted subsidence contour may potentially be impacted by the secondary extraction of Longwalls 311-316. There are also features that lie outside the Longwalls 311-316 35° angle of draw and/or 20 mm predicted subsidence contour that may experience either far-field movements, or valley related movements. The surface features which are sensitive to such movements have been identified and have been included in the subsidence assessments provided in MSEC (2024) (Appendix H).

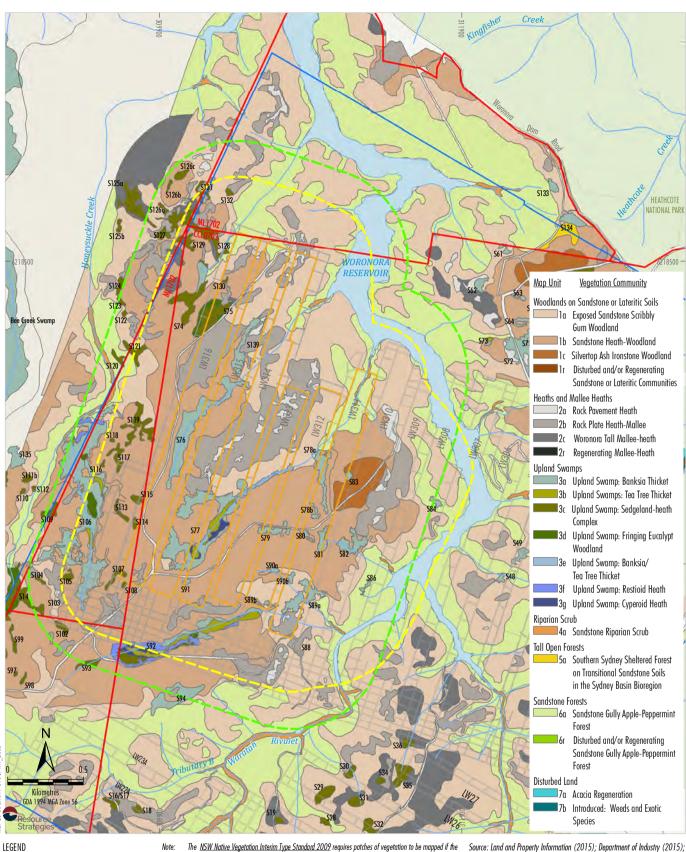
The location of natural features and known Aboriginal heritage sites within 600 m of Longwalls 311-316 and surrounds are shown on Figures 8, 9 and 10. The locations of surface infrastructure/built features over and adjacent to Longwalls 311-316 are shown on Figures 11a and 11b<sup>6</sup>. Descriptions of each of these features are contained within the relevant management plan referenced in Table 7.

Subsidence predictions and potential impacts to surface and sub-surface features are provided and described in MSEC (2024) (Appendix H).

Management measures and monitoring for each feature are included in each of the management plans as indicated in Table 7 and summarised in Sections 4.2.1 to 4.2.8.

The SMP (Appendix F) has been prepared to validate the subsidence predictions and analyse the relationship between the subsidence effects and subsidence impacts of the Extraction Plan and any ensuing environmental consequences. A summary of the proposed monitoring for the Extraction Plan is provided in Section 4.1.


Figures 11a and 11b show the July 2024 longwall layout. The revised longwall layout as of May 2025 are shown in Figure 2.


| rigates the and the snew the say 2024 longwall laysat. The revised longwall laysat as of may 2020 are snown in rigate 2. |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Metropolitan Coal – Longwalls 311-316 Extraction Plan                                                                    |  |  |  |  |
| Revision No.EP-R01-E Page 33                                                                                             |  |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text                                                                 |  |  |  |  |

## Table 7 Surface and Sub-surface Features

| Feature                                                                                     | Section/Management Plan Reference                |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|
| Natural Features                                                                            |                                                  |  |  |  |
| Streams                                                                                     | Section 4.2.1 and WMP (Appendix A)               |  |  |  |
| Cliffs and overhangs, Steep Slopes and Land in General (including rock ledges and outcrops) | Section 4.2.2 and LMP (Appendix B)               |  |  |  |
| Upland Swamps                                                                               | Continue 4.0.2 and DMD (Annual in C)             |  |  |  |
| Natural Vegetation                                                                          | Section 4.2.3 and BMP (Appendix C)               |  |  |  |
| Public Utilities and Other Infrastructure                                                   |                                                  |  |  |  |
| Woronora Reservoir                                                                          | Section 4.2.1 and WMP (Appendix A)               |  |  |  |
| Exploration Boreholes                                                                       | Oction 44.4 and Oction Provide (According 11)    |  |  |  |
| Survey Control Marks                                                                        | Section 4.1.1 and Subsidence Report (Appendix H) |  |  |  |
| Fire Trails and Vehicular Tracks                                                            | Sections 4.2.2 and LMP (Appendix B)              |  |  |  |
| Areas of Archaeological and/or Heritage Significance                                        |                                                  |  |  |  |
| Known Aboriginal Heritage Sites                                                             | Section 4.2.4 and HMP (Appendix D)               |  |  |  |

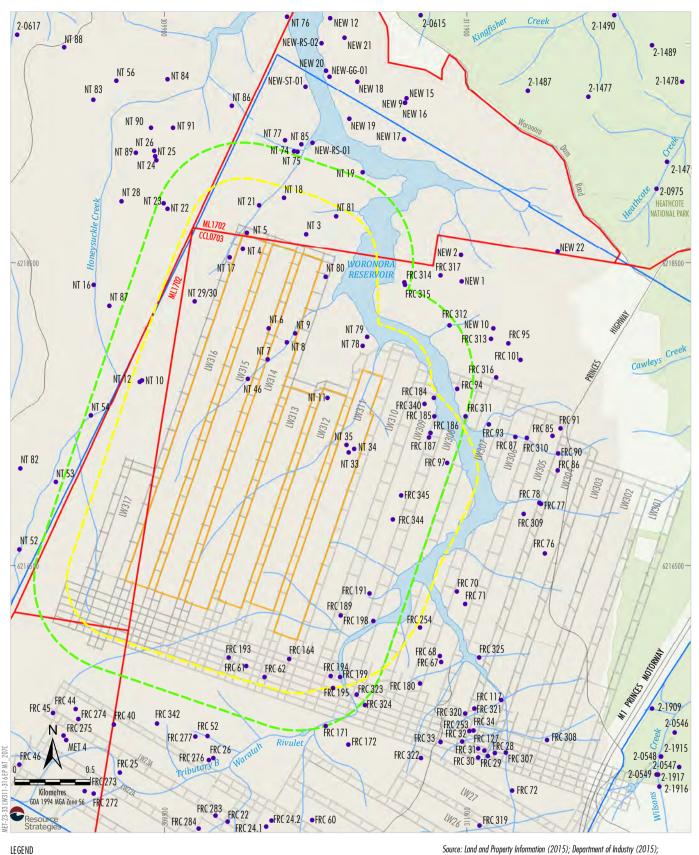
| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No.EP-R01-E Page 34                             |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |





Mining Lease Boundary
Woronora Special Area
Project Underground Mining Area
Longwalls 20-27 and 301-317
Longwalls 311-316 Secondary Extraction
Longwalls 311-316 35° Angle of Draw and/or
Predicted 20 mm Subsidence Contour
600 m from Longwalls 311-316
Secondary Extraction

The NSW Native Vegetation Interim Type Standard 2009 requires patches of vegetation to be mapped if the dimensions of the representative polygon on a map sheet are 2 mm x 2 mm or greater (i.e. 0.25 hectares or greater at a scale of 1:25,000). Eco Logical Australia conducted field inspections of upland swamp vegetation previously mapped by Bangalay Botanical Surveys (2008) overlying or proximal to Longwalls 301-310 to confirm the upland swamp vegetation communities present and to confirm or update the swamp vegetation boundaries. It is noted that the revised boundaries of a number of upland swamps (Swamps 37, 38, 42, 48, 54, 58, 61, 63, 65/66, 67, 68a, 68b, 70, 73, 83, 86 and 68) are less than 0.25 hectares in area and consistent with NSW vegetation mapping guidelines are not required to be mapped. Notwithstanding, the revised swamp vegetation mapping boundaries (including those swamps less than 0.25 hectares in area) are shown on this figure to document the changes to previous vegetation mapping.


ource: Land and Property Information (2015); Department of Industry (2015) Metropolitan Coal (2023); MSEC (2024);

after NPWS (2003), Bangalay Botanical Surveys (2008); Eco Logical Australia (2015; 2016; 2018) and Ecoplanning (2021; 2023)

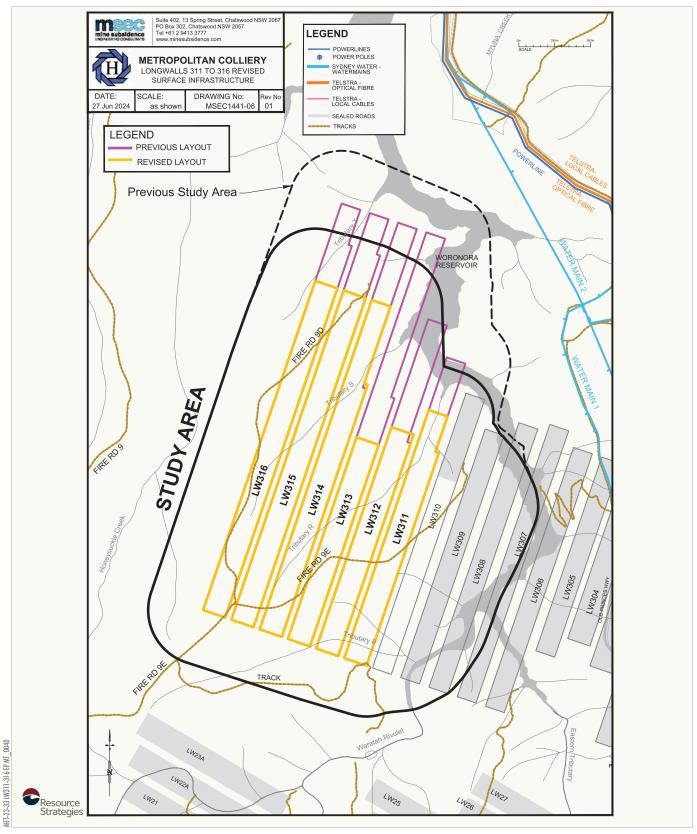


METROPOLITAN COAL

Longwalls 311-316 Vegetation Mapping



Mining Lease Boundary Woronora Special Area Project Underground Mining Area Longwalls 20-27 and 301-317 Longwalls 311-316 Secondary Extraction Longwalls 311-316 35° Angle of Draw and/or Predicted 20 mm Subsidence Contour 600 m from Longwalls 311-316 Secondary Extraction

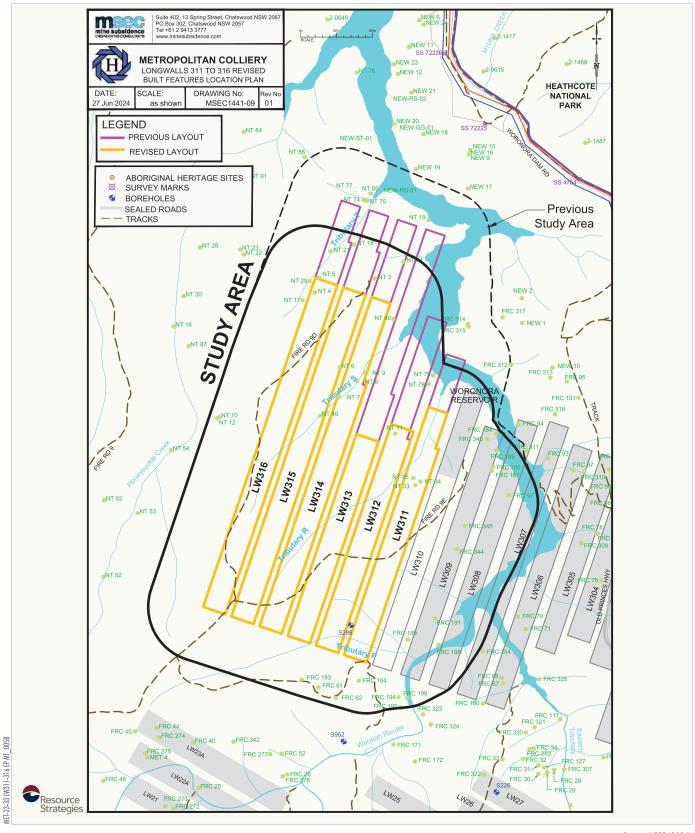

Aboriginal Heritage Site

Source: Land and Property Information (2015); Department of Industry (2015); Metropolitan Coal (2023); MSEC (2024); Niche Heritage and Environment (2024)



METROPOLITAN

Longwalls 311-316 **Known Aboriginal Heritage Sites** 




Source: MSEC (2024)

### <u>Peabody</u>

METROPOLITAN COAI

Surface Infrastructure Over and Adjacent to the Longwalls 311-316 Study Area



Source: MSEC (2024)

### <u>Peabody</u>

METROPOLITAN COAL

Surface Infrastructure Over and Adjacent to the Longwalls 311-316 Study Area

#### 4 MONITORING PROGRAMS

Surface and sub-surface features within, or in the vicinity of, the Longwalls 311-316 are listed in Table 7. These features may be potentially impacted by the secondary extraction of Longwalls 311-316. Descriptions of each of these features are contained within the relevant management plan referenced in Table 7.

The Longwalls 311-316 35° angle of draw and/or 20 mm subsidence contour is wholly within land owned by the WaterNSW and there are no relevant proposed developments within 600 m of Longwalls 311-316 proposed by other parties.

Subsidence predictions and impact assessments for surface and sub-surface features have been provided in Appendix H. Management and monitoring actions for each feature are included in management plans as indicated in Table 7 and summarised in Sections 4.2.1 to 4.2.7.

The component management plans to this Extraction Plan form part of Metropolitan Coal's Environmental Management System for the Metropolitan Coal Mine as shown on Figure 3.

#### 4.1 SUBSIDENCE MONITORING PROGRAM

#### 4.1.1 Subsidence Monitoring

The SMP is provided in Appendix F.

The objectives of the monitoring program are:

- To monitor the subsidence effects associated with Longwalls 311-316 extraction and where relevant, previous Longwalls 308-310, Longwalls 301-307 and Longwalls 20-27.
- To summarise and consolidate the various environmental monitoring programs presented in each of the key component plans of the Longwalls 311-316 Extraction Plan which focus on the monitoring of subsidence impacts and environmental consequences of mine subsidence. These include:
  - the WMP (Appendix A);
  - the LMP (Appendix B);
  - the BMP (Appendix C);
  - the HMP (Appendix D); and
  - the PSMP (Appendix E).
- To analyse the relationship between the subsidence effects and subsidence impacts of the Extraction Plan and any ensuing environmental consequences.
- To validate subsidence predictions.
- To provide subsidence data to improve the predictive methods and provide a better understanding of the underlying factors contributing to ground movement.

The SMP is composed of subsidence parameter monitoring that is summarised in Table 8.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |         |  |  |
|----------------------------------------------------------|--|---------|--|--|
| Revision No.EP-R01-E                                     |  | Page 40 |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |         |  |  |

Table 8
Subsidence Parameter Monitoring Components

| Monitoring<br>Component                                 | Description                                                                                                                      | Frequency                                                                                                                                                                                        | Relevant<br>Management Plan                 |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 300 XL Line.                                            | Monitoring line traversing approximately perpendicular across 300 series longwalls.                                              | <ul> <li>Prior to Longwall 311.</li> <li>Within 3 months following completion of each longwall.</li> </ul>                                                                                       | General – all plans                         |
| Waratah Rivulet.                                        | Cross Line Q (WaterNSW gauging station). Cross Line at rock bars R, S, T, U and V. Realtime absolute monitoring sites 43 and 44. | Prior to Longwall 311. Following the completion of Longwall 311.                                                                                                                                 | WMP<br>Rock Bars Q, R, S, T,<br>U, V        |
| Valley Closure monitoring.                              | Realtime absolute 3D monitoring sites as per subsidence monitoring figure (Figure 5 of Appendix F).                              | <ul> <li>Prior to Longwall 311.</li> <li>Continuous (downloaded monthly).</li> <li>Real-time (continuous) absolute 3D monitoring.</li> <li>Following the completion of each longwall.</li> </ul> | General                                     |
| Large Swamps (76, 77 and 92) valley closure monitoring. | Realtime absolute 3D monitoring sites as per subsidence monitoring figure (Figure 5 of Appendix F).                              | <ul> <li>Prior to Longwall 311.</li> <li>Real time (continuous) absolute 3D monitoring.</li> <li>Following the completion of each longwall.</li> </ul>                                           | WMP<br>BMP<br>Large Swamps 76, 77<br>and 92 |

Surveys will measure subsidence movements in three dimensions using a total station survey instrument.

Real-time (continuous) absolute 3D monitors will measure subsidence movements in three dimensions using GNSS survey methods.

Plan 7 in Attachment 1 of Appendix F shows the subsidence monitoring locations during the mining of Longwalls 311-316.

#### 4.1.2 Survey Accuracy and Frequency

Longwall subsidence measurements will be surveyed in accordance with the relevant specifications and legislation as applied in NSW. These include:

- Survey and Drafting Directions for Mining Surveyors 2020 (NSW Mines) (Department of Customer Service – Spatial Service); and
- Inter-governmental Committee on Surveying and Mapping Standards and Practices for Control Surveys (SP1) Version 1.7 Sept 2007 ICSM Publication No.1 (ICSM SP1).

The Survey and Drafting Directions for Mine Surveyors 2020 Section 3.4 Correlation of Surface and Underground Surveys will be consistent with Class 'D' survey as prescribed in ICSM SP1. It is intended that all Control Surveys for mine subsidence of the Longwalls 311-316 to be surveyed to Class 'D' using prescribed methods as described in ICSM SP1.

Subsidence monitoring would be undertaken by a suitably qualified person.

The prescribed accuracy, as defined by the ICSM SP1 and the required frequency of the surveys can be seen in the SMP (Appendix F).

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No.EP-R01-E Page 41                             |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

#### 4.1.3 Subsidence Effects Recording and Reporting

Analysis of the relationship between subsidence effects, subsidence impacts and environmental consequences will be reported annually in the Annual Review. The analysis will include:

- comparison of predicted subsidence effects and measured parameters;
- comparison of predicted subsidence impacts and measured impacts;
- analysis of any variations between predicted and measured conventional subsidence effects and impacts (e.g. consideration of underlying parameters such as distance functions, etc. used to determine the predicted subsidence profile);
- analysis of variations between predicted and measured far-field movements and non-conventional subsidence effects (e.g. effects of geological structures and valley closure) and impacts; and
- analysis of the 3D movement about longwall extraction with particular reference to the transverse and longitudinal movements versus distance in advance of the longwall panel.

The analyses will be used to assess the validity of the subsidence predictions and to refine the predictive methods where appropriate.

The relationship between subsidence effects, impacts and environmental consequences will be determined through review and reporting of each environmental management plan (e.g. LMP, WMP, BMP and HMP) in accordance with Condition 3, Schedule 7 of the Project Approval.

#### 4.2 ENVIRONMENTAL MONITORING PROGRAM

#### 4.2.1 Water Management

#### 4.2.1.1 Overview

The WMP is provided in Appendix A. The purpose and scope of the WMP are summarised below:

Purpose: To manage the potential environmental consequences of the Extraction Plan on

watercourses (including the Woronora Reservoir), aquifers and catchment yield.

**Scope:** Surface water and groundwater resources during the mining of Longwalls 311-316.

#### 4.2.1.2 Key Water Issues, Monitoring and Management Measures

There are a number of tributaries located within the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour (Figure 8). These streams consist of shallow drainage lines from the topographical high points, forming tributaries where valley heights increase and drain into the Woronora Reservoir. The streams are located above Longwalls 311-316, and could experience the full range of predicted subsidence movements, with maximum predicted closure up to 675 mm (MSEC, 2024) (Appendix H).

Three larger tributaries are located within the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour (Figure 8). These tributaries are identified as Tributary P (through Swamp 92), Tributary R (through Swamp 77) and Tributary S (through Swamp 76).

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No.EP-R01-E Page 42                             |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

The Woronora Reservoir full supply level is located above Longwalls 311-316 and within the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour (Figure 8). As described in Section 3.1 and the WMP (Appendix A), the potential impacts on the Woronora Reservoir based on the Extraction Plan Layout are predicted to be consistent with those based on the Preferred Project Layout.

The Woronora Reservoir Impact Strategy, developed by the Independent Experts, provides a staged plan of action for further investigation into the impacts of mining near the reservoir. Metropolitan Coal have implemented a number of additional groundwater and surface water monitoring sites in response to the Stage 1 and Stage 2 reports. The Woronora Reservoir Impact Strategy is described in Section 2.3 and the WMP (Appendix A).

The Eastern Tributary flows in a northerly direction into the full supply level of the Woronora Reservoir approximately 1.4 km (at the full supply level) to the east of Longwall 311. The Eastern Tributary is not predicted to experience measurable valley related movements and conventional subsidence movements during the extraction of Longwalls 311 to 316 (Appendix H).

Metropolitan Coal established a comprehensive monitoring and adaptive management program to identify subsidence related movements at the Eastern Tributary to minimise the risk of further exceedance of the Eastern Tributary performance measure. The Eastern Tributary Valley Closure TARP has been successfully implemented by Metropolitan Coal for Longwalls 303, 304 and 305. Consistent with the TARP, the decision to cease mining of Longwalls 303, 304 and 305 was made at a very low magnitude of valley closure. The same monitoring and adaptive management program were used for the extraction of Longwalls 306, 307, 308 and 309 (as described in the Longwalls 308-310 Extraction Plan).

For Longwalls 311-316, the Waratah Rivulet will be monitored by the same Global Navigation Satellite System (GNSS) valley closure monitoring methods used for the Eastern Tributary with consideration of the 200 mm valley closure design tool (Appendix A).

As described in Section 2.3, restricting predicted valley closure to 200 mm has been a successful design tool to date for mining in the vicinity of the Waratah Rivulet and Metropolitan Coal has developed a TARP for Waratah Rivulet closure based on this principal as well as monitoring data from the previous extraction underneath and adjacent to the Waratah Rivulet.

The intent of the Waratah Rivulet Valley Closure TARP is to identify the initial development of valley closure prior to an impact occurring. The adaptive management approach is based on Metropolitan Coal conducting GNSS monitoring of the Waratah Rivulet to detect mining-induced effects, allowing the cessation of mining prior to mining resulting in any unacceptable or adverse impacts on the Waratah Rivulet. The monitoring provides the earliest possible indicator for development of valley closure. The development of valley closure is recognised as the dominant mechanism that results in impact to a rockbar.

The geotechnical study of the Waratah Rivulet stream bed investigated the geological characteristics of the stream bed, with the aim of identifying any characteristics that would make the Waratah Rivulet more susceptible to subsidence movements (similar to the Eastern Tributary). The study focussed on Pool P to Rock Bar W on the Waratah Rivulet, and compared these sites to Pool ETAM on the Eastern Tributary, which has experienced subsidence movements due to historical mining. Based on the results of the assessment, the geological features identified along the Eastern Tributary are considered to be unique, compared to the Waratah Rivulet. The Eastern Tributary is therefore more likely to be susceptible to subsidence movements. Restricting valley closure to 200 mm therefore continues to be an appropriate design tool for the Waratah Rivulet. Further discussion on the subsidence predictions and 200 mm valley closure design tool for Longwalls 311-316 is provided in the WMP (Appendix A).

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |
|----------------------------------------------------------|---------|--|
| Revision No.EP-R01-E                                     | Page 43 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |

Notwithstanding, the potential impacts of mining near and under lineaments on surface water features has been assessed. Hydraulic connectivity via lineaments to the waterfall at rock bar ETAU on the Eastern Tributary is considered to be highly unlikely as a result of the extraction of Longwalls 311-316 (Appendix A).

A risk assessment workshop was held on 25 July 2023. The workshop participants identified and assessed the potential for mining effects on lineaments, joints, faulting, basal shear planes and dykes to impact on the quantity of water to the Woronora Reservoir, including the potential for water to be diverted out of Woronora Reservoir and into other catchments. The participants considered the risk control measures and procedures to be reasonable to manage the identified risks. Further information on the risk assessment is provided in the CRRP (Appendix G).

The key issues relating to subsidence impacts on surface water and groundwater resources are described in the WMP and the relevant monitoring and management measures are summarised in Table 9 and Section 4.1.

#### 4.2.1.3 Assessment of Performance Indicators and Measures

Performance indicators developed for the subsidence impact performance measures relating to water resources and watercourses are presented in the WMP and are summarised in Table 10.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |
|----------------------------------------------------------|---------|--|
| Revision No.EP-R01-E                                     | Page 44 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |

Table 9
Management Issues for Water Resources and Watercourses during Longwalls 311-316 Extraction

| Issue                                                                                                                        | Approved Impact                                                                                                                                                                                                                    | Monitoring                                                                                                                                                                                                          | Management                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Catchment yield to the Woronora Reservoir                                                                                    | <ul> <li>Negligible reduction to the quality or<br/>quantity of water resources reaching<br/>the Woronora Reservoir.</li> <li>No connective cracking between the<br/>surface and the mine.</li> </ul>                              | Monitoring in accordance with the WMP, including:  Surface water quality.  Surface water flow.                                                                                                                      | <ul> <li>Mine planning and design:</li> <li>Conservative mining geometry.</li> <li>Shortening of Longwalls 303, 304, 305, 306 and 308-316.</li> </ul> |
| Woronora Reservoir                                                                                                           | Negligible leakage from the Woronora Reservoir.     Negligible reduction in water quality of Woronora Reservoir.                                                                                                                   | <ul> <li>Groundwater pressure/level.</li> <li>Inspections of underground workings for water accumulation.</li> <li>Mine water make.</li> </ul>                                                                      | To reduce subsidence effects on Swamp 92, Longwall 312 and 313 were shortened to incorporate a standoff.      Adaptive management – Waratah           |
| Waratah Rivulet between the full supply level of the Woronora Reservoir and the maingate of Longwall 23 (upstream of Pool P) | Negligible environmental consequences (that is, no diversion of flows, no change in the natural drainage behaviour of pools, minimal iron staining, and minimal gas releases).                                                     | Woronora Reservoir water quality.  Visual inspections of stream cracking, gas releases, iron staining and drainage behaviour.  Gas releases.                                                                        | Rivulet Valley Closure TARP.     Risk assessments.     Additional monitoring (e.g. increase in monitoring frequency or additional sampling).          |
| Eastern Tributary between the full supply level of the Woronora Reservoir and the maingate of Longwall 26                    | Negligible environmental<br>consequences over at least 70% of the<br>stream length (that is no diversion of<br>flows, no change in the natural<br>drainage behaviour of pools, minimal<br>iron staining and minimal gas releases). | <ul> <li>Pool water levels.</li> <li>Groundwater quality.</li> <li>Subsidence monitoring at Waratah Rivulet gauging station.</li> <li>Subsidence monitoring for the Waratah Rivulet Valley Closure TARP.</li> </ul> | <ul><li>Stream remediation.</li><li>Revegetation measures.</li><li>Offsets.</li></ul>                                                                 |
|                                                                                                                              |                                                                                                                                                                                                                                    | Subsidence monitoring in accordance with the SMP.                                                                                                                                                                   |                                                                                                                                                       |

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |         |
|----------------------------------------------------------|--|---------|
| Revision No. EP-R01-E                                    |  | Page 45 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |         |

# Table 10 Summary of Water Resources and Watercourses Performance Measures and Performance Indicators

| Performance Measure                                                                                                                                                                  | Performance Indicator(s)                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Negligible reduction to the quantity of water resources reaching the Woronora Reservoir.                                                                                             | Changes in the quantity of water entering Woronora Reservoir are not significantly different post-mining compared to pre-mining, that are not also occurring in the control catchment.                                                             |
| Negligible reduction to the quality of water resources reaching the Woronora Reservoir.                                                                                              | Changes in the quality of water entering Woronora Reservoir are not significantly different post-mining compared to pre-mining concentrations that are not also occurring at control site WOWQ2.                                                   |
| No connective cracking between the surface and the mine.                                                                                                                             | Visual inspection does not identify abnormal water flow from the goaf, geological structure, or the strata generally.                                                                                                                              |
|                                                                                                                                                                                      | The 20-day average mine water make does not exceed 1 ML/day.                                                                                                                                                                                       |
|                                                                                                                                                                                      | Significant departure from the predicted envelope of the vertical potentiometric head profile at Bore PM02 does not occur.                                                                                                                         |
|                                                                                                                                                                                      | Significant departure from the predicted envelope of the vertical potentiometric head profile at Bore PM01 does not occur.                                                                                                                         |
| No connective cracking between the surface and the mine.  Negligible leakage from the Woronora Reservoir.                                                                            | The hydraulic gradient to the Woronora Reservoir at full supply level from Bore PHGW2A is reduced by no more than 40% from that measured to 30 June 2017.                                                                                          |
| Negligible leakage from the Woronora Reservoir.                                                                                                                                      | The hydraulic gradient to the Woronora Reservoir at full supply level from Bore 9EGW2A is reduced by no more than 40% from that measured to 30 June 2017.                                                                                          |
|                                                                                                                                                                                      | The hydraulic gradient to the Woronora Reservoir at full supply level from Bore PM02 is reduced by no more than 40% from that measured to 30 June 2017.                                                                                            |
|                                                                                                                                                                                      | The hydraulic gradient from transect bore T5 to bore T2-R (or Woronora Lake Level) is reduced by no more than 20% from that measured on 11 December 2022.                                                                                          |
|                                                                                                                                                                                      | The hydraulic gradient from transect bore T2 to the Woronora<br>Reservoir remains positive (towards the Reservoir).                                                                                                                                |
| Negligible reduction in the water quality of Woronora Reservoir.                                                                                                                     | Changes in the quality of water in the Woronora Reservoir are not significantly different post-mining compared to pre-mining concentrations.                                                                                                       |
| Negligible environmental consequences                                                                                                                                                | No change to the natural drainage behaviour of Pools T, U, V and W.                                                                                                                                                                                |
| (that is, no diversion of flows, no change in the natural drainage behaviour of pools, minimal iron                                                                                  | Analysis of water level data for Pools, T, U,, V and W indicates the water level is at or above the pool's previous minimum.                                                                                                                       |
| staining, and minimal gas releases) on<br>the Waratah Rivulet between the full<br>supply level of the Woronora Reservoir<br>and the maingate of Longwall 23<br>(upstream of Pool P). | Visual inspection of the Waratah Rivulet from Pool T to the full supply level of the Woronora Reservoir does not show significant changes in the extent or nature of iron staining that isn't also occurring in the Woronora River (control site). |
|                                                                                                                                                                                      | Gas releases in Waratah Rivulet from Pool T to the full supply level of<br>the Woronora Reservoir have not increased beyond those observed<br>up to the commencement of Longwall 301 extraction.                                                   |
| Negligible environmental consequences over at least 70% of the stream length                                                                                                         | No change to the natural drainage behaviour of Pools ETAS, ETAT and ETAU.                                                                                                                                                                          |
| (that is no diversion of flows, no change<br>in the natural drainage behaviour of<br>pools, minimal iron staining and<br>minimal gas releases) of the Eastern                        | Analysis of water level data for Pools ETAS/ETAT and ETAU indicates<br>the water levels are above that required to maintain water over the<br>downstream rock bars.                                                                                |
| Tributary between the full supply level of the Woronora Reservoir and the maingate of Longwall 26.                                                                                   | Gas releases in Eastern Tributary between the full supply level of the Woronora Reservoir and the maingate of Longwall 26 have not increased beyond those observed up to the commencement of Longwall 301 extraction.                              |

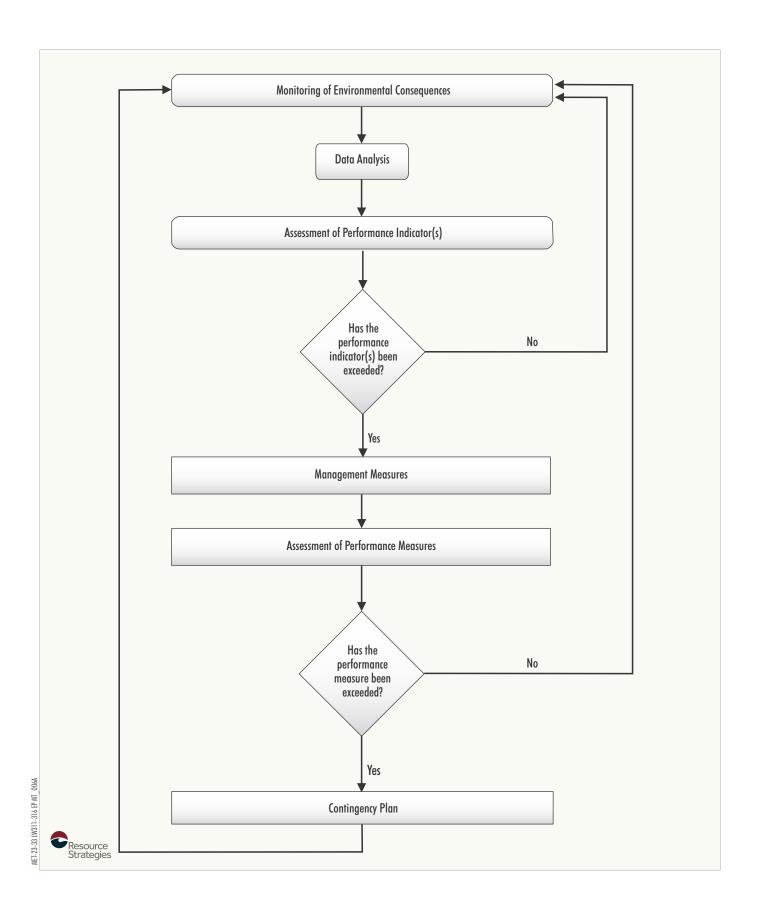
| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |
|----------------------------------------------------------|---------|--|
| Revision No. EP-R01-E                                    | Page 46 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |

Monitoring against these performance indicators during the mining of Longwalls 311-316 is summarised in Table 9 and Section 4.1 and described in detail in Appendix A. The procedure that will be followed to assess the extraction of Longwalls 311-316 against the performance indicators and performance measures is outlined in Figure 12 and described in detail in the WMP (Appendix A).

Monitoring conducted in accordance with the Metropolitan Coal Longwalls 23-27 WMP identified that the following watercourse impact performance measure for the Eastern Tributary between the full supply level of the Woronora Reservoir and the maingate of Longwall 26 had been exceeded in relation to minimal iron staining and no diversion of flows/no change in the natural drainage behaviour of pools. (emphasis added):

Negligible environmental consequences over at least 70% of the stream length (that is **no diversion of flows, no change in the natural drainage behaviour of pools, minimal iron staining** and minimal gas releases)

Metropolitan Coal provided the DPE with a proposed course of action in relation to the exceedance of the Eastern Tributary subsidence impact performance measure, focused on the implementation of stream remediation measures. In accordance with Condition 1, Schedule 6 of the Project Approval, Metropolitan Coal is required to restore surface flow and pool holding capacity on the Eastern Tributary between the full supply level of the Woronora Reservoir and the maingate of Longwall 26. Metropolitan Coal is committed to the remediation of pools on the Eastern Tributary.


#### 4.2.1.4 Contingency Plan

In the event that a water resource or watercourse subsidence impact performance measure is exceeded, Metropolitan Coal will implement a Contingency Plan as described in the WMP and summarised in Section 5.1.2. Potential contingency measures for an exceedance of the water resource or watercourse performance measures include:

- The conduct of additional monitoring (e.g. increase in monitoring frequency or additional sampling) to inform the proposed contingency measures.
- The implementation of stream remediation measures to restore surface water flow/pool holding capacity.
- The implementation of revegetation measures to remediate impacts of gas releases on riparian vegetation.
- The purchase of water from Sydney Water in accordance with a license agreement established to the satisfaction of WaterNSW and the DPE.
- The provision of a suitable offset(s) to compensate for the reduction in the quantity of water resources reaching the Woronora Reservoir. Examples of potential offsets include improvement works in the Woronora Reservoir water supply catchment.
- The implementation of adaptive management measures. Examples of adaptive management measures include stepping-around a longwall, the use of stand-offs (environmental pillar) from a particular location, or increasing the setback of the longwalls already subject to stand-off.

As indicated in Section 4.2.1.1 above, Metropolitan Coal will conduct stream remediation on the Eastern Tributary in response to the exceedance of the Eastern Tributary watercourse subsidence impact performance measure during the mining of Longwalls 23-27.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |
|----------------------------------------------------------|---------|--|
| Revision No. EP-R01-E                                    | Page 47 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |



### <u>Peabody</u>

#### METROPOLITAN COAL

#### 4.2.2 Land Management

#### 4.2.2.1 Overview

The LMP is provided in Appendix B. The purpose and scope of the LMP are summarised below:

Purpose: To manage the potential environmental consequences of the Extraction Plan on cliffs

and overhangs, steep slopes and land in general.

Scope: Cliffs and overhangs, steep slopes and land in general during the mining of

Longwalls 311-316.

#### 4.2.2.2 Key Land Issues, Monitoring and Management Measures

Cliffs are defined as a continuous rock face, including overhangs, having a minimum height of 10 m and a slope of greater than 66°. Overhangs associated with cliffs and/or considered sensitive to potential mine subsidence movements (due to their location relative to the Waratah Rivulet) were also identified within the Project underground mining area (Figure 8).

Six cliff and overhang sites are located within the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour (sites COH10, COH11, COH12, COH13, COH18 and COH19) while an additional four cliff and overhang sites (sites COH5, COH7, COH8 and COH09) are outside the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour and within 600 m of Longwalls 311-316. These four cliff and overhang sites were included in the Extraction Plans.

Detailed baseline recording for four cliffs and overhang sites located within the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contours (COH10, COH11, COH12 and COH13) has been conducted and is included in Appendix B. Baseline recording of the remaining two cliffs, COH18 and COH19, within the 35° angle of draw and/or predicted 20 mm subsidence contour will be carried out prior to the commencement of Longwall 311, subject to logistics and site access including obtaining any necessary approvals.

Visual inspections for subsidence impacts on cliff site COH17 were conducted following the completion of Longwalls 303 and 304. The visual inspections did not record any subsidence impacts. For Longwalls 311-316, visual inspections for subsidence impacts will be conducted at sites COH10, COH11, COH12, COH13, COH18 and COH19:

- prior to the commencement of Longwall 311 extraction;
- monthly at cliff site(s) located within 400 m of longwall extraction; and
- within three months of the completion of Longwall 311, Longwall 312 and Longwall 313 at all
  identified sites (i.e. sites COH10, COH11, COH12, COH13, COH18 and COH19) and within three
  months of the completion of Longwall 314, Longwall 315 and Longwall 316 at sites COH18 and
  COH19.

The cliffs located outside of the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour and within 600 m of Longwalls 311-316 are not expected to experience any measurable vertical subsidence resulting from the extraction of Longwalls 311-316 (Appendix B).

Consistent with the Project Approval, steep slopes are defined as an area of land having a natural gradient of between 33° and 66° (Figure 8). Steep slopes have been identified to highlight areas where existing ground slopes may be marginally stable. However, no significant slope failures have been observed in the Southern Coalfield as a result of longwall mining.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |
|----------------------------------------------------------|---------|--|
| Revision No. EP-R01-E                                    | Page 49 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |

Land in general refers to the general landscape other than cliffs and steep slopes. There are rock ledges, also called rock outcrops and minor cliffs, which occur within 600 m of Longwalls 311-316 (Appendix B). Land in general includes other land features such as fire trails and vehicular tracks, however excludes surface features such as streams and upland swamps which are addressed in the WMP and BMP, respectively.

The key issues relating to subsidence impacts on land are described in the LMP and the relevant monitoring and management measures are summarised in Table 11 and Section 4.1.

#### 4.2.2.3 Assessment of Performance Indicators and Measures

The Project Approval requires Metropolitan Coal not to exceed the subsidence impact performance measure relating to land, outlined in Table 1 of Condition 1, Schedule 3:

Less than 3% of the total length of cliffs (and associated overhangs) within the mining area experience mining-induced rock fall.

Metropolitan Coal will assess the Project against the following performance indicator:

Cliff sites COH10, COH11, COH12, COH13, COH18 and/or COH19 experience cliff instabilities that do not require management measures to be implemented.

Metropolitan Coal will assess steep slopes and land in general against the following performance indicator:

Steep slopes and land in general experience sandstone fracturing/cracking and rock falls that do not require management measures to be implemented.

Monitoring against the performance indicators and performance measure during the mining of Longwalls 311-316 is summarised in Table 11 and Section 4.1 and described in detail in Appendix B. The procedure that will be followed to assess the extraction of Longwalls 311-316 against the performance indicators and performance measure is outlined in Figure 12 and described in detail in the LMP (Appendix B).

#### 4.2.2.4 Contingency Plan

In the event the subsidence impacts observed exceed the land subsidence impact performance measure, Metropolitan Coal will implement a Contingency Plan as described in the LMP and summarised in Section 5.1.2.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No. EP-R01-E Page 50                            |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

Table 11
Management Issues for Land during Longwalls 311-316 Extraction

| Issue                            | Approved Impact                                                                                                                                                                     | Monitoring                                                                                                 | Management                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                   |                                  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Cliffs and overhangs             | Less than 3% of the total length of cliffs<br>(and associated overhangs) within the<br>mining area experience mining-induced<br>rock fall.                                          | Monitoring in accordance with the LMP, including visual observations of:  Cliff instabilities or cracking. | including visual observations of:  Ced  Cliff instabilities or cracking.                                                                                                                                                                                                                                                                                                       | <ul> <li>including visual observations of:         <ul> <li>Cliff instabilities or cracking.</li> <li>Installation of star</li> </ul> </li> </ul> | motanation of standing supports. |
| Steep slopes and land in general | Sandstone fracturing (including surface tension cracking) and subsequent rock falls consistent with that observed during the extraction of previous longwalls at Metropolitan Coal. | Rock falls.  Subsidence monitoring in accordance with the SMP.                                             | <ul> <li>Improvement of appearance including:         <ul> <li>Application of product to enhance the weathered appearance of a cliff face.</li> <li>Planting of endemic native vegetation.</li> </ul> </li> <li>Implementation of erosion and sediment controls.</li> <li>Permanent filling of surface tension cracks.</li> <li>Measures to address safety hazards.</li> </ul> |                                                                                                                                                   |                                  |

|                                                          | Metropolitan Coal – Longwalls 311-316 Extraction Plan |         |
|----------------------------------------------------------|-------------------------------------------------------|---------|
| Revision No. EP-R01-E                                    |                                                       | Page 51 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                                                       |         |

#### 4.2.3 Biodiversity Management

#### 4.2.3.1 Overview

The BMP is provided in Appendix C. The purpose and scope of the BMP are summarised below:

Purpose: To manage the potential environmental consequences of the Extraction Plan on aquatic and

terrestrial flora and fauna, with a specific focus on swamps.

Scope: Aquatic and terrestrial flora and fauna (including swamps) during the mining of

Longwalls 311-316.

#### 4.2.3.2 Key Biodiversity Issues, Monitoring and Management Measures

Thirty nine upland swamps are located within the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour (Swamps 74, 75, 76, 77, 78a, 78b, 79, 80, 81, 82, 83, 84, 86, 88, 89a, 89b, 90a, 90b, 91, 92, 105, 106, 107, 108, 113, 114, 115, 116, 117, 118, 119, 121, 127 128, 129, 130, 131, 132 and 139) and an additional fifteen swamps (Swamps 14, 93, 94, 102, 103, 104, 109, 120, 122, 123, 124, 125a, 126a, 126b and 126c) are located within 600 m of Longwalls 311-316 (Figures 5 and 8).

Riparian vegetation and habitats for aquatic biota occur along streams which flow to the Woronora Reservoir (including the Waratah Rivulet and Eastern Tributary), and some of their tributaries (Figure 9). No threatened aquatic biota listed under the *Fisheries Management Act 1994*, NSW *Biodiversity Conservation Act 2016* (BC Act) or Commonwealth *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) has been recorded within the Project underground mining area or in the Woronora Reservoir.

Vegetation communities mapped on slopes and ridgetops within 600 m of Longwalls 311-316 secondary extraction include woodlands on sandstone or lateritic soils, heaths and mallee heaths, sandstone forests and disturbed land (Figure 9).

The cliffs and overhangs, steep slopes, and land in general described in Section 4.2.2 also provide habitat for aquatic and terrestrial flora and fauna.

A number of threatened terrestrial flora and fauna species listed under the BC Act or EPBC Act are known to occur, or have the potential to occur within the Project underground mining area or surrounds. No endangered flora or fauna populations that were listed under the *Threatened Species Conservation Act 1995* (TSC Act) at the time of Project Approval occur within the Project underground mining area or surrounds.

Endangered Ecological Communities (EECs) listed under the TSC Act at the time of Project Approval and identified as occurring in the Project underground mining area or surrounds includes the Southern Sydney Sheltered Forest on Transitional Sandstone Soils in the Sydney Basin Bioregion EEC and the O'Hares Creek Shale Forest EEC.

The key issues relating to subsidence impacts on biodiversity are described in the BMP and the relevant monitoring and management measures are summarised in Table 12 and Section 4.1.

Other subsidence impact performance measures and indicators of relevance to biodiversity include the water resource and watercourse performance measures detailed in the WMP and the land subsidence impact performance measure detailed in the LMP.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |
|----------------------------------------------------------|--|--|
| Revision No. EP-R01-E Page 52                            |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |

## Table 12 Management Issues for Biodiversity during Longwalls 311-316 Extraction

| Issue                                                      | Approved<br>Impact | Monitoring                                                                                                                                                                                                                                                                                                                                            | Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Threatened species, populations, or ecological communities | Negligible impact  | Upland Swamps  Vegetation monitoring:  Visual inspections.  Transect/quadrat monitoring.  Indicator species.  Groundwater monitoring.  Riparian Vegetation  Vegetation monitoring:  Visual inspections.  Quadrat monitoring.  Indicator species.  Slopes and Ridgetops  Visual inspections of cliffs and overhangs, steep slopes and land in general. | <ul> <li>Swamp remediation techniques.</li> <li>Additional monitoring (e.g. increase in monitoring frequency or additional sampling).</li> <li>Adaptive management – Large Swamp Valley Closure TARP.</li> <li>Mine planning and design: <ul> <li>Conservative mining geometry.</li> <li>Shortening of Longwall 312 and reconfiguration of Longwall 313.</li> </ul> </li> <li>Stream remediation.</li> <li>Weed control measures.</li> <li>Planting of endemic species.</li> <li>Stream bank erosion control measures in accordance with the WMP.</li> <li>Management measures for impacts associated with cliffs and overhang sites include: <ul> <li>the implementation of erosion and sediment control measures; and</li> <li>stabilisation techniques; in accordance with the LMP.</li> </ul> </li> <li>Additional monitoring (e.g. increase in monitoring frequency or additional sampling).</li> <li>Management measures for impacts associated with cliffs and overhang sites include: <ul> <li>the implementation of erosion and sediment control measures; and</li> <li>stabilisation techniques; in clude: <ul> <li>the implementation of erosion and sediment control measures; and</li> <li>stabilisation techniques; in accordance with the LMP.</li> </ul> </li> <li>Filling of surface tension cracks in accordance</li> </ul></li></ul> |
|                                                            |                    | Aquatic Biota and their Habitats  Watercourses (i.e. aquatic habitats) in accordance with WMP.  Aquatic biota stream monitoring.  Aquatic biota pool monitoring.                                                                                                                                                                                      | with the LMP.  Mine planning and design: Conservative mining geometry. Shortening of Longwalls 303, 304, 305, 306 and 308-316.  Adaptive management – Waratah Rivulet Valley Closure TARP. Stream remediation. Additional monitoring (e.g. increase in monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No. EP-R01-E Page 53                            |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

## Table 12 (Continued) Management Issues for Biodiversity during Longwalls 311-316 Extraction

| Issue                                                              | Approved Impact           | Monitoring                                                                                                                                                                                                                             | Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Threatened species, populations, or ecological communities (Cont.) | Negligible impact (Cont.) | Terrestrial Fauna and their Habitats  Terrestrial fauna habitats, as discussed for upland swamps, riparian vegetation, slopes and ridgetops and aquatic habitats above.  Threatened amphibian monitoring.  Giant Dragonfly Monitoring. | <ul> <li>Mine planning and design: <ul> <li>Conservative mining geometry.</li> <li>Shortening of Longwalls 303, 304, 305, 306, 308, 309, 310, 312 and 313.</li> </ul> </li> <li>Adaptive management – Waratah Rivulet Valley Closure TARP.</li> <li>Adaptive management – Large Swamp Amphibian Monitoring TARP.</li> <li>Adaptive management – Giant Dragonfly Monitoring TARP.</li> <li>Swamp remediation techniques.</li> <li>Stream remediation.</li> <li>Weed control measures.</li> <li>Planting of endemic species.</li> <li>Stream bank erosion control measures in accordance with the WMP.</li> <li>Management measures for impacts associated with cliffs and overhang sites include: <ul> <li>the implementation of erosion and sediment control measures; and</li> <li>stabilisation techniques; in accordance with the LMP.</li> </ul> </li> <li>Filling of surface tension cracks in accordance with the LMP.</li> <li>Additional monitoring (e.g. increase in monitoring frequency or additional sampling).</li> </ul> |

### 4.2.3.3 Assessment of Performance Indicators and Measure

Performance indicators developed for the subsidence impact performance measure relating to biodiversity are presented in the BMP and are summarised in Table 13.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |
|----------------------------------------------------------|--|--|
| Revision No. EP-R01-E Page 54                            |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |

### Table 13 Biodiversity Performance Measure and Performance Indicators

| Performance Measure                              | Performance Indicators                                                                                                                                                                                                                                                                                         |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Negligible impact to threatened                  | Upland Swamps                                                                                                                                                                                                                                                                                                  |  |
| species, populations, or ecological communities. | Subsidence impacts are not expected to result in measurable changes to swamp groundwater levels when compared to control swamps or seasonal variations in water levels experienced by upland swamps prior to mining.                                                                                           |  |
|                                                  | Large Swamps Valley Closure                                                                                                                                                                                                                                                                                    |  |
|                                                  | That the specified Large Swamps 76, 77 and 92 are not expected to experience valley closure greater than predicted for the Preferred Project Layout.                                                                                                                                                           |  |
|                                                  | Riparian Vegetation                                                                                                                                                                                                                                                                                            |  |
|                                                  | Impacts to riparian vegetation are expected to be localised and limited in extent, similar to the impacts previously experienced at Metropolitan Coal.                                                                                                                                                         |  |
|                                                  | Aquatic Biota                                                                                                                                                                                                                                                                                                  |  |
|                                                  | The aquatic macroinvertebrate and macrophyte assemblages in streams are not expected to experience long-term impacts as a result of mine subsidence.                                                                                                                                                           |  |
|                                                  | Terrestrial Fauna                                                                                                                                                                                                                                                                                              |  |
|                                                  | The amphibian assemblage is not expected to experience changes significantly different to the amphibian assemblage at control sites (for Longwalls 20-27 and 301-310).                                                                                                                                         |  |
|                                                  | The threatened amphibian abundance with the Large Swamp Transects is not expected to experience a decline compared to previous years, due to groundwater substrate or pool water level impacts, significantly different to the threatened amphibian abundance trends at control sites (for Longwalls 311-316). |  |
|                                                  | The Giant Dragonfly population is not expected to experience a decline in abundance due to subsidence-related changes to groundwater levels in the swamp substrate of the Large Swamps when compared to control swamps or natural seasonal variations.                                                         |  |

Monitoring against these performance indicators during the mining of Longwalls 311-316 is summarised in Table 12 and Section 4.1. and described in detail in the BMP (Appendix C). The procedure that will be followed to assess the extraction of Longwalls 311-316 against the performance indicators and performance measures is outlined in Figure 12 and described in detail in the BMP.

#### 4.2.3.4 Contingency Plan

In the event the subsidence impact performance measure for threatened species, populations or ecological communities is considered to have been exceeded, Metropolitan Coal will implement a Contingency Plan as described in the BMP and summarised in Section 5.1.2.

#### 4.2.4 Heritage Management

#### 4.2.4.1 Overview

The HMP is provided in Appendix D. The purpose and scope of the HMP are summarised below:

Purpose: To manage the potential environmental consequences of the Extraction Plan on Aboriginal

heritage sites or values.

**Scope:** Aboriginal heritage sites or values that could experience subsidence effects during the mining

of Longwalls 311-316.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No. EP-R01-E Page 55                            |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

#### 4.2.4.2 Key Aboriginal Heritage Issues, Monitoring and Management Measures

Thirty-one (31) known sandstone overhang sites are located within the 35° angle of draw and/or predicted 20 mm subsidence contour of Longwalls 311-316. Of the 31 sites with overhangs, 12 have art only and five have art and/or artefacts and/or a deposit/PAD. Nine open sites are located within the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour, namely sites FRC 164, FRC 193, NT, 7, NT 8, NT 12, NT 17, NT 21, NT 29/30 and NT 46.

Nine (9) Aboriginal heritage sites of high scientific (archaeological) significance and/or particular cultural significance are located within the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour (Figure 4). Sites FRC 62 and FRC 185 are of high scientific (archaeological) significance and particular cultural significance. Site FRC 191 is of high scientific (archaeological) significance, and sites FRC 198, FRC 340, NT 8, NT 9, NT 35 and NT 46 are of particular cultural significance.

A geotechnical risk assessment report was prepared for the sites of high scientific (archaeological) significance and/or particular cultural significance within the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour, provided as Appendix 4 of the HMP (Appendix D).

Metropolitan Coal acknowledges that all Aboriginal heritage sites are of cultural significance to the Aboriginal people who have a traditional connection to Country.

The key issues relating to subsidence impacts on Aboriginal heritage sites and values are described in the HMP and the relevant monitoring and management measures are summarised in Table 14 and Section 4.1.

Table 14

Management Issues for Aboriginal Heritage during Longwalls 311-316 Extraction

| Issue                     | Approved Impact                                                    | Monitoring                 | Management                                                                                                                                                   |
|---------------------------|--------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aboriginal heritage sites | Less than 10% of<br>Aboriginal heritage<br>sites within the mining | Aboriginal heritage sites. | <ul> <li>Installation of an artificial dripline (e.g. silicone dripline) to<br/>direct increased moisture/water seepage away from art<br/>panels.</li> </ul> |
|                           | area are affected by subsidence impacts.                           |                            | Installation of artificial rock support (e.g. rock bolts, cable bolts, cement sprays [e.g. shotcrete], injections of a binding agent [PUR or similar]).      |
|                           |                                                                    |                            | <ul> <li>Installation of standing supports (e.g. timber props,<br/>timber cogs, sandbags and metal [hydraulic] props).</li> </ul>                            |
|                           |                                                                    |                            | Scaling/dislodgement/removal of remaining loose rock.                                                                                                        |
|                           |                                                                    |                            | Salvage of artefacts for safekeeping and storage and/or display at a suitable location in consultation with the Aboriginal community.                        |
|                           |                                                                    |                            | Use of cosmetic treatments (e.g. in the form of coloured grout or similar) to restore aesthetic values.                                                      |
|                           |                                                                    |                            | Installation of a stress relief slot or stress focus notch.                                                                                                  |

#### 4.2.4.3 Assessment of Performance Indicators and Measure

The Project Approval requires Metropolitan Coal not to exceed the subsidence impact performance measure relating to Aboriginal heritage sites, as specified in Table 1 of Condition 1, Schedule 3:

Less than 10% of Aboriginal Heritage sites within the mining area are affected by subsidence impacts.

The performance indicator developed for the subsidence impact performance measure relating to Aboriginal heritage sites is presented in the HMP and is summarised in Table 15.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No. EP-R01-E Page 56                            |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

Monitoring against the performance indicator during the mining of Longwalls 311-316 is summarised in Table 14 and Section 4.1 and described in detail in the HMP (Appendix D). The procedure that will be followed to assess the extraction of Longwalls 311-316 against the performance indicator and performance measure is outlined in Figure 12 and described in detail in the HMP (Appendix D).

Table 15
Heritage Performance Measure and Performance Indicator

| Performance Measure                                               | Performance Indicator                                                                                                                                                                |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Less than 10% of Aboriginal heritage sites within the mining area | Metropolitan Coal will assess the Project against the following performance indicator to allow early recognition of mining impacts:                                                  |
| are affected by subsidence impacts.                               | Less than 7% of Aboriginal heritage sites within the mining area are affected by subsidence impacts.                                                                                 |
|                                                                   | Sites are considered to be "affected by subsidence impacts" if they exhibit one or more the following consequences that cannot be attributed to natural weathering or deterioration: |
|                                                                   | overhang collapse;                                                                                                                                                                   |
|                                                                   | cracking of sandstone that coincides with Aboriginal art or grinding grooves; and                                                                                                    |
|                                                                   | rock fall that damages Aboriginal art.                                                                                                                                               |

#### 4.2.4.4 Contingency Plan

In the event the Aboriginal heritage sites subsidence impact performance measure has been exceeded, Metropolitan Coal will implement a Contingency Plan as described in the HMP and summarised in Section 5.1.2.

#### 4.2.5 Built Features Management

No built features are located within the Longwalls 311-316 35° angle of draw and/or 20 mm subsidence contour or in the vicinity of the Longwalls 311-316 35° angle of draw and/or 20 mm subsidence contour that necessitate a BFMP. As extraction is moving away from previously considered built features, the number of BFMPs has been reduced over time as monitoring indicates subsidence is negligible post-mining.

The final TfNSW BFMP will be concluded at the end of Longwall 310 which is expected to be four consecutive longwalls recording negligible subsidence.

As described in Section 2.4.4, TfNSW were consulted on this approach and endorsed the discontinuation of the Metropolitan Coal BFMP after the conclusion of Longwall 310 (Appendix 1 of the PSMP).

#### 4.2.6 Public Safety Management

#### 4.2.6.1 Overview

The PSMP is provided in Appendix E. The purpose and scope of the PSMP are summarised below:

Purpose: To manage the potential consequences of the Extraction Plan on public safety within the

mining area.

**Scope:** Land within the mining area where potential risks to the public could be encountered.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No. EP-R01-E Page 57                            |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

#### 4.2.6.2 Key Public Safety Issues, Monitoring and Management Measures

The primary hazards associated with the extraction of Longwalls 311-316 include:

- potential subsidence impacts on built features;
- potential instability of cliff formations or steep slopes caused by subsidence;
- deformations or fracturing of any land caused by subsidence; and
- any other impacts of subsidence.

A large proportion of the land within 600 m of Longwalls 311-316 is owned and/or managed by WaterNSW or The State of NSW (Crown Land), and therefore accessibility to the general public is restricted (Figure 6). The general public are not allowed in the Woronora Special Area for any recreational or other purpose. Access restrictions are also applicable to some of the identified built features in the vicinity of Longwalls 311-316.

Longwalls 311-316 are located outside the Woronora Notification Area<sup>7</sup>, (Figure 1). At its closest point to Longwalls 311-316, the Woronora Dam wall and the labyrinth spillway is located more than 4.5 km from the commencing end of Longwall 316 (Figure 1). The dam wall and spillway are located at large distances from Longwalls 311-316. It is not expected that measurable conventional subsidence movements would occur at the dam wall and spillway (MSEC, 2024) (Appendix H). In addition, it is unlikely that non-conventional subsidence movements would be observed at the distances of the dam wall and spillway from Longwalls 311-316 (Appendix H).

Metropolitan Coal is required to obtain all necessary approvals from the Minister administering the *Mining Act 1992* in accordance with the requirements of the *Dams Safety Act 2015* and the Dams Safety Committee.

The key issues relating to potential risks to public safety during the extraction of Longwalls 311-316 are described in the PSMP (Appendix E). The relevant monitoring and management measures are summarised in Table 16 and Section 4.1.

The Woronora Notification area was amended on 1 July 2022 to an area 1.5 km around the Woronora Dam wall which is outside or beyond the mining lease.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No. EP-R01-E Page 58                            |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

Table 16
Management Issues for Public Safety during Longwalls 311-316 Extraction

| Issue         | Approved Impact                                                                                                                                                                              | Monitoring                             | Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Public Safety | <ul> <li>Public safety to be ensured within the mining area.</li> <li>Built features – Safe, serviceable and repairable, unless the owner and the MSB agree otherwise in writing.</li> </ul> | Monitoring in accordance with the LMP. | <ul> <li>Restricted access.</li> <li>Woronora Special Areas Consent.</li> <li>Woronora Special Area Catchment Induction.</li> <li>Management of roads/tracks (including fire trails and vehicular tracks) in accordance with the LMP.</li> <li>Consultation with landowners and infrastructure owners.</li> <li>Other management measures in relation to public safety may include: <ul> <li>traffic control including diversion of traffic;</li> <li>temporary speed restrictions;</li> <li>warning signs/lights;</li> <li>restriction of public access;</li> <li>erection of barriers;</li> <li>implementation of security services; and</li> <li>use of emergency services for public control.</li> </ul> </li> </ul> |

#### 4.2.6.3 Assessment of Performance Indicators and Measures

The Project Approval requires Metropolitan Coal not to exceed the subsidence impact performance measure relating to built features, as specified in Table 1 of Condition 1, Schedule 3:

Safe, serviceable and repairable, unless the owner and the MSB agree otherwise in writing.

Metropolitan Coal will also assess the Project against the following public safety performance indicator:

Public safety will be ensured in the event that any hazard to the general public arising from subsidence effects becomes evident.

Monitoring against the performance indicator and performance measure during the mining of Longwalls 311-316 is summarised in Table 16 and Section 4.1 and described in detail in Appendix E. The procedure that will be followed to assess the extraction of Longwalls 311-316 against the performance indicator and performance measure is outlined in Figure 12 and described in detail in the PSMP (Appendix E).

#### 4.2.6.4 Contingency Plan

In the event the built features subsidence impact performance measure of 'safe' is considered to have been exceeded or is likely to be exceeded, Metropolitan Coal will implement a Contingency Plan as described in the PSMP and summarised in Section 5.1.2.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |         |  |
|----------------------------------------------------------|--|---------|--|
| Revision No. EP-R01-E                                    |  | Page 59 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |         |  |

#### 4.2.7 Rehabilitation Management

Rehabilitation associated with subsidence impacts from the extraction Longwalls 311-316 will be undertaken in accordance with the Forward Program, Rehabilitation Management Plan and the management and mitigation measures outlined in this Extraction Plan and relevant component plans.

The Metropolitan Coal Rehabilitation Management Plan details the rehabilitation of surface disturbance areas (including those associated with surface exploration activities, vehicular access tracks, environmental monitoring activities and other minor Project-related surface activities).

In accordance with Condition 4, Schedule 6 and Condition 12, Schedule 2 of the Project Approval (08\_0149), rehabilitation and remediation measures for impacts to other natural or built surface features resulting from subsidence are described in detailed in each of the management plans (Appendices A to E).

The overriding objective for subsidence management is to minimise the potential for, or extent of, the predicted subsidence impacts. The key issues relating to subsidence impacts on rehabilitation, surface water and groundwater resources, land resources and agricultural activities, biodiversity, built features, heritage sites and values and public safety are described in in detailed in each of the management plans (Appendices A to E).

This Extraction Plan also details relevant monitoring and management measures that are undertaken relevant to each identified impact. Metropolitan Coal has also prepared a SMP (Appendix F) to validate subsidence predictions and analyse the effects and impacts of subsidence and any ensuing environmental consequences.

As required by this Extraction Plan, remediation of subsidence impacts or environmental consequences detected by subsidence monitoring are conducted where required in consideration of the unmitigated impact (including potential risks to safety and the potential for self-healing or long-term degradation) and the potential impacts of the remediation (including site accessibility).

A number of potential management measures are available to mitigate/remediate subsidence impacts on land in general resulting from underground mining operations. Remediation of subsidence impacts may be required in stream pools, rock bars and other natural or built features. It is anticipated that remediation activities would generally follow mining in a downstream direction, however as indicated previously, additional remediation measures may be required in some areas.

The specific timing of stream remediation activities will also be influenced by practical considerations, such as the amount of stream flow and safe access to remediation areas. Generally, the volume of stream flow is required to be such that surface flow over the respective rock bar is absent.

The rehabilitation objective for Waratah Rivulet (between the downstream edge of Flat Rock Swamp and the full supply level of the Woronora Reservoir) and the Eastern Tributary (between the full supply level of the Woronora Reservoir and the maingate of Longwall 26), viz. *Restore surface flow and pool holding capacity as soon as reasonably practicable*, is addressed in the Metropolitan Coal Stream Remediation Plan (Appendix 7 of the WMP).

Metropolitan Coal will assess the progress of the stream remediation measures in achieving the rehabilitation objective for Waratah Rivulet and the Eastern Tributary against the performance indicators detailed in the Stream Remediation Plan: The rehabilitation objective are considered to have been met if surface flow and pool holding capacity has been restored in the impacted pool.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |  |
|----------------------------------------------------------|---------|--|--|
| Revision No. EP-R01-E                                    | Page 60 |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |  |

The Metropolitan Coal Stream Remediation Plan details the stream remediation measures to be implemented for the Metropolitan Coal Mine. In summary, the Stream Remediation Plan:

- describes the vegetation and Aboriginal heritage management measures that are implemented at a stream remediation site prior to the commencement of remediation activities;
- describes the fracture characterisation and stream remediation that are conducted on the Waratah Rivulet and Eastern Tributary;
- provides a description of the stream grouting techniques that are used;
- outlines the site layout of stream remediation activities at each rock bar; and
- details the environmental management measures that are implemented during the conduct of the stream remediation activities.

Subsidence monitoring and remediation undertaken each year are reported in the Annual Review.

#### 4.2.8 Monitoring Program Summary

The various monitoring programs that are detailed in each of the management plans (Appendices A to E) are summarised in Table 17. The monitoring programs may be expanded as a result of the investigation to be undertaken in response to comments from the IEAPM. The location of environmental monitoring sites included in Metropolitan Coal's various environmental monitoring programs detailed in Table 17, are shown on Figure 8, and Figures 13 to 21.

Figure 13 presents the locations of air quality, noise and dust monitoring sites. Figures 14 to 18 presents the location of surface water and groundwater monitoring sites. Figures 19 to 21 presents the location of biodiversity monitoring sites.

Details of any subsidence impacts observed will be recorded in the Subsidence Impact Register with visual observations documented in the Subsidence Impact Register Assessment Form. Visual inspections will be undertaken in accordance with the inspection checklist. The Subsidence Impact Register will be maintained as an electronic spreadsheet on-site, with hard copies of assessment forms filed in a folder.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |  |
|----------------------------------------------------------|---------|--|--|
| Revision No. EP-R01-E                                    | Page 61 |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |  |

Table 17
Longwalls 311-316 Environmental Monitoring Program Summary

| Management<br>Plan | Monitoring<br>Component | Sites                                                                                                                                                                                                                                                                                 | Monitoring Parameter/Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WMP                | Stream Features         | The Waratah Rivulet from Pool P to the full supply level of the Woronora Reservoir.                                                                                                                                                                                                   | Location, approximate dimensions (length, width and depth), and orientation of surface cracks (specifically whether cracks are developed perpendicular to the stream flow or are controlled by rock joints or other factors, etc.).      Nature of iron staining (e.g. whether isolated or across the entire streambed).      Extent of iron staining (e.g. the length of stream affected).      Description of gas release (e.g. isolated bubbles or continuous stream, and type of gas [methane or carbon dioxide]).      Nature of scouring, for example the depth of scouring, type of soil exposed, any obvious vegetation impact, potential for severe erosion, etc.      Water discoloration or opacity if present.      Rock bar characteristics such as extent of cracking, seepage, underflow. | <ul> <li>Visual inspection and photographic survey of Eastern Tributary at annual intervals.</li> <li>Visual inspection and photographic survey of Waratah Rivulet monthly when longwall extraction is within 450 m of the stream and within 3 months of the completion of each longwall.</li> <li>Weekly monitoring at pools observed with gas releases until no gas releases have been observed at the pool for three consecutive weeks.</li> </ul> |
|                    | Surface Water Flow      | <ul> <li>Eastern Tributary (GS 300078).</li> <li>Waratah Rivulet (GS 2132102).</li> <li>Swamp 92 Flume (GS 300143).</li> <li>Swamp 76 Flume (GS 300142).</li> <li>Woronora River (GS 2132101).</li> <li>Honeysuckle Creek (GS 300077).</li> <li>O'Hares Creek (GS 213200).</li> </ul> | Stream flow data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Continuous (downloaded monthly).                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |         |  |
|----------------------------------------------------------|--|---------|--|
| Revision No. EP-R01-E                                    |  | Page 62 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |         |  |

## Table 17 (Continued) Longwalls 311-316 Environmental Monitoring Program Summary

| Management<br>Plan | Monitoring<br>Component                        | Sites                                                                                                                                                   | Monitoring Parameter/Analysis                                                                                                            | Monitoring Frequency                                                                   |  |
|--------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| WMP (Cont.)        | Pool Water Levels<br>and Drainage<br>Behaviour | Eastern Tributary Pools ETG, ETJ, ETM, ETO, ETU, ETW, ETAF, ETAG, ETAH, ETAI/ETAJ/ETAK, ETAL, ETAM, ETAN, ETAO, ETAP, ETAQ, ETAR, ETAS/ETAT7¹ and ETAU. | Pool water levels.                                                                                                                       | Continuous water level sensor and logger (downloaded monthly at all sites).            |  |
|                    |                                                | Waratah Rivulet Pools A, F, J, K, L, M, N, O, P, Q, R, S, T, U, V and W.                                                                                |                                                                                                                                          |                                                                                        |  |
|                    |                                                | Pools SR1, SR2 and SP1 on tributaries of the<br>Woronora Reservoir.                                                                                     |                                                                                                                                          |                                                                                        |  |
|                    |                                                | Woronora River Control Pools WRP1, WRP2,<br>WRP3 and WRP4.                                                                                              |                                                                                                                                          |                                                                                        |  |
|                    |                                                | Waratah Rivulet Pools B, C, E, G, G1, H and I.                                                                                                          | Pool water levels.                                                                                                                       | Manually monitored daily, until such<br>time that continuous sensors are<br>installed. |  |
|                    |                                                | Pools ETAS, ETAT and ETAU on the<br>Eastern Tributary.                                                                                                  | Evidence of new cracking within the stream bed or rock bar.                                                                              | Visual inspections conducted at the completion of each longwall.                       |  |
|                    |                                                | Pools on the Waratah Rivulet from Pool P to<br>the full supply level of the                                                                             | Whether the pools continue to flow over, through<br>and/or below the rock bars (where relevant).                                         | Visual inspections conducted monthly<br>when longwall extraction is within             |  |
|                    |                                                | Woronora Reservoir.                                                                                                                                     | Whether surface flow is evident along the length<br>of the pools prior to flowing over/through/below<br>the rock bars or boulder fields. | 450 m of the stream and at the completion of each longwall.                            |  |

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |         |  |
|----------------------------------------------------------|--|---------|--|
| Revision No. EP-R01-E                                    |  | Page 63 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |         |  |

| Management<br>Plan | Monitoring<br>Component | Sites                                                                                                                              | Monitoring Parameter/Analysis                                                                                       | Monitoring Frequency |
|--------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------|
| WMP (Cont.)        | Stream Water<br>Quality | Eastern Tributary sites ETWQ F, ETWQ J,<br>ETWQ N, ETWQ U, ETWQ W, ETWQ AF,<br>ETWQ AH, ETWQ AQ and ETWQ AU.                       | Water quality parameters as described in the<br>WMP (samples collected for metal analysis to be<br>field filtered). | Monthly.             |
|                    |                         | Waratah Rivulet sites WRWQ 2, WRWQ 6,<br>WRWQ 8, WRWQ 9, WRWQ M, WRWQ N,<br>WRWQ P, WRWQ R, WRWQ T, WRWQ U,<br>WRWQ V, and WRWQ W. |                                                                                                                     |                      |
|                    |                         | Woronora Reservoir tributaries at sites SR1,<br>SR2 and SP1.                                                                       |                                                                                                                     |                      |
|                    |                         | Tributary B site RTWQ 1.                                                                                                           |                                                                                                                     |                      |
|                    |                         | Tributary D site UTWQ 1.                                                                                                           |                                                                                                                     |                      |
|                    |                         | Far Eastern Tributary site FEWQ 1.                                                                                                 |                                                                                                                     |                      |
|                    |                         | Honeysuckle Creek site HCWQ 1.                                                                                                     |                                                                                                                     |                      |
|                    |                         | Bee Creek site BCWQ1.                                                                                                              |                                                                                                                     |                      |
|                    |                         | Woronora River sites WOWQ1 and WOWQ 2.                                                                                             |                                                                                                                     |                      |
|                    |                         | Eastern Tributary sites ETWQ F, ETWQ J,<br>ETWQ N, ETWQ AF and ETWQ AQ.                                                            | Unfiltered water quality samples analysed for total iron, total aluminium and total manganese.                      | Monthly.             |
|                    |                         | Waratah Rivulet sites WRWQ 2, WRWQ 6,<br>WRWQ 8, WRWQ 9, WRWQ M, WRWQ N<br>and WRWQ P.                                             |                                                                                                                     |                      |
|                    |                         | Woronora River control site WOWQ 2.                                                                                                |                                                                                                                     |                      |
|                    |                         | Bee Creek control site BCWQ 1.                                                                                                     |                                                                                                                     |                      |
|                    |                         | Honeysuckle Creek control site HCWQ 1.                                                                                             |                                                                                                                     |                      |
|                    |                         | <ul> <li>Woronora Reservoir tributaries at sites SR1,<br/>SR2, S92-GS and SP1.</li> </ul>                                          |                                                                                                                     |                      |

|                                                          | Metropolitan Coal – Longwalls 311-316 Extraction P | lan     |  |  |
|----------------------------------------------------------|----------------------------------------------------|---------|--|--|
| Revision No. EP-R01-E                                    |                                                    | Page 64 |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                                                    |         |  |  |

| Management<br>Plan | Monitoring<br>Component                       | Sites                                                                                                                                                                                                           | Monitoring Parameter/Analysis                                                                                                                                                                                                        | Monitoring Frequency                                                                                                                                                                                                                                                                 |
|--------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WMP (Cont.)        | Stream Water<br>Quality (Cont.)               | Site ETAU, and at a minimum of three downstream sites (site ETFSL 0, site ETFSL 100, ETFSL 200, site ETFSL 300, site ETFSL 400, site ETFSL 500, site CONFLU1, site WDFS1 and/or site WDFS1+100).  Site WARARM5. | <ul> <li>Water quality parameters as described in the<br/>WMP (samples collected for metal analysis to be<br/>field filtered).</li> <li>Unfiltered water quality samples analysed for total<br/>iron and total manganese.</li> </ul> | Site ETAU, and at a minimum of<br>three downstream sites - weekly (until<br>the site ETWQ AU monitoring results<br>are at Level 1 or Level 2 of the WMP<br>TARP for the quality of water<br>resources reaching the Woronora<br>Reservoir for four consecutive<br>assessment periods. |
|                    |                                               |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                      | Site ETAU, and at a minimum of three downstream sites - fortnightly (once the site ETWQ AU monitoring results have returned to Level 1 or Level 2 TARP levels for four consecutive assessment periods, unless the TARP level returns to Level 3).                                    |
|                    |                                               |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                      | Site WARARM5 - at the same frequency described above when the sites downstream of site CONFLU1 can be accessed for sampling (i.e. when the Woronora Reservoir water levels are suitably low).                                                                                        |
|                    | Woronora, Nepean                              | Woronora Reservoir (site DW01).                                                                                                                                                                                 | Total iron, total manganese and total aluminium.                                                                                                                                                                                     | As made available by WaterNSW.                                                                                                                                                                                                                                                       |
|                    | and Cataract Reservoir Water                  | Nepean Reservoir.                                                                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                      |
|                    | Quality                                       | Cataract Reservoir.                                                                                                                                                                                             |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                      |
|                    | Shallow<br>Groundwater Levels<br>Near Streams | Site ETO1, ETO2, ETO3 and ETO4 (adjacent to Pool ETO).                                                                                                                                                          | Groundwater levels.                                                                                                                                                                                                                  | Data downloaded monthly at all sites.                                                                                                                                                                                                                                                |
|                    |                                               | Waratah Rivulet sites WRGW1, WRGW2,<br>WRGW3, WRGW5, WRGW6 and WRGW7.                                                                                                                                           |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                      |
|                    |                                               | Eastern Tributary site ETGW1.                                                                                                                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                      |

|                                                          | Metropolitan Coal – Longwalls 311-316 Extraction P | lan     |  |  |
|----------------------------------------------------------|----------------------------------------------------|---------|--|--|
| Revision No. EP-R01-E                                    |                                                    | Page 65 |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                                                    |         |  |  |

| Management<br>Plan | Monitoring<br>Component         | Sites                                                                 | Monitoring Parameter/Analysis                     | Monitoring Frequency                                 |                                                 |
|--------------------|---------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|-------------------------------------------------|
| WMP (Cont.)        | Groundwater<br>Levels/Pressures | Transect sites T1, T2, T3-R, T5 and T6.                               | Groundwater levels.                               | Data downloaded/reading monthly.                     |                                                 |
|                    |                                 | Levels/Pressures                                                      | Groundwater standpipes TBS02-90 and TBS02-190.    |                                                      | Analysis at the frequency described in the WMP. |
|                    |                                 | Site 9HGW0 (Longwall 10 post-mining).                                 |                                                   |                                                      |                                                 |
|                    |                                 | Site 9EGW1B.                                                          |                                                   |                                                      |                                                 |
|                    |                                 | Site 9FGW1A.                                                          |                                                   |                                                      |                                                 |
|                    |                                 | Site 9GGW2B.                                                          |                                                   |                                                      |                                                 |
|                    |                                 | Site 9HGW1B.                                                          |                                                   |                                                      |                                                 |
|                    |                                 | Site PM02.                                                            |                                                   |                                                      |                                                 |
|                    |                                 | Site 9GGW1-3.                                                         |                                                   |                                                      |                                                 |
|                    |                                 | • Site 9GGW1-80.                                                      |                                                   |                                                      |                                                 |
|                    |                                 | Site PM01 (9DGW1B).                                                   |                                                   |                                                      |                                                 |
|                    |                                 | Site 9EGW2A and Site 9EGW2-4 (redrill).                               |                                                   |                                                      |                                                 |
|                    |                                 | Site PM03.                                                            |                                                   |                                                      |                                                 |
|                    |                                 | Site PHGW1B.                                                          |                                                   |                                                      |                                                 |
|                    |                                 | Site PHGW2A.                                                          |                                                   |                                                      |                                                 |
|                    |                                 | Site F6GW3A.                                                          |                                                   |                                                      |                                                 |
|                    |                                 | Site F6GW4A.                                                          |                                                   |                                                      |                                                 |
|                    |                                 | • site TBS02-90.                                                      |                                                   |                                                      |                                                 |
|                    |                                 | • site TBS02-190.                                                     |                                                   |                                                      |                                                 |
|                    |                                 | Site TBS02-250R.                                                      |                                                   |                                                      |                                                 |
|                    |                                 | Site LW305GW (Longwall 305 post-mining).                              |                                                   |                                                      |                                                 |
|                    |                                 | • Site 9E-GW-77.                                                      |                                                   |                                                      |                                                 |
|                    |                                 | • Site 9D-GW-76-90.                                                   |                                                   |                                                      |                                                 |
|                    |                                 | • Site 9D-GW-76-150.                                                  |                                                   |                                                      |                                                 |
|                    | Groundwater<br>Quality          | Waratah Rivulet sites WRGW1, WRGW2,<br>WRGW3, WRGW5, WRGW6 and WRGW7. | Water quality parameters as described in the WMP. | Monthly.                                             |                                                 |
|                    | Mine Water Make                 | Underground.                                                          | Groundwater inflow to the mine (20-day average).  | Mine water balance inputs (as described in the WMP). |                                                 |
|                    |                                 |                                                                       |                                                   | Weekly statutory inspections.                        |                                                 |

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No. EP-R01-E                                    |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

| Management<br>Plan | Monitoring<br>Component          | Sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring Parameter/Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Frequency                                                                                                                                                                                                                                                                                                                                                         |
|--------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LMP                | Cliffs and overhangs             | Cliff sites COH10, COH11, COH12, COH13, COH18 and COH19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cliff instabilities – length of cliff/overhang that experiences mining-induced rock fall (i.e. the exposure of a fresh face of rock and debris scattered around the base of the cliff or overhang), compared against the land subsidence impact performance indicator and subsidence impact performance measure.                                                                                                                                                                                                                                                                         | <ul> <li>Visual inspection prior to<br/>Longwall 311 extraction.</li> <li>Monthly when longwall extraction is<br/>within 400 m of each site.</li> <li>Following the completion of<br/>Longwall 311, Longwall 312 and<br/>Longwall 313 for all sites and<br/>following completion at Longwall 314,<br/>Longwall 315 and Longwall 316 at<br/>sites COH18 and COH19.</li> </ul> |
|                    | Steep slopes and land in general | Steep slopes and other land within 600 m of<br>Longwalls 20-27 and Longwalls 301-316<br>secondary extraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sandstone fracturing and rock falls (nature and<br>extent of surface tension cracks and rock ledge<br>collapse, compared against the land subsidence<br>impact performance indicator).                                                                                                                                                                                                                                                                                                                                                                                                   | Visual inspections as part of routine<br>works conducted in the catchment.                                                                                                                                                                                                                                                                                                   |
| ВМР                | Upland Swamps –<br>Vegetation    | <ul> <li>Swamps 16, 17, 18, 19, 20, 24, 25, 28, 30, 31, 32, 33, 34, 35, 36 and 94 (overlying or adjacent to Longwalls 20-27).</li> <li>Swamps 40, 41, 46, 47, 48, 49, 50, 51/52, 53 and 58 (overlying or adjacent to Longwalls 301-304).</li> <li>Swamps 69, 70, 71a, 71b, 72 and 73 (overlying or adjacent to Longwalls 305-307).</li> <li>Swamps 61, 62, 63, 64, 78, 79, 80, 81, 82, 83, 88, 89, 90 and 92 within the Longwalls 308-310 35° angle of draw and/or predicted 20 mm subsidence contour.</li> <li>Swamps 74, 75, 76, 77, 92, 106, 119, 128 and 139 within Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour¹.</li> <li>Control Swamps 101, 111a, 125, 135, 136, 137a, 137b, 138, Bee Creek Swamp, Woronora River 1, Woronora River south arm and Dahlia Swamp.</li> </ul> | Visual observations recording:  Cracking of exposed bedrock areas and/or swamp substrate.  Areas of increased erosion, particularly along any existing drainage line.  Any changes in water colour, particularly evidence of iron precipitation.  Changes in vegetation condition, including areas of stressed vegetation (i.e. plants that demonstrate symptoms of stress) and dead/dying plants that appear unusual.  Whether the amount of seepage (at the terminal step/over exposed surfaces of the swamp) at the time of inspection appears unusual (relative to recent rainfall). | Visual inspections bi-annually in spring and autumn for swamps overlying or adjacent to Longwalls 301-316 and associated Control Swamps.  Every third year, in autumn and spring for swamps overlying or adjacent to Longwalls 20-27.                                                                                                                                        |

|                                                          | Metropolitan Coal – Longwalls 311-316 Extraction P | lan     |  |  |
|----------------------------------------------------------|----------------------------------------------------|---------|--|--|
| Revision No. EP-R01-E                                    |                                                    | Page 67 |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                                                    |         |  |  |

| Management<br>Plan | Monitoring<br>Component               | Sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring Parameter/Analysis                                                                                                                                                                                                                                                                                               | Monitoring Frequency                                                                                                                                                                                                                                                           |
|--------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BMP (Cont.)        | Upland Swamps –<br>Vegetation (Cont.) | <ul> <li>Swamps 28, 30, 33, 35 and 94 (Longwalls 23-27).</li> <li>Swamps 40, 41, 46, 48, 50 51/52 and 53 (Longwalls 301-304).</li> <li>Swamp 71a (Longwalls 305-307).</li> <li>Swamps 62, 64, 78, 79, 80, 81, 82, 83, 89, 90 and 92 within the Longwalls 308-310 35° angle of draw and/or predicted 20 mm subsidence contour.</li> <li>Swamps 76 and 77 within the Longwalls 311-316 35° angle of draw and/or predicted 20 mm subsidence contour.</li> <li>Control Swamps 101, 135, 136, 137a, 137b, 138, Bee Creek Swamp, Woronora River south arm and Dahlia Swamp.</li> </ul>                                                                                                                                                                                                                                                                                                                             | Full floristic transect and quadrat survey recording the following:  Vegetation structure.  Dominant species.  Estimated cover and height for each stratum.  Full floristics.  Estimated cover abundance for each species using seven point Braun-Blanquet scale.  Condition/health rating for each species in the quadrat. | <ul> <li>Transect and quadrat monitoring bi-annually in spring and autumn for swamps overlying or adjacent to Longwalls 301-316 and associated Control Swamps.</li> <li>Every third year, in autumn and spring for swamps overlying or adjacent to Longwalls 23-27.</li> </ul> |
|                    |                                       | <ul> <li>Twenty tagged individuals (<i>Epacris obtusifolia</i>) in each of Swamps 18 and 24 (Longwalls 20-22) and Control Swamps 101, 111a and 125.</li> <li>Twenty tagged individuals (<i>Epacris obtusifolia</i>) in each of Swamps 35 and 94 (Longwalls 23-27) and Control Swamps 137a, 137b and 138.</li> <li>Twenty tagged individuals (<i>Epacris obtusifolia</i>) in each of Swamps 40 and 53 (Longwalls 301-304) and Control Swamps 101, 136 and 137a.</li> <li>Twenty tagged individuals (<i>Banksia robur, Callistemon citrinus</i> and <i>Leptospermum juniperinum</i>) in each of Swamps 20 (Longwalls 20-22) and Control Swamps Woronora River 1, Woronora River south arm and Dahlia Swamp.</li> <li>Twenty tagged individuals (<i>Callistemon citrinus</i>) in each of Swamps 28 (Longwalls 23-27) and Control Swamps Woronora River 1, Woronora River south arm and Dahlia Swamp.</li> </ul> | Population monitoring of target swamp indicator species collecting data on height, condition/health rating and reproductive status ratings of individual plants.                                                                                                                                                            | <ul> <li>Indicator species monitoring bi-annually in spring and autumn for swamps overlying or adjacent to Longwalls 301-316 and associated Control Swamps.</li> <li>Every third year, in autumn and spring for swamps overlying or adjacent to Longwalls 20-27.</li> </ul>    |

|                                                          | Metropolitan Coal – Longwalls 311-316 Extraction P | lan     |  |  |
|----------------------------------------------------------|----------------------------------------------------|---------|--|--|
| Revision No. EP-R01-E                                    |                                                    | Page 68 |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                                                    |         |  |  |

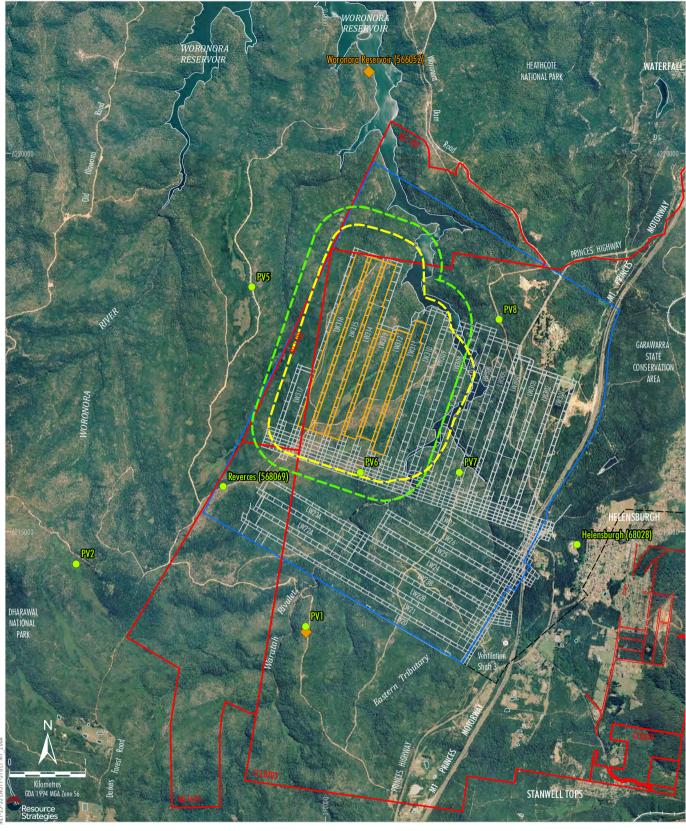
| Management<br>Plan | Monitoring<br>Component        | Sites                                                                                                                                                            | Monitoring Parameter/Analysis                                                                | Monitoring Frequency                                    |
|--------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------|
| BMP (Cont.)        | Upland Swamps -<br>Groundwater | Includes paired piezometers (i.e. one swamp substrate piezometer to a depth of approximately 1 m and one sandstone piezometer to a depth of approximately 10 m). | Groundwater levels.                                                                          | Datalogger (continuous).                                |
|                    |                                | • Swamps 40, 41, 46, 51, 52 and 53 (Longwalls 301-303).                                                                                                          |                                                                                              |                                                         |
|                    |                                | Swamp 50 (Longwall 304).                                                                                                                                         |                                                                                              |                                                         |
|                    |                                | Swamps 71a and 72 (Longwalls 305-307).                                                                                                                           |                                                                                              |                                                         |
|                    |                                | • Swamps 62, 64 and 82 (Longwalls 308-310).                                                                                                                      |                                                                                              |                                                         |
|                    |                                | • Swamps 74, 75, 76 <sup>2</sup> , 77, 81, 89, 92, 106 <sup>2</sup> , 113, 115 and 119 (Longwalls 311-316).                                                      |                                                                                              |                                                         |
|                    |                                | Control Swamps 101, 137a, 137b, Bee Creek<br>Swamp and Woronora River 1.                                                                                         |                                                                                              |                                                         |
|                    | Riparian Vegetation            | sites MRIP01, MRIP02, MRIP05, MRIP06 and<br>MRIP09 (Longwalls 20-22).                                                                                            | Areas of new water ponding.     Any cracking or rock displacement.                           | Visual inspections bi-annually in<br>spring and autumn. |
|                    |                                | sites MRIP11 and MRIP12 overlying<br>(Longwalls 23-27).                                                                                                          | Changes in vegetation condition, including areas of stressed vegetation that appear unusual. |                                                         |
|                    |                                | sites MRIP07 and MRIP08 (Longwalls 23-27).                                                                                                                       | or choosed vegetation that appear anaecal.                                                   |                                                         |
|                    |                                | control sites MRIP03, MRIP04 and MRIP10<br>(Longwall 23A).                                                                                                       |                                                                                              |                                                         |
|                    |                                | sites MRIP01, MRIP05, MRIP06 and MRIP09                                                                                                                          | Vegetation structure.                                                                        | Permanent quadrat (20 m x 2 m)                          |
|                    |                                | (Longwalls 20-22).                                                                                                                                               | Dominant species.                                                                            | monitoring bi-annually in spring and autumn.            |
|                    |                                | sites MRIP11 and MRIP12 (Longwalls 23-27)                                                                                                                        | Estimated cover and height for each stratum.                                                 |                                                         |
|                    |                                | sites MRIP03 and MRIP10 (Longwall 23A)                                                                                                                           | Full floristics.                                                                             |                                                         |
|                    |                                | sites MRIP07 and MRIP08 (Longwalls 23-27).                                                                                                                       | Estimated cover abundance for each species using seven point Braun-Blanquet scale.           |                                                         |
|                    |                                |                                                                                                                                                                  | Condition/health rating for each species in the quadrat.                                     |                                                         |

|                                                          | Metropolitan Coal – Longwalls 311-316 Extraction P | lan     |  |  |
|----------------------------------------------------------|----------------------------------------------------|---------|--|--|
| Revision No. EP-R01-E                                    |                                                    | Page 69 |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                                                    |         |  |  |

| Management<br>Plan | Monitoring<br>Component          | Sites                                                                                                                                                                                                                                                                                          | Monitoring Parameter/Analysis                                                                                                                                                      | Monitoring Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BMP (Cont.)        | Riparian Vegetation (cont.)      | Existing tagged individuals ( <i>Prostanthera linearis</i> , <i>Schoenus melanostachys</i> and <i>Lomatia myricoides</i> ) at sites MRIP01, MRIP03, MRIP05, MRIP06, MRIP07, MRIP08, MRIP09, MRIP10, MRIP11, MRIP12.                                                                            | Population monitoring data including<br>condition/health rating for each plant and<br>reproductive rating.                                                                         | Indicator species monitoring<br>bi-annually in spring and autumn.                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                  | Existing tagged individuals     (Lomatia myricoides) at site MRIP02.                                                                                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    |                                  | Existing tagged individuals     (Schoenus melanostachys and Lomatia myricoides) at site MRIP04.                                                                                                                                                                                                |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | Aquatic Biota and their Habitats | Surface water resources and watercourses in accordance with the WMP.                                                                                                                                                                                                                           | Monitoring of aquatic habitats in accordance with the WMP.                                                                                                                         | In accordance with the WMP.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                  | Stream monitoring at following Locations (if sufficient aquatic habitat is available for sampling);     WT3, WT4, WT5, ET1, ET2, ET3 and ET4.     Control Locations: WR1 and OC.                                                                                                               | <ul> <li>Impacts on aquatic ecology:</li> <li>Habitat Characteristics.</li> <li>Water Quality.</li> <li>Aquatic Macroinvertebrates.</li> <li>Aquatic Macrophytes.</li> </ul>       | Biannually in spring (15 September to<br>15 December) and autumn (15 March<br>to 15 June).                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                  | Larger pools ETAH on the Eastern Tributary and control Pool WP on the Woronora River and Pool OC on O'Hares Creek.      Smaller pools ETAG, ETAI and ETAK on the Eastern Tributary and control Pools WP-A, WP-B and WP-C on the Woronora River and Pools OC-A, OC-B and OC-C on O'Hares Creek. | The response of aquatic ecosystems to the implementation of stream remediation works:  Habitat Characteristics.  Water Quality.  Aquatic Macroinvertebrates.  Aquatic Macrophytes. | Monitoring of Pools ETAG and ETAH will recommence subsequent to the conduct of stream remediation activities at Pool ETAH and will be conducted bi-annually in spring (15 September to 15 December) and autumn (15 March to 15 June).      Monitoring of Pools ETAI and ETAK will recommence subsequent to the conduct of stream remediation activities at Pool ETAK and will be conducted bi-annually in spring (15 September to 15 December) and autumn (15 March to 15 June). |

|                                                          | Metropolitan Coal – Longwalls 311-316 Extraction P | lan     |
|----------------------------------------------------------|----------------------------------------------------|---------|
| Revision No. EP-R01-E                                    |                                                    | Page 70 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                                                    |         |

| Management<br>Plan | Monitoring<br>Component       | Sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring Parameter/Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring Frequency                                                                                                             |
|--------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| BMP (Cont.)        | Amphibian<br>Monitoring       | <ul> <li>Sites 25-28 (Longwalls 301-303).</li> <li>Sites 29 and 30 (Longwalls 305-307).</li> <li>Sites 31, 33, 34 and 39 (Longwalls 308-310).</li> <li>Transects Sites S76, S77 and S92 (Longwalls 311-316).</li> <li>Control Sites 7 to 12 and 18 to 22.</li> <li>Control Transects Sites S14, S106², Bee Creek Swamp and S76².</li> </ul>                                                                                                                                                                                                                                                               | <ul> <li>Multivariate analysis of threatened amphibian species relative abundance.</li> <li>Non-threatened amphibian species relative abundance.</li> <li>Species richness (diversity) to be monitored.</li> <li>Monitoring of swamp substrate levels, pool water levels and quality at potential breeding locations along the 500-metre transects (as identified during baseline surveys).</li> </ul>                                                              | Survey biannually in spring/summer<br>(i.e. October to February) during<br>suitable weather conditions.                          |
|                    | Giant Dragonfly<br>Monitoring | Potential impact swamps, (S76, S77, and S92)     Control Swamps Bee Creek Swamp, S14, and Woronora River 1-1 Swamp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Analysis of Giant Dragonfly relative abundance.</li> <li>Number of adults and exuviae to investigate potential impacts to life stages.</li> <li>Visual habitat condition.</li> </ul>                                                                                                                                                                                                                                                                       | Annual monitoring during peak flying<br>and breeding period (November to<br>February) subject to weather and site<br>access.     |
| HMP                | Aboriginal Heritage           | <ul> <li>All sites within the Longwall 311 35° angle of draw and/or predicted 20 mm subsidence contour, namely Sites NT 11, NT 33, NT 34, NT 35, NT 78, NT 79, FRC 97, FRC 185, FRC 186, FRC 187, FRC 189, FRC 191, FRC 193, FRC 194, FRC 196, FRC 198, FRC 199, FRC 340, FRC 344 and FRC 345.</li> <li>All sites within the Longwalls 312 35° angle of draw and/or predicted 20 mm subsidence contour, namely Sites NT 11, NT 33, NT 34, NT 35, NT 78, NT 79, FRC 97, FRC 185, FRC 186, FRC 187, FRC 189, FRC 191, FRC 193, FRC 194, FRC 196, FRC 198, FRC 199, FRC 340, FRC 344 and FRC 345.</li> </ul> | <ul> <li>Inspections of rock surfaces for cracking and/or exfoliation and/or blockfall.</li> <li>Inspection of art motifs for damage or deterioration.</li> <li>Identification of any natural weathering processes that may result in deterioration (e.g. fire, vegetation growth and water seepage).</li> <li>Comparison of the physical characteristics of the site at the time of monitoring against the previous monitoring and the baseline record.</li> </ul> | Within three months following the completion of Longwall 311.      Within three months following the completion of Longwall 312. |


|                                                          | Metropolitan Coal – Longwalls 311-316 Extraction P | lan     |
|----------------------------------------------------------|----------------------------------------------------|---------|
| Revision No. EP-R01-E                                    |                                                    | Page 71 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                                                    |         |

| Management<br>Plan | Monitoring<br>Component         | Sites                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring Parameter/Analysis | Monitoring Frequency                                          |
|--------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|
| HMP<br>(Continued) | Aboriginal Heritage (Continued) | All sites within the Longwalls 313 35° angle of draw and/or predicted 20 mm subsidence contour, namely Sites NT 3, NT 7, NT 8, NT 9, NT 11, NT 18, NT 33, NT 34, NT 35, NT 78, NT 79, FRC 61, FRC 62, FRC 97, FRC 185, FRC 186, FRC 187, FRC 189, FRC 191, FRC 193, FRC 194, FRC 196, FRC 198, FRC 199, FRC 340, FRC 344 and FRC 345.                                                         | As above.                     | Within three months following the completion of Longwall 313. |
|                    |                                 | All sites within the Longwalls 314 35° angle of draw and/or predicted 20 mm subsidence contour, namely sites NT 3, NT 5, NT 6, NT 7, NT 8, NT 9, NT 11, NT 18, NT 21, NT 33, NT 34, NT 35, NT 46, NT 78, NT 79, FRC 61, FRC 62, FRC 97, FRC 185, FRC 186, FRC 187, FRC 189, FRC 191, FRC 193, FRC 194, FRC 196, FRC 198, FRC 199, FRC 340, FRC 344 and FRC 345.                               |                               | Within three months following the completion of Longwall 314. |
|                    |                                 | <ul> <li>All sites within the Longwalls 315 35° angle of draw and/or predicted 20 mm subsidence contour, namely sites NT 3, NT 4, NT 5, NT 6, NT 7, NT 8, NT 9, NT 11, NT 18, NT 21, NT 33, NT 34, NT 35, NT 46, NT 78, NT 79, FRC 61, FRC 62, FRC 97, FRC 185, FRC 186, FRC 187, FRC 189, FRC 191, FRC 193, FRC 194, FRC 196, FRC 198, FRC 199, FRC 340, FRC 344 and FRC 345.</li> </ul>     |                               | Within three months following the completion of Longwall 315. |
|                    |                                 | All sites within the Longwalls 316 35° angle of draw and/or predicted 20 mm subsidence contour, namely sites NT 3, NT 4, NT 5, NT 6, NT 7, NT 8, NT 9, NT 10, NT 11, NT 12, NT 17, NT 18, NT 29/30, NT 33, NT 34, NT 35, NT 46, NT 78, NT 79, FRC 61, FRC 62, FRC 97, FRC 185, FRC 186, FRC 187, FRC 189, FRC 191, FRC 193, FRC 194, FRC 196, FRC 198, FRC 199, FRC 340, FRC 344 and FRC 345. |                               | Within three months following the completion of Longwall 316. |

Due to the nature of rock bar ETAS, Pool ETAS and Pool ETAT typically sit at the same level.

Swamp 76 and 106 would be used as a control swamp until such time that subsidence effects are greater than negligible (to be determined by MSEC), at which time, it would become a test (impact) site.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |
|----------------------------------------------------------|--|--|
| Revision No. EP-R01-E Page 72                            |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |



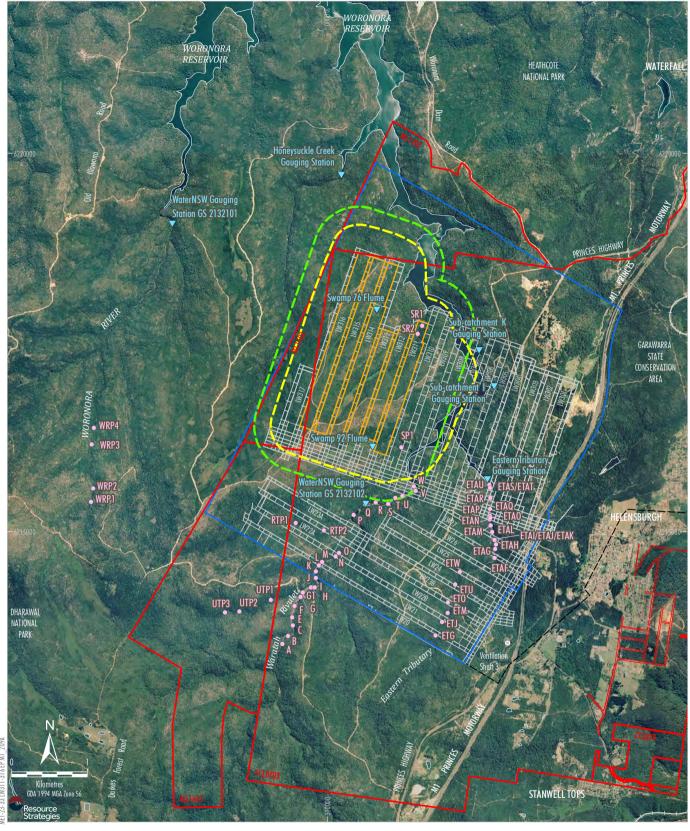
Mining Lease Boundary Railway Project Underground Mining Area

Longwalls 20-27 and 301-317 Longwalls 311-316 Secondary Extraction Longwalls 311-316 35° Angle of Draw and/or Predicted 20 mm Subsidence Contour 600 m from Longwalls 311-316Secondary Extraction

Existing Underground Access Drive (Main Drift)



Notes: 1. The Bureau of Meteorology pluviometer at Darkes Forest (68024) is not shown. It is located approximately 3.75 km south of the Metropolitra Coal pluviometer (FVZ).


2. The Bureau of Meteorology pluviometer at Lucas Heights (66078) is not shown. It is located approximately 12.5 km north of the Metropolitran Coal pluviometer (FV8).

Source: Land and Property Information (2015); Date of Aerial Photography 1998; Department of Industry (2015); Metropolitan Coal (2023); MSEC (2024)



M E T R O P O L I T A N COAL

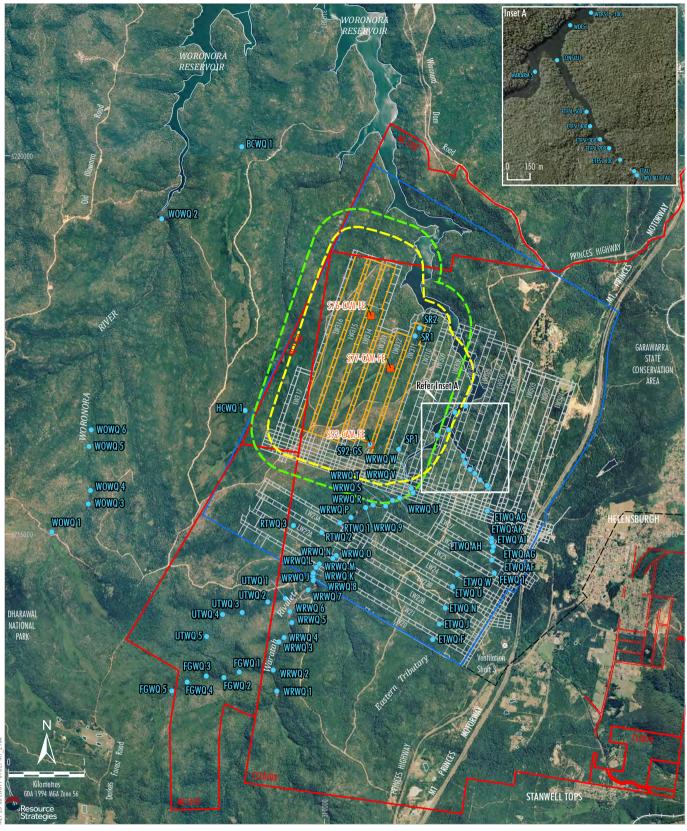
**Meteorological Sites** 



Mining Lease Boundary
Railway

Project Underground Mining Area
Longwalls 20-27 and 301-317
Longwalls 311-316 Secondary Extraction

Longwalls 311-316 35° Angle of Draw and/or Predicted 20 mm Subsidence Contour 600 m from Longwalls 311-316 Secondary Extraction


− - · Existing Underground Access Drive (Main Drift)✓ Gauging Station

Source: Land and Property Information (2015); Date of Aerial Photography 1998; Department of Industry (2015); Metropolitan Coal (2023); MSEC (2024)



METROPOLITAN COAL

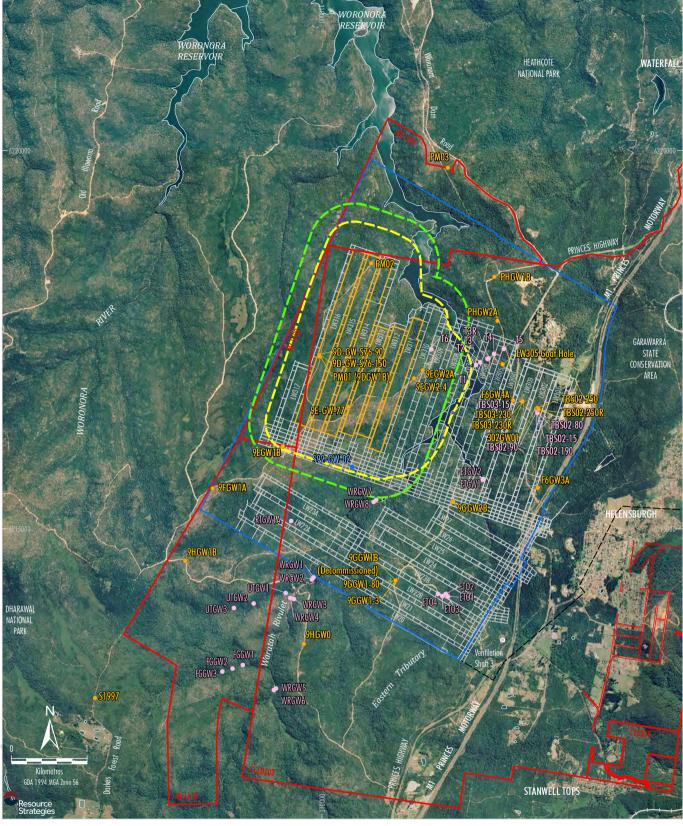
**Surface Water Quantity Sites** 



Mining Lease Boundary
Railway

Project Underground Mining Area Longwalls 20-27 and 301-317

Longwalls 311-316 Secondary Extraction Longwalls 311-316 35° Angle of Draw and/or Predicted 20 mm Subsidence Contour 600 m from Longwalls 311-316 Secondary Extraction


- Existing Underground Access Drive (Main Drift)

Surface Water Quality Site Iron Staining Camera Source: Land and Property Information (2015); Date of Aerial Photography 1998; Department of Industry (2015); Metropolitan Coal (2023); MSEC (2024)



METROPOLITAN COAL

**Surface Water Quality Sites** 

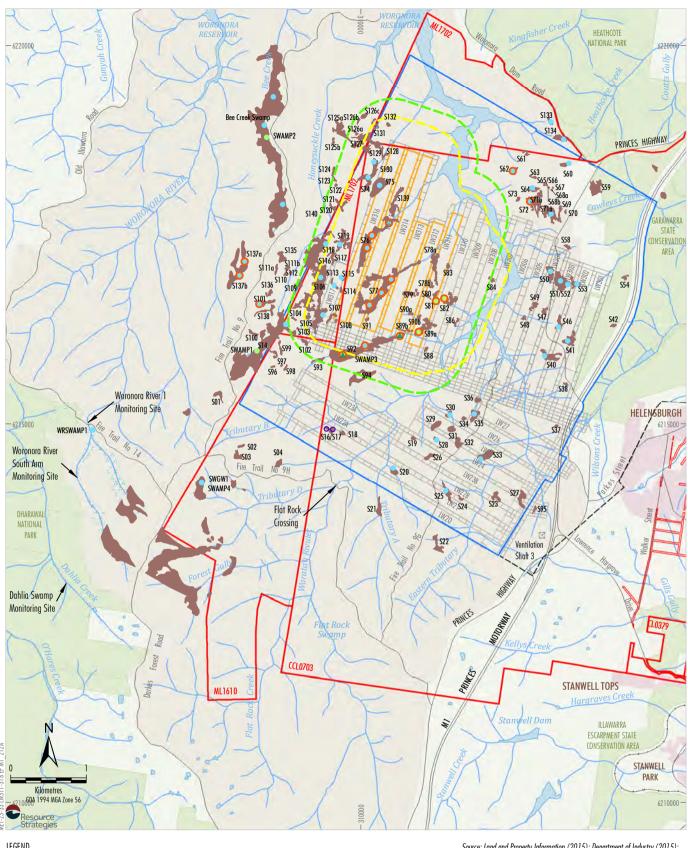


\_\_\_\_\_ A

Mining Lease Boundary Railway

Project Underground Mining Area Longwalls 20-27 and 301-317 Longwalls 311-316 Secondary Extraction Longwalls 311-316 35° Angle of Draw and/or Predicted 20 mm Subsidence Contour 600 m from Longwalls 311-316 Secondary Extraction

—— Existing Underground Access Drive (Main Drift)


- Groundwater Level Bore
- Groundwater Level/Pressure Bore
- Proposed Groundwater Monitoring Site

Source: Land and Property Information (2015); Date of Aerial Photography 1998; Department of Industry (2015); Metropolitan Coal (2023); MSEC (2024)

## <u>Peabody</u>

#### METROPOLITAN COAL

Groundwater Level and/or Pressure Bore Locations





Mining Lease Boundary Woronora Special Area

Railway

Project Underground Mining Area Longwalls 20-27 and 301-317 Longwalls 311-316 Secondary Extraction Longwalls 311-316 35° Angle of Draw and/or Predicted 20 mm Subsidence Contour

600 m from Longwalls 311-316

Secondary Extraction Existing Underground Access Drive (Main Drift) Upland Swamp

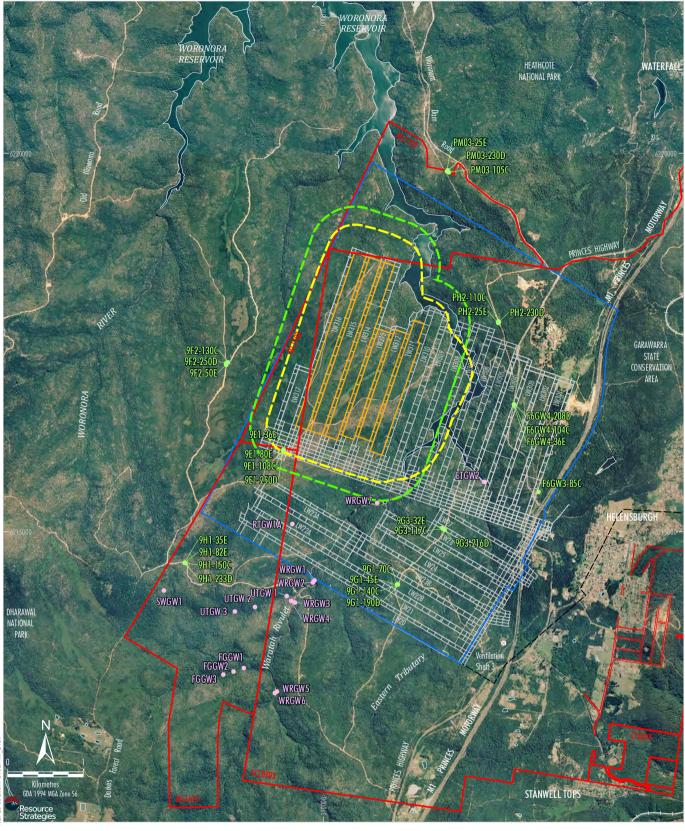
Swamp Substrate and Shallow Groundwater Piezometer

Swamp Substrate Groundwater Piezometer

0 Swamp Shallow Groundwater Piezometer

0 Swamp Soil Moisture Probe

Proposed Future Monitoring Sites


Source: Land and Property Information (2015); Department of Industry (2015); Metropolitan Coal (2023); MSEC (2024); after NPWS (2003), Bangalay Botanical Surveys (2008); Eco Logical Australia (2015; 2016; 2018) and Ecoplanning (2021; 2023)



M E T R O P O L I T A N

**Upland Swamps Groundwater Piezometer Locations** 

Note: Shallow Groundwater Piezometers at swamp monitoring site 92-1 is planned for installation by November 2024. Installation would be subject to suitable weather conditions and access to the Woronora Special Area. The future monitoring site locations in Bee Creek are indicative only and subject to change based on site access and swamp field investigations.



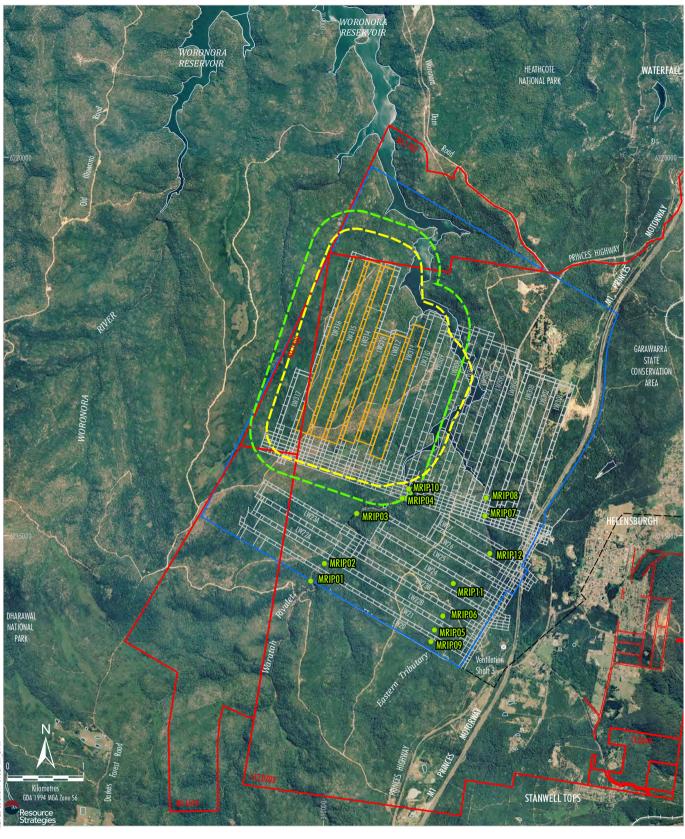
Mining Lease Boundary
Railway

Project Underground Mining Area Longwalls 20-27 and 301-317 Longwalls 311-316 Secondary Extraction

Longwalls 311-316 35° Angle of Draw and/or Predicted 20 mm Subsidence Contour 600 m from Longwalls 311-316 Secondary Extraction

—— Existing Underground Access Drive (Main Drift)

Deep Groundwater Chemistry Monitoring Site


Stream Shallow Groundwater Quality Monitoring Site

Source: Land and Property Information (2015); Date of Aerial Photography 1998; Department of Industry (2015); Metropolitan Coal (2023); MSEC (2024)



METROPOLITAN COAL

**Groundwater Quality Sites** 

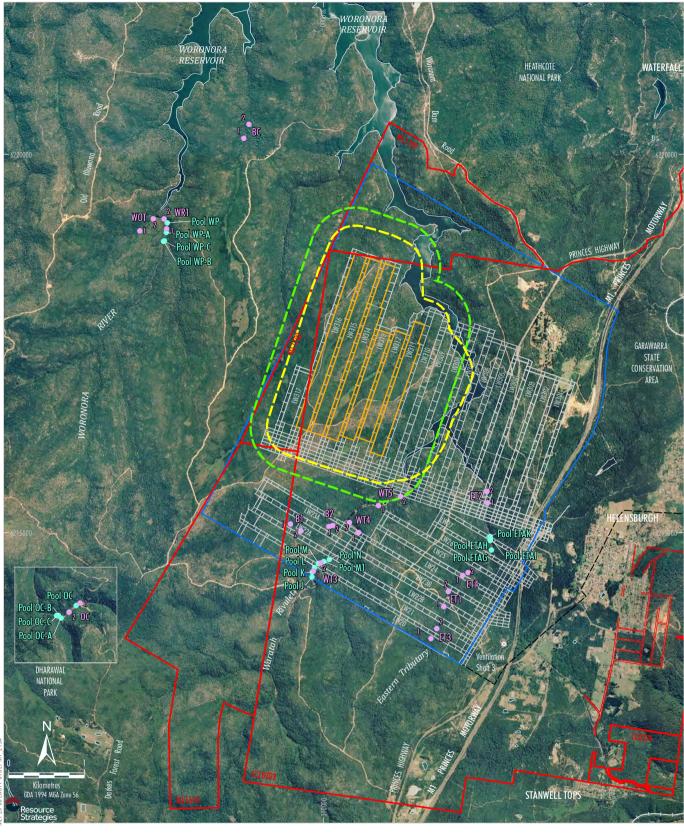


Mini
Railv

Mining Lease Boundary Railway

Project Underground Mining Area Longwalls 20-27 and 301-317 Longwalls 311-316 Secondary Extraction Longwalls 311-316 35° Angle of Draw and/or Predicted 20 mm Subsidence Contour 600 m from Longwalls 311-316 Secondary Extraction

- Existing Underground Access Drive (Main Drift)


Monitoring Site
Riparian Vegetation Monitoring Site

Source: Land and Property Information (2015); Date of Aerial Photography 1998; Department of Industry (2015); Metropolitan Coal (2023); MSEC (2024)

<u>Peabody</u>

METROPOLITAN COAL

**Riparian Vegetation Monitoring Locations** 



Mining Lease Boundary Railway



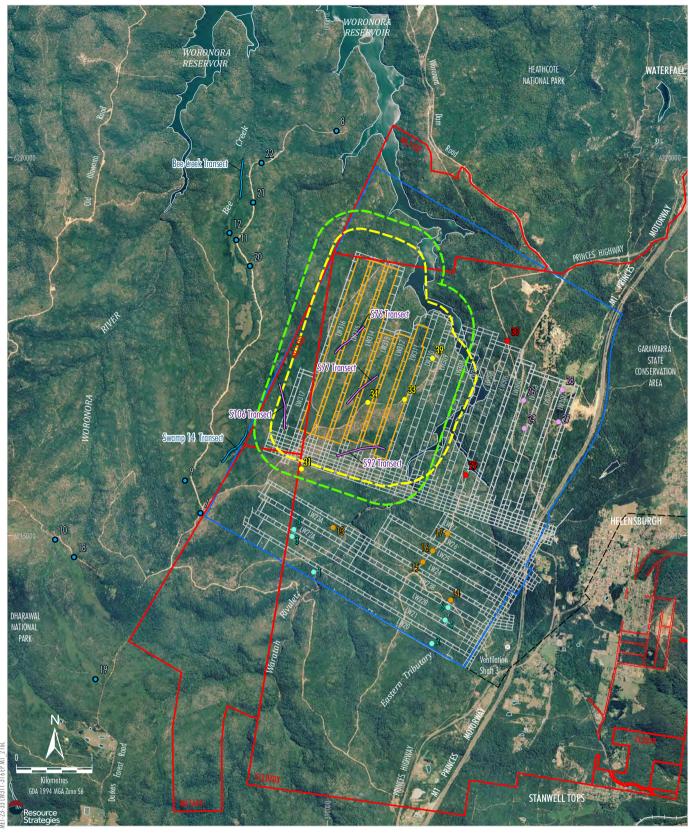
Project Underground Mining Area Longwalls 20-27 and 301-317 Longwalls 311-316 Secondary Extraction Longwalls 311-316 35° Angle of Draw and/or Predicted 20 mm Subsidence Contour 600 m from Longwalls 311-316



Secondary Extraction
Existing Underground Access Drive (Main Drift)

<u>Monitoring</u>

Pool Aquatic Ecology Sampling Site


Stream Aquatic Ecology Sampling Site

Source: Land and Property Information (2015); Date of Aerial Photography 1998; Department of Industry (2015); Metropolitan Coal (2023); MSEC (2024)



METROPOLITAN COAL

**Aquatic Ecology Sampling Locations** 



Mining Lease Boundary

Railway

Project Underground Mining Area Longwalls 20-27 and 301-317

Longwalls 311-316 Secondary Extraction
Longwalls 311-316 35° Angle of Draw and/or
Predicted 20 mm Subsidence Contour
600 m from Longwalls 311-316
Secondary Extraction

Existing Underground Access Drive (Main Drift)

**Monitoring Sites** 

Longwalls 20-22 Amphibian Monitoring Site

Longwalls 23-27 Amphibian Monitoring Site

Longwalls 301-303 Amphibian Monitoring Site

Longwalls 305-307 Amphibian Monitoring Site
 Longwalls 308-317 Amphibian Monitoring Site

Longwalls 311-316 Amphibian Monitoring Transect

Longwalls 311-316 Amphibian Monitoring Irans
 Control Site

Control Transect

Note: Swamp 76 and 106 would be used as a control swamp until such time that subsidence effects are greater than negligible (to be determined by MSEC), at which time, it would become a test (impact) site

Source: Land and Property Information (2015); Date of Aerial Photography 1998; Department of Industry (2015); Metropolitan Coal (2023); MSEC (2024)

<u>Peabody</u>

METROPOLITAN COAL

**Amphibian Monitoring Locations** 

#### 5 MANAGEMENT, MITIGATION, REMEDIATION AND REPORTING MEASURES

#### 5.1 ADAPTIVE MANAGEMENT AND CONTINGENCY PLANNING

#### 5.1.1 Adaptive Management

Metropolitan Coal will implement an adaptive management approach for the Project. Adaptive management will involve:

- Planning developing management strategies to meet performance measures; identifying performance indicators to assess performance; and establishing monitoring programs to monitor against the performance measures.
- Implementation implementing management strategies and monitoring impacts against performance indicators.
- Review reviewing and evaluating the effectiveness of management strategies by analysis of
  monitoring data against predicted impacts, performance indicators and performance measures in
  accordance with the schematic presented in Figure 12.
- Contingency Response implementing contingency plans where an exceedance of a subsidence impact performance measure or an unexpected impact is detected (Section 5.1.2).
- Adjustment adjusting management strategies to improve performance.

#### 5.1.2 Contingency Response

In the event a subsidence impact performance measure described in Sections 4.2.1 to 4.2.6 has been exceeded as a result of Longwalls 311-316 extraction, Metropolitan Coal will implement the relevant Contingency Plan detailed in the WMP (Appendix A), LMP (Appendix B), BMP (Appendix C), HMP (Appendix D) or the PSMP (Appendix E). In general, the Contingency Plans include the following:

- The likely exceedance will be reported to the Technical Services Manager and/or the Environment & Community Superintendent within 24 hours.
- The Technical Services Manager or the Environment & Community Superintendent will report the likely exceedance to the General Manager as soon as practicable after becoming aware of the exceedance.
- Metropolitan Coal will report the exceedance to the DPE, relevant agencies and relevant stakeholders as soon as practicable after Metropolitan Coal becomes aware of the exceedance.
- Metropolitan Coal will conduct an investigation to evaluate the potential contributing factors.
- Metropolitan Coal will identify an appropriate course of action with respect to the identified impact(s), in consultation with specialists, relevant agencies and relevant stakeholders as necessary. For example:
  - proposed management and/or mitigation measures (Section 4);
  - a program to review the effectiveness of the management and/or mitigation measures; and
  - consideration of offsets or adaptive management.

Contingency measures will be developed in consideration of the specific circumstances of the exceedance and the assessment of environmental consequences.

- Metropolitan Coal will submit the proposed course of action to the DPE for approval.
- Metropolitan Coal will implement the approved course of action to the satisfaction of the DPE.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision EP-R01-E Page 82                                |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

In accordance with Condition 6, Schedule 6 of the Project Approval, Metropolitan Coal will provide a suitable offset to compensate for the impact to the satisfaction of the Secretary of the DPE if either the contingency measures implemented by Metropolitan Coal have failed to remediate the impact or the Secretary of the DPE determines that it is not reasonable or feasible to remediate the impact.

Relevant management and contingency measures are summarised in Section 4.2 and outlined in the component management plans (Appendices A to E).

Responsibilities during the contingency response are outlined in Section 6.4, which is designed to clearly outline actions, levels of responsibility within Metropolitan Coal and reporting requirements where monitoring results indicate that impacts are exceeding (or likely to exceed) predicted or approved limits. Section 6.4 will further describe key responsibilities to support the TARPs provided in the component management plans (Appendices A to E).

#### 5.2 INCIDENTS, COMPLAINTS, EXCEEDANCES AND NON-COMPLIANCES

Metropolitan Coal has developed a reporting framework for the Extraction Plan based on the nature of the predicted subsidence impacts and consequences and streamlining of reporting requirements.

Table 18 provides a summary of the proposed reporting framework, including which stakeholders will receive copies of each report and the distribution method. The subsections below provide further detail on the contents of each reporting mechanism.

#### 5.2.1 Incident Report

An incident is defined as a set of circumstances that causes or threatens to cause material harm to the environment, and/or breaches or exceeds the limits or performance measures/criteria in the Project Approval.

The reporting of incidents will be conducted in accordance with Condition 6, Schedule 7 of the Project Approval. Metropolitan Coal will notify the Secretary of the DPE and any other relevant agencies (Table 18) of any incident associated with the Project as soon as practicable after Metropolitan Coal becomes aware of the incident. Within seven days of the date of the incident, Metropolitan Coal will provide the Secretary of the DPE and relevant agencies with a detailed report on the incident.

An Incident Report will include the following:

- details on the nature of the incident (including survey results, photographs and date of the incident);
- results of investigation(s) to identify/evaluate the contributing factors to the incident;
- proposed course of action and development of contingency measures; and
- relevant Metropolitan Coal contact details to obtain further information on the incident.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision EP-R01-E Page 83                                |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

## Table 18 Summary of Reporting Framework

| Report                 | Frequency                               | Distribution                                                                                                                                                       | Distribution<br>Method <sup>1</sup> | Responsibility for Data<br>Collation and Preparation                 | Responsibility for Submission                                                                  |
|------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Incident Report        | As required                             | DPE (Secretary of the DPE, c/- Executive Director) RR (Manager and Principal Inspector, Environment) Other regulators as specified in management plans             | Email                               | Technical Services Manager or Environment & Community Superintendent | Technical Services Manager,<br>Environment & Community<br>Superintendent or General<br>Manager |
| Six Monthly<br>Report  | Six monthly                             | Internal Metropolitan Coal Document                                                                                                                                | Email                               | Technical Services Manager or Environment & Community Superintendent | Technical Services Manager or<br>Environment & Community<br>Superintendent                     |
| Annual Review          | Annually                                | DPE (Director, Resource Assessments) RR (Manager and Principal Inspector, Environment) Other regulators as specified in management plans Metropolitan Coal website | Email and<br>Website                | Technical Services Manager or Environment & Community Superintendent | Technical Services Manager or<br>Environment & Community<br>Superintendent                     |
| Complaints<br>Register | Updated following receipt of complaints | Metropolitan Coal website                                                                                                                                          | Website                             | Environment & Community<br>Superintendent                            | Environment & Community<br>Superintendent                                                      |

See Attachment 4 for distribution details.

|                                                          | Metropolitan Coal – Longwalls 311-316 Extraction Plan |         |
|----------------------------------------------------------|-------------------------------------------------------|---------|
| Revision No. EP-R01-E                                    |                                                       | Page 84 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |                                                       |         |

#### 5.2.2 Six Monthly Reporting

A six monthly report (**Six Monthly Report**) will be prepared to report on subsidence impacts and environmental consequences associated with the Longwalls 311-316 Extraction Plan. The Six Monthly Report will be used by Metropolitan Coal to verify environmental performance (including assessing against TARP Performance Indicators and Performance Measures, and to identify whether further management and/or monitoring is required).

The Six Monthly Reports will be prepared with input from suitability qualified specialists. This document will not be distributed externally.

#### 5.2.3 Annual Review and End of Panel Reporting

An Annual Review will be prepared and submitted in accordance with Condition 3, Schedule 7 of the Project Approval. The Annual Review will review the performance of the Project to the satisfaction of the Secretary of the DPE and will:

- describe the works that were carried out in the past calendar year, and the works that are proposed to be carried out over the current calendar year;
- include a comprehensive review of the monitoring results and complaints records of the Project over the past calendar year, which includes a comparison of these results against:
  - the relevant statutory requirements, limits or performance measures/criteria;
  - the monitoring results of previous years; and
  - the relevant predictions in the Project EA, Preferred Project Report and Extraction Plan.
- identify any non-compliance over the last year, and describe what actions were (or are being) taken to ensure compliance;
- identify any trends in the monitoring data over the life of the Project;
- identify any discrepancies between the predicted and actual impacts of the Project, and analyse the potential cause of any significant discrepancies; and
- describe what measures will be implemented over the next year to improve the environmental performance of the Project.

An End of Panel Report will also be prepared by Metropolitan Coal following completion of each longwall as part of the Longwalls 311-316 Extraction Plan. The End of Panel Report will include the following (where available):

- Summary of data analysis undertaken for Swamp 76, 77 and 92 substrate groundwater levels for the duration of the longwall extraction period.
- Semi-quantitative comparisons of Swamps 76, 77 and 92 with control swamps and rainfall records.
- Summary of available valley closure data from the relevant GNSS monitoring sites.
- Summary of monitoring data collected from relevant swamp water gauge flow stations.
- Summary of visual inspections for signs of any subsidence effects (e.g. cracking, iron staining).

Compilation of any relevant Technical Committee Reports completed during extraction of the relevant longwall.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |
|----------------------------------------------------------|---------|--|
| Revision No. EP-R01-E                                    | Page 85 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |

#### 5.2.4 Complaints

The Environment & Community Superintendent is responsible for maintaining a system for recording complaints.

Metropolitan Coal will maintain public signage advertising the telephone number on which environmental complaints can be made. The Environment & Community Superintendent is responsible for ensuring that the currency and effectiveness of the service is maintained. Notifications of complaints received are to be provided as quickly as practicable to the Environment & Community Superintendent.

Complaints and enquiries do not have to be received via the telephone line and may be received in any other form. Any complaint or enquiry relating to environmental management or performance is to be relayed to the Environment & Community Superintendent as soon as practicable. All employees are responsible for ensuring the prompt relaying of complaints. All complaints will be recorded in a complaints register.

For each complaint, the following information will be recorded in the complaints register:

- date and time of complaint;
- method by which the complaint was made;
- personal details of the complainant which were provided by the complainant or, if no such details were provided, a note to that effect;
- nature of the complaint;
- the action(s) taken by Metropolitan Coal in relation to the complaint, including any follow-up contact with the complainant; and
- if no action was taken by Metropolitan Coal, the reason why no action was taken.

The Environment & Community Superintendent is responsible for ensuring that all complaints are appropriately investigated, actioned and that information is fed back to the complainant, unless requested to the contrary.

In accordance with Condition 10, Schedule 7 of the Project Approval, the complaints register will be made publicly available on the website and updated on a monthly basis. A summary of complaints received and actions taken will be presented to the CCC as part of the operational performance review.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |  |  |
|----------------------------------------------------------|--|--|--|
| Revision No. EP-R01-E Page 86                            |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |  |  |

#### 6 PLAN ADMINISTRATION AND RESPONSIBILITIES

#### 6.1 REVIEW OF OTHER MANAGEMENT PLANS

In accordance with Condition 4, Schedule 7 of the Project Approval, the strategies, plans and programs required under The Project Approval will be reviewed within three months of the submission of:

- (a) an audit under Condition 8, Schedule 7;
- (b) an incident report under Condition 6, Schedule 7;
- (c) an annual review under Condition 3, Schedule 7; and

if necessary, revised to the satisfaction of the Secretary of the DPE, to ensure the strategies, plans and programs are updated on a regular basis and to incorporate any recommended measures to improve environmental performance.

The strategies, plans and programs will also be reviewed within three months of approval of any Project modification and if necessary, revised to the satisfaction of the DPE. The revision status of the strategies, plans and programs is indicated on the title page of each copy.

#### 6.2 REVIEW OF THE EXTRACTION PLAN

This Extraction Plan and its component management plans will be reviewed in detail, and revised if necessary, in the following circumstances:

- during Metropolitan Coal preparing subsequent Extraction Plans for Longwalls 311-316, or for other Longwalls being mined within the Metropolitan Coal Mine;
- within 3 months of the submission of an Incident Report relating to a subsidence impact (Section 5.2.1) taking into consideration any contingency response implemented following submission of the Incident Report (Section 5.1.2); and/or
- where there is a significant change in operation that may affect the environment or the community.

In addition to the above, this Extraction Plan will also be reviewed within 3 months of:

- the submission of an Annual Review;
- the submission of an audit report; or
- any modification to the conditions of the Project Approval.

The component management plans of this Extraction Plan reference components of a number of existing Environmental Management Plans to avoid duplication (Section 4). If these Environmental Management Plans are revised separately in accordance with the Project Approval the management plans will be updated accordingly.

If the review determines updates are required, this would be reported to DPE.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |
|----------------------------------------------------------|--|
| Revision No. EP-R01-E Page 87                            |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |

#### 6.3 DISTRIBUTION

In accordance with Condition 10, Schedule 7 of the Project Approval 'Access to Information', Metropolitan Coal will make the Extraction Plan publicly available on the Peabody website.

Metropolitan Coal recognises that various regulators have different distribution requirements, both in relation to whom documents should be sent and in what format. An Environmental Management Plan and Monitoring Program Distribution Register has been established in consultation with the relevant agencies and infrastructure owners that indicates:

- to whom the Metropolitan Coal plans and programs, such as the Extraction Plan, will be distributed;
- the format (i.e. electronic or hard copy) of distribution; and
- the format of revision notification.

Metropolitan Coal will make the Distribution Register publicly available on the Peabody website. Metropolitan Coal will be responsible for maintaining the Distribution Register and for ensuring that notification of revisions is sent by email or post as appropriate.

In addition, Metropolitan Coal employees with local computer network access will be able to view the controlled electronic version of this Extraction Plan on the Metropolitan Coal local area network. Metropolitan Coal will not be responsible for maintaining uncontrolled copies beyond ensuring the most recent version is maintained on Metropolitan Coal's computer system and the Peabody website.

#### 6.4 KEY RESPONSIBILITIES

Key responsibilities under this Extraction Plan are summarised in Table 19. The component management plans provide additional responsibilities under the plans.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |         |
|----------------------------------------------------------|--|---------|
| Revision No. EP-R01-E                                    |  | Page 88 |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |         |

## Table 19 Key Extraction Plan Responsibilities

| Responsibility                | Task                                                                                                                                                                                                          |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Manager               | Ensure resources are available to Metropolitan Coal personnel to facilitate the completion of responsibilities under this Extraction Plan.                                                                    |
|                               | Ensure the safety of Metropolitan Coal employees and the public in relation to Metropolitan Coal operations.                                                                                                  |
|                               | Approve and instruct implementation of remediation/corrective action/compensation, if necessary.                                                                                                              |
| Mining Engineering<br>Manager | Ensure the safety of Metropolitan Coal employees and the public in relation to Metropolitan Coal operations through oversight of mining activities conducted in accordance with the Safety Management System. |
|                               | Ensure adequate resources are available for implementation of remediation/corrective actions.                                                                                                                 |
| Technical Services            | Liaise with relevant stakeholders regarding environmental management.                                                                                                                                         |
| Manager                       | Ensure monitoring and reporting required in accordance with this Extraction Plan are carried out within specified timeframes, are adequately checked and processed and are prepared to the required standard. |
|                               | Ensure that any Incident Reports are lodged in a timely manner with all available information.                                                                                                                |
|                               | Ensure that reviews of the strategies, plans and programs are conducted as described in Sections 6.1 and 6.2.                                                                                                 |
|                               | Liaise with relevant stakeholders regarding subsidence impact management and related public safety hazards.                                                                                                   |
| Environment &                 | Liaise with relevant stakeholders regarding environmental management.                                                                                                                                         |
| Community<br>Superintendent   | Ensure monitoring and reporting required in accordance with this Extraction Plan are carried out within specified timeframes, are adequately checked and processed and are prepared to the required standard. |
|                               | Ensure that any Incident Reports are lodged in a timely manner with all available information.                                                                                                                |
|                               | Ensure that reviews of the strategies, plans and programs are conducted as described in Sections 6.1 and 6.2.                                                                                                 |
| Registered Mine<br>Surveyor   | Undertake all subsidence monitoring to the required standard within the specified timeframes and ensure data is adequately checked, processed and recorded.                                                   |

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |  |
|----------------------------------------------------------|--|
| Revision No. EP-R01-E Page 89                            |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |  |

#### 7 REFERENCES

Department of Planning and Environment (2022) Extraction Plan Guideline.

Golder Associates Pty Ltd (2020) 2020 EX02 Summary Report.

Hebblewhite, B., Kalf, F. and McMahon T. (2017) Woronora Reservoir Strategy Report – Stage 1 Report - Metropolitan Coal – Longwall mining near and beneath Woronora Reservoir.

Hebblewhite, B., Kalf, F. and McMahon T. (2019) Woronora Reservoir Strategy Report – Stage 2 Report - Metropolitan Coal – Longwall mining near and beneath Woronora Reservoir.

Helensburgh Coal Pty Ltd (2008) Metropolitan Coal Project Environmental Assessment.

Helensburgh Coal Pty Ltd (2009) Metropolitan Coal Project Preferred Project Report.

Independent Expert Advisory Panel for Mining (2023) *Metropolitan Coal Mine: High Level Review – Large swamp environmental assessment requirements for the Extraction Plan for Longwalls 311-316.* 

Independent Expert Advisory Panel for Mining (2024) *Metropolitan Coal Mine: Stage 1: Longwalls 311-312.* 

Independent Expert Panel for Mining in the Catchment (2018) *Initial Report on Specific Mining Activities at the Metropolitan and Dendrobium Coal Mines*. 12 November 2018.

Mine Subsidence Engineering Consultants (2024) Metropolitan Coal Mine – Longwalls 312 Modified Finishing End Mine Subsidence Overview (MSEC Report 1141-100 Revision A).

Metropolitan Collieries Pty Ltd (2024) Longwalls 311-316 Large Swamp Assessment.

Risk Mentor (2021) Metropolitan Coal Longwalls 308-310 Subsidence Environmental Risk Assessment Report.

Risk Mentor (2023) *Metropolitan Collieries Pty Ltd – Longwalls 311-316 Environmental Risk Assessment Report.* 

SP Solutions (2008) *Metropolitan Coal Project Environmental Risk Analysis*. Appendix O in the Helensburgh Coal Pty Ltd (2008) *Metropolitan Coal Project Environmental Assessment*.

Velscis (2018) Metropolitan 2D repro. Processing and Interpretation report.

| Metropolitan Coal – Longwalls 311-316 Extraction Plan    |         |  |
|----------------------------------------------------------|---------|--|
| Revision No. EP-R01-E                                    | Page 90 |  |
| Document ID: Longwalls 311-316 Extraction Plan Main Text |         |  |

## METROPOLITAN COAL LONGWALLS 311-316

## **EXTRACTION PLAN**









# ATTACHMENT 1 STATUTORY REQUIREMENTS

# **Peabody**

## ATTACHMENT 1 STATUTORY REQUIREMENTS

This Attachment outlines relevant statutory requirements within Project Approval (08\_0149) and provides the relevant section of the Metropolitan Coal Longwalls 311-316 Extraction Plan where the requirements are addressed.

| Metropolitan Coal Longwalls 311-316 Extraction Plan         |           |
|-------------------------------------------------------------|-----------|
| Revision No.EP-R01-A                                        | Page A1-1 |
| Document ID: Longwalls 311-316 Extraction Plan Attachment 1 |           |

### Table A1-1 Project Approval (08\_0149) Requirements

| Condition<br>Number<br>(Schedule 3)                                                                                                                           |                                                                                                                                                                               | Document Reference/Comment                                                                                                                                                                                         |                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Performance M                                                                                                                                                 | leasures                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                             |
| 1.                                                                                                                                                            | The Proponent shall ensure that the project does not cause any exceedances of the performance measures in Table 1.                                                            |                                                                                                                                                                                                                    |                                                             |
|                                                                                                                                                               | Table 1: Subsidence Impact Performan                                                                                                                                          | ce Measures                                                                                                                                                                                                        |                                                             |
|                                                                                                                                                               | Water Resources                                                                                                                                                               |                                                                                                                                                                                                                    |                                                             |
|                                                                                                                                                               | Catchment yield to the Woronora Reservoir                                                                                                                                     | Negligible reduction to the quality or quantity of water resources reaching the Woronora Reservoir                                                                                                                 | Section 4.2.1 and Appendix A (Water Management Plan)        |
|                                                                                                                                                               |                                                                                                                                                                               | No connective cracking between the surface and the mine                                                                                                                                                            |                                                             |
|                                                                                                                                                               | Woronora Reservoir                                                                                                                                                            | Negligible leakage from the Woronora Reservoir                                                                                                                                                                     |                                                             |
|                                                                                                                                                               |                                                                                                                                                                               | Negligible reduction in the water quality of Woronora Reservoir                                                                                                                                                    |                                                             |
|                                                                                                                                                               | Watercourses                                                                                                                                                                  |                                                                                                                                                                                                                    |                                                             |
| Waratah Rivulet between the full supply level of the Woronora Negligible environmental consequences (that is diversion of flows, no change in the natural dra | Negligible environmental consequences (that is, no diversion of flows, no change in the natural drainage behaviour of pools, minimal iron staining, and minimal gas releases) | Section 4.2.1 and Appendix A (Water Management Plan)                                                                                                                                                               |                                                             |
|                                                                                                                                                               | Eastern Tributary between the full supply level of the Woronora Reservoir and the maingate of Longwall 26                                                                     | Negligible environmental consequences over at least 70% of the stream length (that is no diversion of flows, no change in the natural drainage behaviour of pools, minimal iron staining and minimal gas releases) |                                                             |
|                                                                                                                                                               | Biodiversity                                                                                                                                                                  |                                                                                                                                                                                                                    |                                                             |
|                                                                                                                                                               | Threatened species, populations, or ecological communities                                                                                                                    | Negligible impact                                                                                                                                                                                                  | Section 4.2.3 and Appendix C (Biodiversity Management Plan) |
|                                                                                                                                                               | Swamps 76, 77 and 92                                                                                                                                                          | Set through condition 4 below                                                                                                                                                                                      |                                                             |

| Metropolitan Coal Longwalls 311-316 Extraction Plan         |  |           |
|-------------------------------------------------------------|--|-----------|
| Revision No.EP-R01-A                                        |  | Page A1-2 |
| Document ID: Longwalls 311-316 Extraction Plan Attachment 1 |  | _         |

| Condition<br>Number<br>(Schedule 3) | Condition                                                                                                                                                                                                                 |                                                                                                                                                                                | Document Reference/Comment                              |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 1 (cont.).                          | Table 1: Subsidence Impact Perform                                                                                                                                                                                        | nance Measures (Continued)                                                                                                                                                     |                                                         |
|                                     | Land                                                                                                                                                                                                                      |                                                                                                                                                                                |                                                         |
|                                     | Cliffs                                                                                                                                                                                                                    | Less than 3% of the total length of cliffs (and associated overhangs) within the mining area experience mining-induced rock fall                                               | Section 4.2.2 and Appendix B (Land Management Plan)     |
|                                     | Heritage                                                                                                                                                                                                                  |                                                                                                                                                                                |                                                         |
|                                     | Aboriginal heritage sites                                                                                                                                                                                                 | Less than 10% of Aboriginal heritage sites within the mining area are affected by subsidence impacts                                                                           | Section 4.2.4 and Appendix D (Heritage Management Plan) |
|                                     | Items of historical or heritage significance at the Garrawarra Centre                                                                                                                                                     | Negligible damage (that is fine or hairline cracks that do not require repair), unless the owner of the item and the appropriate heritage authority agree otherwise in writing |                                                         |
|                                     | Built Features                                                                                                                                                                                                            |                                                                                                                                                                                |                                                         |
|                                     | Built features                                                                                                                                                                                                            | Safe, serviceable and repairable, unless the owner and the MSB agree otherwise in writing                                                                                      | Section 4.2.5                                           |
|                                     | Note: The proponent will be required to define more detailed performance indicators for each of these performance measures in the various management plans that are required under this approval (see condition 6 below). |                                                                                                                                                                                |                                                         |

| Metropolitan Coal Longwalls 311-316 Extraction Plan         |  |           |
|-------------------------------------------------------------|--|-----------|
| Revision No.EP-R01-A                                        |  | Page A1-3 |
| Document ID: Longwalls 311-316 Extraction Plan Attachment 1 |  |           |

| Condition<br>Number<br>(Schedule 3) | Condition                                                                                                                                                                                                                                                                                                | Document Reference/Comment           |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Extraction Plan                     |                                                                                                                                                                                                                                                                                                          |                                      |
| 4.                                  | The Proponent shall not undermine Swamps 76, 77 and 92 without the written approval of the Director-General. In seeking this approval, the Proponent shall submit the following information with the relevant Extraction Plan (see condition 6 below):                                                   | Appendix H (Large Swamps Assessment) |
|                                     | (a) a comprehensive environmental assessment of the:                                                                                                                                                                                                                                                     |                                      |
|                                     | <ul> <li>potential subsidence impacts and environmental consequences of the proposed Extraction<br/>Plan;</li> </ul>                                                                                                                                                                                     |                                      |
|                                     | <ul> <li>potential risks of adverse environmental consequences; and</li> </ul>                                                                                                                                                                                                                           |                                      |
|                                     | options for managing these risks;                                                                                                                                                                                                                                                                        |                                      |
|                                     | (b) a description of the proposed performance measures and indicators for these swamps; and                                                                                                                                                                                                              |                                      |
|                                     | (c) a description of the measures that would be implemented to manage the potential environmental consequences of the Extraction Plan on these swamps (to be included in the Biodiversity Management Plan – see condition 6(f) below), and comply with the proposed performance measures and indicators. |                                      |

| Metropolitan Coal Longwalls 311-316 Extraction Plan         |           |
|-------------------------------------------------------------|-----------|
| Revision No.EP-R01-A                                        | Page A1-4 |
| Degument ID: Languagle 211 216 Extraction Plan Attachment 1 |           |

| Condition<br>Number<br>(Schedule 3) | Condition                                                                                                                                                                                                                                         | Document Reference/Comment                                  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Extraction Plan                     |                                                                                                                                                                                                                                                   |                                                             |
| 6.                                  | The Proponent shall prepare and implement an Extraction Plan for all second workings in the mining area to the satisfaction of the Director-General. The plan must:                                                                               |                                                             |
|                                     | (a) be prepared by a team of suitably qualified and experienced experts whose appointment has been endorsed by the Director-General <sup>[1]</sup> ;                                                                                              | Section 2.1 and Attachment 3                                |
|                                     | <ul> <li>(b) be approved by the Director-General before the Proponent is allowed to carry out the second<br/>workings covered by the Extraction Plan;</li> </ul>                                                                                  | This Application                                            |
|                                     | <ul><li>include a detailed plan for the second workings, which has been prepared to the satisfaction of<br/>DRE, and provides for adaptive management (from Longwall 23 onwards);</li></ul>                                                       | Section 1.3 and Appendix G<br>(Coal Resource Recovery Plan) |
|                                     | (d) include detailed plans of any associated surface construction works;                                                                                                                                                                          | N/A                                                         |
|                                     | (e) include the following to the satisfaction of DRE <sup>[2]</sup> :                                                                                                                                                                             |                                                             |
|                                     | • a coal resource recovery plan that demonstrates effective recovery of the available resource;                                                                                                                                                   | Appendix G (Coal Resource Recovery Plan)                    |
|                                     | <ul> <li>revised predictions of the conventional and non-conventional subsidence effects and<br/>subsidence impacts of the extraction plan, incorporating any relevant information that has<br/>been obtained since this approval; and</li> </ul> | Appendix I (Subsidence Report)                              |
|                                     | a Subsidence Monitoring Program to:                                                                                                                                                                                                               | Section 4.1 and Appendix F                                  |
|                                     | <ul> <li>validate the subsidence predictions; and</li> </ul>                                                                                                                                                                                      | (Subsidence Monitoring Program)                             |
|                                     | <ul> <li>analyse the relationship between the subsidence effects and subsidence impacts of the<br/>Extraction Plan and any ensuing environmental consequences;</li> </ul>                                                                         |                                                             |

<sup>&</sup>lt;sup>1</sup> The Director-General of the DP&E is now the Secretary of the Department of Planning and Environment (DPE).

| Metropolitan Coal Longwalls 311-316 Extraction Plan         |  |           |
|-------------------------------------------------------------|--|-----------|
| Revision No.EP-R01-A                                        |  | Page A1-5 |
| Document ID: Longwalls 311 316 Extraction Plan Attachment 1 |  |           |

<sup>&</sup>lt;sup>2</sup> The Division of Resources and Energy (DRE) is now the Resources Regulator.

| Condition<br>Number<br>(Schedule 3) | Condition                                                                                                                                                                                                                                                                                                                                                      | Document Reference/Comment                                                 |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Extraction Plan                     | (Continued)                                                                                                                                                                                                                                                                                                                                                    |                                                                            |
| 6 (cont.).                          | (f) include a;                                                                                                                                                                                                                                                                                                                                                 |                                                                            |
|                                     | <ul> <li>Water Management Plan, which has been prepared in consultation with OEH, SCA<sup>[3]</sup> and<br/>NOW<sup>[4]</sup>, to manage the environmental consequences of the Extraction Plan on watercourses<br/>(including the Woronora Reservoir), aquifers and catchment yield;</li> </ul>                                                                | Section 2.4, Section 4.2.1 and Appendix A (Water Management Plan).         |
|                                     | <ul> <li>Biodiversity Management Plan, which has been prepared in consultation with OEH and DPI<br/>(Fisheries)<sup>[5]</sup>, to manage the potential environmental consequences of the Extraction Plan on<br/>aquatic and terrestrial flora and fauna, with a specific focus on swamps;</li> </ul>                                                           | Section 2.4, Section 4.2.3 and Appendix C (Biodiversity Management Plan).  |
|                                     | <ul> <li>Land Management Plan, which has been prepared in consultation with SCA, to manage the potential environmental consequences of the Extraction Plan on cliffs, overhangs, steep slopes and land in general;</li> </ul>                                                                                                                                  | Section 2.4, Section 4.2.2 and Appendix B (Land Management Plan).          |
|                                     | <ul> <li>Heritage Management Plan, which has been prepared in consultation with the OEH and the<br/>relevant Aboriginal groups, to manage the potential environmental consequences of the<br/>Extraction Plan on heritage sites or values;</li> </ul>                                                                                                          | Section 2.4, Section 4.2.4 and Appendix D (Heritage Management Plan).      |
|                                     | <ul> <li>Built Features Management Plan, which has been prepared in consultation with the owner of<br/>the relevant feature, to manage the potential environmental consequences of the Extraction<br/>Plan on any built features; and</li> </ul>                                                                                                               | Section 2.4 and Section 4.2.5                                              |
|                                     | (g) include a Public Safety Management Plan, which has been prepared in consultation with DRE <sup>[2]</sup> and the DSC (for any Mining within the DSC notification area), to ensure public safety in the mining area.                                                                                                                                        | Section 2.4, Section 4.2.6 and Appendix E (Public Safety Management Plan). |
|                                     | Note: In accordance with condition 12 of schedule 2, the preparation and implementation of Extraction Plans for second workings may be staged, with each plan covering a defined area of second workings. In addition, these plans are only required to contain management plans that are relevant to the specific second workings that are being carried out. |                                                                            |

<sup>&</sup>lt;sup>3</sup> The Sydney Catchment Authority (SCA) is now WaterNSW.

| Metropolitan Coal Longwalls 311-316 Extraction Plan         |  |           |
|-------------------------------------------------------------|--|-----------|
| Revision No.EP-R01-A                                        |  | Page A1-6 |
| Document ID: Longwalls 311 316 Extraction Plan Attachment 1 |  |           |

<sup>&</sup>lt;sup>4</sup> The NSW Office of Water (NOW) is now the Department of Planning, Industry and Environment – Water (DPIE – Water).

<sup>&</sup>lt;sup>5</sup> DRE (Fisheries) is now the Department of Primary Industries – Fisheries (DPI – Fisheries).

<sup>&</sup>lt;sup>6</sup> Dams Safety Committee (DSC) is now Dams Safety NSW.

| Condition<br>Number<br>(Schedule 3) | Condition                                                                                                                                                                                     | Document Reference/Comment                        |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Extraction Plan                     | (Continued)                                                                                                                                                                                   |                                                   |
| 7.                                  | In addition to standard requirements for management plans (see condition 2 of schedule 7), the Proponent shall ensure that the management plans required under condition 6(f) above include:  |                                                   |
|                                     | (a) a program to collect sufficient baseline data for future Extraction Plans;                                                                                                                | Appendices A to E and Attachment 2                |
|                                     | (b) a revised assessment of the potential environmental consequences of the Extraction Plan, incorporating any relevant information that has been obtained since this approval;               | Section 3.1 and Appendices A to E                 |
|                                     | (c) a detailed description of the measures that would be implemented to remediate predicted impacts; and                                                                                      | Section 4 and Appendices A to E                   |
|                                     | (d) a contingency plan that expressly provides for adaptive management.                                                                                                                       | Section 5.1 and Appendices A to E                 |
| Condition<br>Number<br>(Schedule 7) | Condition                                                                                                                                                                                     | Document Reference/Comment                        |
| Management P                        | an Requirements                                                                                                                                                                               |                                                   |
| 2.                                  | The Proponent shall ensure that the management plans required under this approval are prepared in accordance with any relevant guidelines, and include:                                       |                                                   |
|                                     | (a) detailed baseline data;                                                                                                                                                                   | Appendices A to E                                 |
|                                     | (b) a description of:                                                                                                                                                                         |                                                   |
|                                     | <ul> <li>the relevant statutory requirements (including and relevant approval, licence or lease<br/>conditions);</li> </ul>                                                                   | Section 2.1.1, Appendices A to E and Attachment 1 |
|                                     | any relevant limits or performances measures/criteria;                                                                                                                                        | Section 3, Section 4 and Appendices A to E        |
|                                     | <ul> <li>the specific performance indicators that are proposed to be used to judge the performance of,<br/>or guide the implementation of, the project or any management measures;</li> </ul> | Section 4 and Appendices A to E                   |
|                                     | (c) a description of the measures that would be implemented to comply with the relevant statutory requirements, limits, or performances measures/criteria;                                    | Section 4 and Appendices A to E                   |
|                                     | (d) a program to monitor and report on the:                                                                                                                                                   | Section 4.2, Section 5.2 and Appendices A to F    |
|                                     | impacts and environmental performance of the project;                                                                                                                                         |                                                   |
|                                     | <ul> <li>effectiveness of any management measures (see c above);</li> </ul>                                                                                                                   |                                                   |

| Metropolitan Coal Longwalls 311-316 Extraction Plan         |  |           |
|-------------------------------------------------------------|--|-----------|
| Revision No.EP-R01-A                                        |  | Page A1-7 |
| Document ID: Longwalls 311-316 Extraction Plan Attachment 1 |  |           |

| Condition<br>Number<br>(Schedule 7) |                                          | Condition                                                                                                      | Document Reference/Comment                 |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Management P                        | Management Plan Requirements (Continued) |                                                                                                                |                                            |
| 2. (Cont.)                          | (e)                                      | a contingency plan to manage any unpredicted impacts and their consequences;                                   | Section 5.1.2 and Appendices A to E        |
|                                     | (f)                                      | a program to investigate and implement ways to improve the environmental performance of the project over time; | Sections 5.1 and 6 and Appendices A to E   |
|                                     | (g)                                      | a protocol for managing and reporting any:                                                                     | Sections 6 and Appendices A to E           |
|                                     |                                          | • incidents;                                                                                                   |                                            |
|                                     |                                          | • complaints;                                                                                                  |                                            |
|                                     |                                          | non-compliances with statutory requirements; and                                                               |                                            |
|                                     |                                          | exceedances of the impact assessment criteria; and/or performance criteria and                                 |                                            |
|                                     | (h)                                      | a protocol for review of the plan.                                                                             | Sections 6.1 and 6.2 and Appendices A to G |

| Metropolitan Coal Longwalls 311-316 Extraction Plan         |           |  |
|-------------------------------------------------------------|-----------|--|
| Revision No.EP-R01-A                                        | Page A1-8 |  |
| Document ID: Longwalls 311-316 Extraction Plan Attachment 1 |           |  |

## METROPOLITAN COAL LONGWALLS 311-316

## EXTRACTION PLAN









# PROGRAM TO COLLECT BASELINE DATA FOR FUTURE EXTRACTION PLANS

## **Peabody**

### ATTACHMENT 2 PROGRAM TO COLLECT BASELINE DATA FOR FUTURE EXTRACTION PLANS

Longwalls 311-316 (the subject of this Extraction Plan) are the eleventh, twelfth, thirteenth, fourteenth, fifteenth and sixteenth longwalls within the 300 longwall series. Longwall 317 is located to the west of Longwall 316.

In accordance with Condition 7, Schedule 3 of the Project Approval (08\_0149), Metropolitan Coal is required to collect baseline data for the next Extraction Plan. However, the currently approved Longwall 317 is too short to economically mine and, therefore, Metropolitan Coal is seeking to modify Project Approval (08\_0149) to extend Longwall 317 and add a new Longwall 318. Metropolitan Coal will collect baseline data for upland swamps, riparian vegetation, slopes and ridgetops, aquatic biota and their habitats, and terrestrial fauna and their habitats as part of the Modification process to inform the impact assessment and for use in future Extraction Plans.

| Metropolitan Coal Longwalls 311-316 Extraction Plan         |  |           |
|-------------------------------------------------------------|--|-----------|
| Revision No.EP-R01-A                                        |  | Page A2-1 |
| Document ID: Longwalls 311-316 Extraction Plan Attachment 2 |  |           |

#### ATTACHMENT 3

#### RELEVANT CONSULTATION RECORDS

| Metropolitan Coal – Longwalls 311-316 Extraction Plan       |  |  |
|-------------------------------------------------------------|--|--|
| Revision No. EP-R01-D                                       |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Attachment 3 |  |  |

### METROPOLITAN COAL LONGWALLS 311-316

## **EXTRACTION PLAN**









## ATTACHMENT 3 RELEVANT CONSULTATION RECORDS

## **Peabody**

#### **Department of Planning and Environment**



Our ref: MP 08\_0149-PA-89

Mr Jon Degotardi Manager – Project Approvals Metropolitan Colleries Pty Ltd PO Box 402 Helensburgh NSW 2508

31 July 2023

Subject: Appointment of Experts – Extraction Plan for Longwalls 311 to 316

Dear Mr Degotardi

I refer to your request dated 21 July 2023 for the Planning Secretary's approval of the following experts to prepare the Extraction Plan for Longwalls 311 to 316 under Condition 6, Schedule 3 of MP 08\_0149.

The Department has reviewed the information you have provided and is satisfied that nominated experts are suitably qualified and experienced.

Accordingly, I can advise that the Planning Secretary approves the following experts to prepare the Extraction Plan for Longwalls 311 to 316:

- Mr Peter DeBono of Mine Subsidence Engineering Consultants Subsidence;
- Ms Ines Epari of SLR Consulting Groundwater;
- Mr Anthony Marszalek and Dr Camilla West of ATC Williams Surface Water;
- Associate Professor Barry Noller of The University of Queensland Water quality;
- Ms Elizabeth Norris of Ecoplanning Flora ecology;
- Dr Sharon Cummins of Bio-Analysis Pty Ltd Fauna ecology
- Mr Jamie Reeves of Niche Environment and Heritage Aboriginal Cultural Heritage;
- Mr Jamie Warwick of Resource Strategies Environmental Planning

If you wish to discuss the matter further, please contact Melanie Hollis on 8217 2043.

Yours sincerely

Gabrielle Allan

A/Director Energy and Resource Asessments

As nominee of the Planning Secretary

## INDEPENDENT EXPERT ADVISORY PANEL FOR MINING

#### **ADVICE RE:**

#### **REPORT TITLED:**

Metropolitan Coal Mine:

Independent review of environmental performance to 2022

(Dupen, 2023)

September 2023

Report No: IEAPM 202309-2

#### **EXECUTIVE SUMMARY**

In March 2023, a report titled 'Metropolitan Coal Mine – independent review of environmental performance to 2022' was prepared by consulting company H2onestly Pty Ltd on behalf of the Nature Conservation Council of NSW (NCC), a community-based organisation. The author of the report is Mr Peter Dupen and it is referred to as the 'Dupen Report' in this Executive Summary.

The Dupen Report is founded on the hypothesis by its author that higher than expected flows measured during 2020 in the Eastern Tributary, which feeds Woronora Reservoir, can be attributed to surface flows and shallow groundwater being widely diverted and drained as a result of mining-induced fracturing on each side of and beneath the valley hosting the Eastern Tributary. This fracturing is hypothesised to comprise an interconnected network of subvertical surface fractures and sub-horizontal bedding plane shears that Dupen refers to as a new subsidence mechanism. He associates this mechanism, which he has termed 'ridge fracture drainage', with the unexpected and unpredicted formation of large-scale shear planes opening up at the base of aquifers. This forms the basis for Dupen's conclusions that:

- The aquifers which sit above and feed the incised valley streams are draining at rates measurably higher than pre-mining, in places rapidly and completely, due to unexpected and unpredicted formation of large-scale shear planes opening up at their base.
- If this new subsidence mechanism is indeed widespread, a likely outcome is that a range of protected Special Area ecosystems overlying the mine will dry and change. The other major risk from widespread basal shear formation is that it will cause the water quality in the Woronora drinking water reservoir to become increasingly degraded by metal-laden discharges from unmeasured shear plane vents.

In May 2023, the NSW Department of Planning and Environment (DPE) requested the following advice from the Independent Expert Advisory Panel for Mining (IEAPM) in relation to the Dupen Report.

- Identify and comment on the elements of the Report that are relevant to the operation and environmental performance of Metropolitan Coal;
- Provide advice as to what actions or further investigations would be required to test or confirm the hypothesis put forward in the Report; and
- Any other significant advice that the Panel may wish to provide concerning this issue.

The Panel overlapped with another IEAPM Panel established to provide DPE with a range of advice relating to water quality performance measures for Woronora Reservoir specified in Consent Conditions for Metropolitan Coal Mine. Matters of significance raised in the Dupen Report in relation to potential mining impacts on water quality fall within the brief of the other Panel and the reader is referred to the advice of that Panel (IEAPM, 2023).

The nature of the structure and content of the Dupen Report results in a range of conclusions and recommendations being developed progressively throughout the Panel's advice report. The reader is referred to these for further insight into the following summary advice:

<u>Identify</u> and comment on the elements of the Report that are relevant to the operation and environmental performance of Metropolitan Coal

#### **Subsidence Focussed**

- 1. The two basic mining-induced elements that constitute Dupen's hypothesised *ridge* fracture drainage model are sub-vertical surface fractures and sub-horizontal bedding plane shears. Both elements are well established in subsidence engineering and, individually and collectively, have been the subject of a number of detailed subsidence and hydrogeological studies in the Southern Coalfield over recent decades for the purpose of detecting and monitoring their formation, including at the Eastern Tributary. Hence, ridge fracture drainage cannot be considered a new subsidence mechanism.
- 2. If the Dupen hypothesis concerning surface flows and shallow groundwater being widely diverted and drained as a result of mining-induced fracturing is validated then ridge fracture drainage could, arguably, be considered to be a *new subsidence consequence*. This depends on the spatial scale and the magnitude and distribution of shear displacement on what Dupen refers to as *large scale shear planes opening up at their base*, in comparison to documented past experience. The term *large scale* is not defined in the Dupen Report.
- 3. The Dupen Report does not provide sufficient evidence to cause the Panel to believe that the scale of bedding plane shears in the vicinity of the Eastern Tributary might be materially different to that of other shear planes detected and studied in the Southern Coalfield.
- 4. Due to the low values of predicted incremental valley closures during the 300 series of longwalls, it is unlikely that ground movements were significant enough to increase the hydraulic conductivity of shear planes in the Eastern Tributary during the period of flow anomalies.

#### **Groundwater Focussed**

- 5. Perched water in swamp colluvium and very shallow weathered Hawkesbury Sandstone is hydraulically disconnected from the deeper regional groundwater systems and will not drain unless near surface fracturing intersects these features. There is no clear evidence of drainage of these shallow groundwater systems in the available monitoring records.
- 6. There is no evidence from Metropolitan Coal's groundwater monitoring network (except at the transect bore locations overlying LW305 and LW306) that water levels in the Hawkesbury Sandstone aquifers across the Eastern Tributary catchment have fallen and desaturated the ridgelines. In fact, most monitored regional water table levels have stabilised or risen in recent years.
- 7. Alternative explanations of the increased surface flows at the Eastern Tributary gauging station observed since August 2020 (which corresponds with the commencement of an above average rainfall period) include:
  - underflow that previously discharged to Woronora Reservoir downstream of the Eastern Tributary gauging station is now reporting as surface water flow upstream of the gauging station; and

- ii. larger volumes of (natural) interflow and regional groundwater are discharging and contributing to surface water flows across the whole catchment.
- 8. Increased groundwater discharge is potentially consistent with the Dupen hypothesis of sub-vertical fractures and shears with enhanced hydraulic connection connecting regional groundwater to the Eastern Tributary. However, there is no widespread evidence of a reduction in water levels or groundwater storage volumes across the catchment in the Hawkesbury Sandstone aquifer, which is contrary to the Dupen hypothesis.
- 9. Beneath ridgelines and hillslopes, the absence of permanent springs and any obvious perched groundwater (apart from in the vicinity of swamps) suggests most rainfall recharge (apart from that portion that is lost to evapo-transpiration and via interflow after rain) drains vertically to the regional water table and then moves laterally to emerge in the base of the valleys as baseflow.
- 10. The shallow perched water table in colluvium and underlying/adjacent weathered sandstone supports upland swamps. The upland swamps will not drain and will not be impacted unless near surface fracturing intersects and drains these features.
- 11. The regional water table occurs at depth beneath the ridgelines, and naturally discharges to permanent streams. Regional groundwater does not discharge at elevated sites and does not support ridgeline and hillside terrestrial ecosystems, however it may contribute to some riparian communities.

#### **Surface Water Focussed**

- 12. Metropolitan Coal (through consultants) has undertaken a detailed analysis of potential reasons for the Eastern Tributary flow anomalies that Dupen uses to support the ridge fracture drainage hypothesis. The Panel agrees with main conclusions and recommendations from that analysis, being:
  - i. There are serious errors in the flow data used by Dupen but this is not the reason for the anomalies. To address these errors the rating curve for the Eastern Tributary should be extended to improve high flow measurement accuracy.
  - ii. The flow anomalies are unlikely to be due to subsidence movements of the flume
  - iii. The controlled burn conducted from September 2021 to March 2022 in the Eastern Tributary catchment has likely contributed but, by itself, is unlikely to fully explain the flow anomalies.
  - iv. The flow anomalies may be related to mining-induced increases in the hydraulic conductivity of the creek bed.
- 13. Additional to the considerations in the consultant's analysis, the Panel concludes that:
  - i. While blockage of the flume by debris is another potential reason for the flow anomalies, regular inspection and clearance of the flume makes this unlikely.
  - ii. Errors in the rainfall-runoff modelling may also contribute to flow anomalies, including non-linearity in the groundwater storage-discharge relation and non-stationarity in hydrological processes related to drought. This has not been assessed by Metropolitan Coal.
- 14. Contrary to the observation by Dupen that "Since 2017, the previously permanent Pools ETAG to ETAR have been dry except for short periods following major rainfall events", these pools were generally flowing during 2017-2022 except during prolonged dry weather.

- 15. The reason for the Eastern Tributary flow anomalies remains unknown, and the Dupen hypothesis cannot be discounted based on the flow data.
- 16. The status of the pools and whether remediation improves the status of the pools, while important for assessing the environmental performance of the mine, will not be a decisive factor regarding the Dupen hypothesis.

#### **Overarching Conclusions**

- 17. Previous studies and investigations have been undertaken of basal shears and the magnitude of associated impacts on the groundwater system and these do not provide evidence supporting major impacts of the style and magnitude suggested in the Dupen Report.
- 18. The evidence that Dupen has used for the development of his hypothesis is limited (as acknowledged by Dupen) and incomplete and additional evidence sourced by the Panel confirms that this data contained errors, in some cases of a serious nature.
- 19. A wider assessment of the groundwater data, including more recent data than that available to Dupen, has not provided evidence of the widespread dewatering of the regional groundwater system predicted by Dupen's hypothesis.
- 20. Dupen's interpretation of the impacts of changing groundwater baseflow contributions to Woronora Reservoir arising from his hypothesis is also not consistent with enhanced basal shears and the dewatering of the Hawkesbury Sandstone aquifer beneath the ridgelines.
- 21. Consideration by the Panel of a wider set of data indicates that the inferences made by Dupen about the scale of impacts unfolding on the regional ecology and the Woronora reservoir are likely overstated. For this reason, the Panel does not support the Dupen Report's primary recommendation "that further undermining of the Woronora Reservoir should be halted until the implications of these unexpected changes now unfolding in Woronora Reservoir Catchment can be urgently evaluated".
- 22. Even though the scale of impacts suggested by Dupen are not expected by the Panel to be as large as Dupen predicts, the Panel accepts that components of Dupen's hypothesis should be evaluated through new data collection and further interpretation to build confidence in Metropolitan Coal's assessment of the long-term impacts of mining under the catchment.
- 23. If the drainage mechanism hypothesised by Dupen has merit, it should be able to be validated by field experience at other sites above mine workings at Metropolitan Coal Mine and at other mines operating in similar topography in the Southern and Western Coalfields of NSW.

<u>Provide advice as to what actions or further investigations would be required to test or confirm the hypothesis put forward in the Report</u>

The Panel recommends (from a groundwater perspective) that:

- 1. Additional bores (standpipes) be established at the T5 monitoring location to monitor the vertical piezometry in the Hawkesbury Sandstone and to establish whether extensive basal shears occur at depth below this eastern ridgeline area.
- 2. Additional bores (standpipes) be established at the T6 monitoring location and at other accessible locations overlying the proposed LW311 to LW316 panels as soon as

practicable to monitor the natural vertical piezometry in the Hawkesbury Sandstone below this western ridgeline area.

The Panel recommends (from a surface water perspective):

- 3. Extension of the Eastern Tributary flow gauge rating curve as recommended by Metropolitan Coal's consultant (HEC, 2022); also spot measurements of flow covering flow rates as high as safely practicable; and urgent repair of the weir. Revised rating curves and the spot measurements of flow should be published in annual reports.
- 4. Re-analysis of the flow data including the most recent data. This analysis should be of the nature of HEC (2022) but also consider the possibility of increased flows being related to high groundwater or reservoir levels or errors in the modified AWBM model (Australian Water Balance Model).
- 5. Further reporting of the modelling in annual report appendices should contain details of the modified AWBM model and parameter values needed to allow independent assessment.
- 6. If it is concluded after review and extension of the rating curve and analysis using the most recent flow data that baseflows may have substantially increased due to subsidence effects, further investigation should be undertaken regarding the source of the increased baseflow and its significance for aquatic ecology and water quality entering the Woronora Reservoir.
- 7. Metropolitan Coal's 2023 Annual Report should provide information on the success of the Eastern Tributary remediation program.

#### Any other significant advice that the Panel may wish to provide concerning this issue

- 1. The Panel recommends for the purpose of developing a better understanding of valley closure impacts to inform mine design that, if it has not already done so, Metropolitan Coal undertakes and makes available to the Department, an investigation of mining impacts on the Eastern Tributary that includes an evaluation of:
  - i. How predicted valley closure developed incrementally along the Eastern Tributary.
  - ii. How well incremental and total predicted valley closure correlated with measured incremental and total measured closure.
  - iii. The nature and extent of natural and mining-induced fracturing to a depth of at least 20 m along the Eastern Tributary downstream from the maingate of LW26 to the Full Supply Level (FSL) of Woronora Reservoir (noting that some of these investigations may have already been undertaken).
  - iv. How well mining-induced environmental impacts along the Eastern Tributary correlate to both predicted valley closure and to measured valley closure.
  - v. The hydraulic characterisation of the fracture system and the underflows that are taking place along that portion of the Eastern Tributary between the maingate of LW26 and the Eastern Tributary gauging station. This could include establishing new shallow groundwater bores in a longitudinal section to assist in better assessing long term water level and water quality behaviour.

#### TABLE OF CONTENTS

| 1.0    | Introd | oduction                                                  |      |
|--------|--------|-----------------------------------------------------------|------|
| 2.0    | Metho  | d of Operation                                            | 3    |
| 2.     | .1.1.  | Site Visit                                                | 3    |
| 2.     | .1.2.  | Meetings                                                  | 3    |
| 3.0    | Dupen  | Hypothesis and Concerns                                   | 5    |
| 3.1.   | Loc    | ation Maps                                                | 5    |
| 3.2.   | The    | Dupen Hypothesis                                          | 6    |
| 4.0    | Histor | ical Background and Context                               | . 12 |
| 4.1.   | Sub    | sidence Knowledge Base                                    | . 12 |
| 4.2.   | Gro    | undwater and Surface Water                                | . 15 |
| 4.     | .2.1.  | Groundwater Characteristics                               | . 15 |
| 4.     | .2.2.  | Surface Water Characteristics                             | . 17 |
| 4.3.   | Peri   | formance measures and indicators                          | . 19 |
| 5.0    | Dupen  | Report Assessment                                         | . 21 |
| 5.1.   | App    | proach                                                    | . 21 |
| 5.2.   | Prin   | nary hypothesis and statements – overview and evaluation  | . 21 |
| 5.     | .2.1.  | Prediction and appearance of impacts on Eastern Tributary | . 21 |
| 5.     | .2.2.  | Flow measurements                                         | . 28 |
| 5.     | .2.3.  | Pool levels                                               | . 33 |
| 5.     | .2.4.  | Bedding planes shears                                     | . 34 |
| 5.     | .2.5.  | Hydrogeological behaviour                                 | . 36 |
| 5.     | .2.6.  | Evaluation summary                                        | . 39 |
| 5.3.   | Eva    | luation of other Dupen statements                         | . 40 |
| 5.     | .3.1.  | Implications for aquifer storage and baseflows            | . 40 |
| 5.     | .3.2.  | Implications for water quality                            | . 41 |
| 5.     | .3.3.  | Implications for ecosystems/swamps                        | . 42 |
| 5.     | .3.4.  | Implications for performance measures and indicators      | . 42 |
| 5.     | .3.5.  | Dupen Report recommendations                              | . 43 |
| 6.0    | Summ   | ary Panel Advice                                          | . 45 |
| Refere | nces   |                                                           | . 49 |

#### 1.0 INTRODUCTION

In March 2023, a report titled 'Metropolitan Coal Mine – independent review of environmental performance to 2022' was prepared by consulting company H2onestly Pty Ltd on behalf of the Nature Conservation Council of NSW (NCC), a community-based organisation. The author of the report was Mr Peter Dupen and, henceforth, that report is referred to as the 'Dupen Report' and referenced as Dupen (2023).

The Dupen Report is founded on the hypothesis by its author that higher than expected flows recently measured during 2020 in the Eastern Tributary, which feeds Woronora Reservoir, may be attributed to surface flows and shallow groundwater being widely diverted and drained through shear zones and fractures at the base of valleys because of a previously unidentified subsidence mechanism. Dupen refers to this new mechanism as 'ridge fracture drainage'. Dupen is of the view that:

- The aquifers which sit above and feed the incised valley streams are draining at rates measurably higher than pre-mining, in places rapidly and completely, due to unexpected and unpredicted formation of large-scale shear planes opening up at their base.
- If this new subsidence mechanism is indeed widespread, a likely outcome is that a range of protected Special Area ecosystems overlying the mine will dry and change. The other major risk from widespread basal shear formation is that it will cause the water quality in the Woronora drinking water reservoir to become increasingly degraded by metal-laden discharges from unmeasured shear plane vents.

On 16 May 2023, the NSW Department of Planning and Environment (DPE) requested the following advice from the Independent Expert Advisory Panel for Mining (IEAPM) in relation to the Dupen Report.

- Identify and comment on the elements of the Report that are relevant to the operation and environmental performance of Metropolitan Coal;
- Provide advice as to what actions or further investigations would be required to test or confirm the hypothesis put forward in the Report;
- Any other significant advice that the Panel may wish to provide concerning this issue.

The Chair of the IEAPM (Em. Professor Jim Galvin) convened the following Panel to prepare the advice:

- Em. Professor Jim Galvin Chair Subsidence and Mining
- Professor Neil McIntyre Surface Water
- Mr John Ross Groundwater
- Em. Professor Rae Mackay Groundwater

All four Panel members have experience in the Southern Coalfield that is relevant to addressing DPE's brief.

The Panel overlapped with another IEAPM Panel established to provide DPE with a range of advice relating to water quality performance measures for Woronora Reservoir specified in Consent Conditions for Metropolitan Coal Mine. Matters of significance raised in the Dupen Report in relation to potential mining impacts on water quality fall within the brief of this other Panel and the reader is referred to the advice of that Panel (IEAPM, 2023).

The topics of mining subsidence and associated impacts and consequences for water resources in the Southern Coalfield are complex and have been the subject of many studies over the last 50 years. To assist the non-technical specialist in understanding the hypotheses and propositions put forward in the Dupen Report and the Panel's assessment of them, this current advice report is structured around first providing a summary of Dupen's hypotheses and associated concerns (Section 3.0), followed by a summary of the evolution of the local knowledge base and some relevant foundation principles relating to mining impacts on groundwater and surface water at Metropolitan Coal Mine (Section 4.0). A detailed critique of the Dupen Report is then presented in Section 5.0, which forms the basis of the Panel's advice in Section 6.0.

#### 2.0 METHOD OF OPERATION

The Panel convened by videoconference during the preparation of its advice and was administratively supported by Secretariat staff provided by the DPE's Major Projects and Resource Assessments teams.

A wide range of documents was provided through DPE to support the Panel in preparing this advice. The principal documents are summarised in Table 1.

**Table 1:** Key documents reviewed by the Panel

| Document<br>Reference                                    | Document Name                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Documents provided<br>by DPE                             | <ul> <li>DPE Request for Advice – Water Quality Performance<br/>Measures for Metropolitan Coal Mine – 6 April 2023</li> <li>Metropolitan Coal Consolidated Project Approval 08_0149</li> <li>Metropolitan Coal Mine – Independent review of environmental performance to 2022, Peter Dupen, March 2023</li> </ul> |
| Additional<br>documents provided<br>by Metropolitan Coal | <ul> <li>Metropolitan Coal Review of Recorded Streamflow – Eastern<br/>Tributary, Hydro Engineering &amp; Consulting, November 2022</li> </ul>                                                                                                                                                                    |

#### 2.1.1.Site Visit

On 10 May 2023, the Panel undertook a site inspection in the Woronora Catchment under the guidance of WaterNSW and in the company of DPE officers. It inspected the valley sides and valley floor area of the Eastern Tributary between Fire Trail 9J crossing and the Eastern Tributary Gauging Station (at the end of Fire Trail 9G), and the Flat Rock Crossing area of Waratah Rivulet.

#### **2.1.2. Meetings**

The Panel convened multiple times over the course of preparing its advice. The Department's Resource Assessments team was invited to several of these meetings on an as-needed basis. to provide technical briefings and updates to the Panel. Table 2 summarises in chronological order the schedule of formal meetings that involved the Panel. A number of meetings restricted to Panel members also took place.

**Table 2:** Schedule of formal meetings involving the Panel.

| Meeting Date  | Meeting Information                           |
|---------------|-----------------------------------------------|
| 14 April 2023 | Panel - DPE Briefing                          |
| 10 May 2023   | Site Visit                                    |
| 11 May 2023   | Site Visit Debrief and meeting at DPE Offices |

| 31 May 2023      | Panel Meeting Discussion |
|------------------|--------------------------|
| 14 June 2023     | Panel Meeting Discussion |
| 30 June 2023     | Panel Meeting Discussion |
| 18 August 2023   | Panel Meeting Discussion |
| 24 August 2023   | Panel Meeting Discussion |
| 1 September 2023 | Panel Meeting Discussion |

#### 3.0 DUPEN HYPOTHESIS AND CONCERNS

#### 3.1. LOCATION MAPS

Figure 1 is reproduced from the Dupen Report and shows the near east-west layout of longwall panels LW20 to LW27 (the '20 Series') in the lower section of the figure and the near north-south layout of LW301 to LW316 (the '300 Series') in the upper section of the figure. The 20 Series longwall panels are separated from the 300 Series by main development roadways. Extraction of LW309 commenced shortly before finalising this advice report. The Panel has added the blue text boxes in Figure 1 to identify Waratah Rivulet, Woronora Reservoir, and the point (X) marking the start of the downstream section of the Eastern Tributary that is the subject of a Performance Measure of particular relevance in this matter.

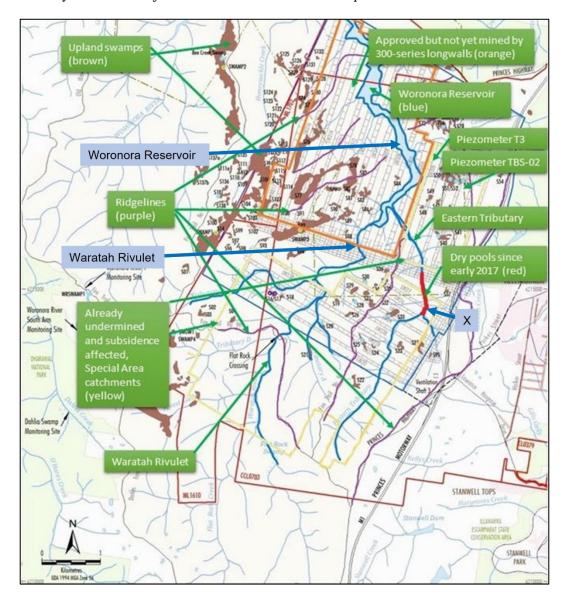



Figure 1: Reproduction of Figure 1 of the Dupen Report in which it is captioned as *Key features discussed in this report, annotated in green over base figure reproduced from Metropolitan Coal 2021 Annual Report,* with the blue text boxes being added by the Panel.

Figure 2 shows the naming and location of pools on Waratah Rivulet and the Eastern Tributary and surface water monitoring sites over Metropolitan Coal Mine. Note that rock bars WRS1 and WRS3 referred to in this Panel advice report control, respectively, Pools E and F on Waratah Rivulet.



Figure 2: Plan showing the naming and location of rock pools on Waratah Rivulet and Eastern Tributary and surface water monitoring sites over Metropolitan Coal Mine. Note that rock bars WRS1 and WRS3 referred to in this Panel advice control, respectively, Pools E and F on Waratah Rivulet (extract from Figure 7 of Peabody, 2022b)

#### 3.2. THE DUPEN HYPOTHESIS

The Dupen Hypothesis<sup>1</sup> has its primary basis in Figure 3, which is Chart 3 of the Metropolitan Coal 2021 Annual Review (Peabody, 2022b). Dupen has concluded on the basis of this chart that during the reporting period (1/1/21 to 31/12/21), flow in Eastern Tributary has been increasingly higher than model predictions <sup>2</sup>.

6

<sup>&</sup>lt;sup>1</sup> Dupen invokes the term 'hypotheses' for addressing the evidence he believes supports his central hypothesis noted in Section 1.0 of this Panel Advice report. The Panel's use of the term 'hypothesis' refers to Dupen's central hypothesis.

<sup>&</sup>lt;sup>2</sup> p19 of Dupen, 2023a

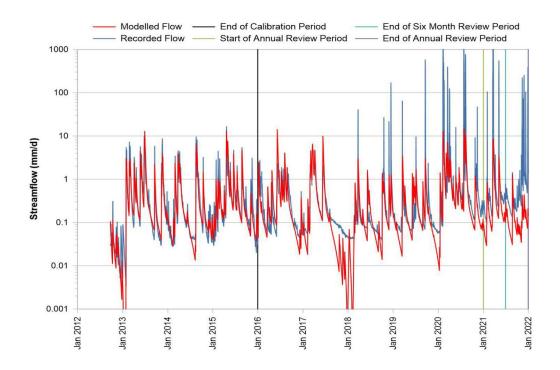



Figure 3: Reproduction of Figure 12 of Dupen Report where it is described as *monitored and model-predicted flows* – *Eastern Tributary upstream of Woronora Reservoir*. The figure is originally Chart 3 from Peabody (2022b). The y-axis scale (mm/day) is the flow volume rate in mm<sup>3</sup>/day divided by the catchment area in mm<sup>2</sup>. 1 mm/day = 67 L/s, equating to almost 5.8 ML/d.)

Dupen introduces other lines of evidence for his hypothesis. Of particular significance are the changes in piezometry observed in the transect boreholes T1-T6, shown in Figure 4. The location of the transect can be identified from Figure 1 by the positioning of piezometer T3.

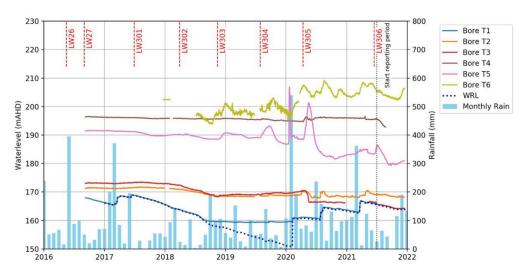



Chart 52 Groundwater Level in Bores T1 to T6

Figure 4: Piezometric data for Boreholes T1 to T6 extending from the reservoir along a transect approximately at right angles to the reservoir. (Reproduction of Figure 9 in the Dupen Report)<sup>3</sup>

A cross section showing the elevations of the Boreholes T1-T5 is shown in Figure 5 (Figure 2 in SLR, 2023a which is an updated version of Figure 8 in the Dupen Report)

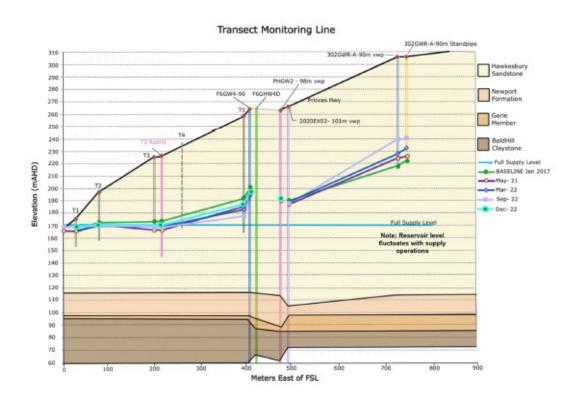



Figure 5: Cross section along the line of Boreholes T1 to T5 showing the elevation of the monitoring bores and the observed water levels at the end of 2022 (reproduction of Figure 2 in SLR, 2023a).

Based on the author's interpretation of the data, the Dupen Report states:

There are numerous concerning aspects of the post-mining groundwater conditions revealed by the transect piezometers. These include the long-term anomalously low water table in T5 (Figure 8 and Figure 9) and recent drops in T4 and T5 levels. Another surprising feature are the three large (+10 m) observed level surges in T5 between mid-2019 and mid-2020 (Figure 9), which are reasonably attributed by Peabody's consultants to pressure waves affecting the aquifer as the longwalls progress beneath. If present however, any pressure waves felt at T5 should intuitively have been observed at all of the nearby wells, especially the adjacent T4 piezometer (Figure 3). The reason for this contrast in pressure wave response through the

8

<sup>&</sup>lt;sup>3</sup> The actual water level in T1 during 2018 and 2019 when reservoir levels are low is not known. It would drop and not flatline as shown in this hydrograph

transect is not clear, but suggests a high degree of structural heterogeneity in the aquifer.

The most disturbing trend however, is that the levels in T3 dropped below its base 17 days after the commencement of Longwall 305 (Figure 3), and then sheared in December 2020 (Figure 9). The piezometer was replaced in 2021 by a deeper one at the same location (T3-R). As can be observed by the red trace in Figure 9, groundwater responses in T3/T3-R appeared sensible for its ridge position prior to mining but now the water table closely mimics the reservoir level.

Dupen is also of the view that a number of unpredicted mining-induced environmental consequences have appeared in the catchments, including:

The perennial Eastern Tributary has unexpectedly gone dry for a 500 m length since the end of 2016 as a result of undermining.<sup>4</sup>

This 500 m section of the Eastern Tributary is the section that has been marked in 'red' by Dupen in Figure 1.

Dupen offers what he describes as being the only two hydrogeologically plausible hypotheses that I can think of which could account for the ...behaviours in streamflow affected by subsidence. The first of these, stated below, is reported by Dupen to be difficult to comprehend.

1. The bedrock base of Eastern Tributary has been crushed by "nonconventional" subsidence effects (particularly the subsidence-induced valley closure mechanism) resulting in a relatively small (say 50-100 m in crosssection) "tunnel" of shallow fractures induced along and below the valley axis between Pools ETAG to ETAR. This conceptual model (summarised in Section 5.3.2) was the same one employed to explain the sub-surface diversion of flows in Waratah Rivulet, as well as WC21 and some other streams over the Dendrobium Mine nearby.

It is difficult to comprehend using this conceptual model however, how subsurface flows through a 500 m long, poorly interconnected "crush zone" of compressive fractures can have mimicked above-ground catchment flow responses as closely as shown in Figure 12<sup>5</sup> since the desiccation event in 2016/2017. I also struggle to identify a plausible mechanism for the increasing flows observed since about October 2021 using this conceptual model.

The second conceptual model is Dupen's preferred explanation for the increased flow and is stated as:

2. Whilst some non-conventional valley closure effects may well have contributed, the primary cause of flow diversion is the impositions of a mechanism termed here as "ridge fracture drainage" (Figure 4)6; the opening of widespread and interconnected basal shear planes beneath the base of the valley between Pools ETAG to  $ETAR^7$ , combined with sub-vertical drainage along and below the ridge surfaces. If these subsidence effects are indeed substantial, ridge fracture

<sup>&</sup>lt;sup>5</sup> Reproduced in this advice report as Figure 3

<sup>&</sup>lt;sup>6</sup> Reproduced in this advice report as Figure 6

<sup>&</sup>lt;sup>7</sup> See Figure 2 of this advice report

drainage presents a risk to the catchments that has not previously been recognised, and the implications for future longwalls should be urgently reconsidered.

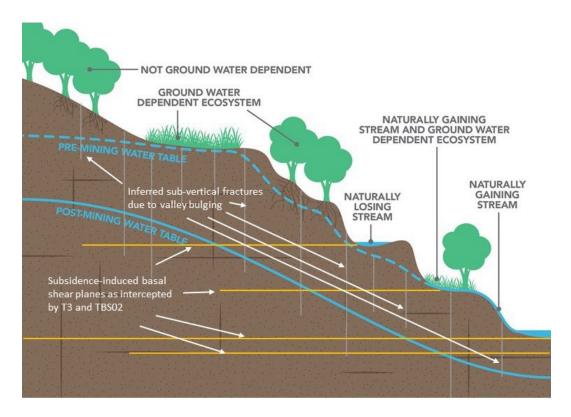



Figure 6. Reproduction of Figure 4 of the Dupen Report where it is described as *Schematic* showing the hypothesised causes of "ridge fracture drainage", annotated here as basal shear planes (yellow) and sub-vertical stress relief fractures (grey). Base figure reproduced from Advisian, 2016

In view of the ridge fracture drainage hypothesis, the Dupen Report goes on to state in the conclusions and recommendations that:

• There is considerable evidence....that shear planes developed beneath the stream and reservoir base are leading to unpredicted and substantial subsidence impacts and environmental consequences. If the hypotheses presented in Section 5 are correct, surface flows and shallow groundwater are being widely diverted and drained by expanding shear and fracture systems in a mechanism termed here as ridge fracture drainage (Figure 1)<sup>8</sup>. If this new subsidence mechanism is indeed widespread, a likely outcome is that a range of protected Special Area ecosystems overlying the mine will dry and change. The other major risk from widespread basal shear formation is that it will cause the water quality in the Woronora drinking water reservoir to become increasingly degraded by metal-laden discharges from unmeasured shear plane vents. 9

\_

<sup>&</sup>lt;sup>8</sup> This Figure number appears to be incorrect and, presumably, should read *Figure 4*, being Figure 6 of this Panel advice report

<sup>&</sup>lt;sup>9</sup> p32

with the primary recommendation arising from Dupen's report being:

• ...that further undermining of the Woronora Reservoir should be halted until the implications of these unexpected changes now unfolding in Woronora Reservoir catchment can be urgently evaluated.

The Dupen Report acknowledges that the concerns raised in it are based on hypotheses and inferences, stating:

• ....this report has not followed a causally sound epistemology because I am not enumerating all hypotheses for all dimensions of the catchments nor impacts, nor rigorously falsifying any of the hypotheses against evidence - unfortunately there has not been an opportunity to use causal science directly in the time and budget allocated for this report. 10

-

 $<sup>^{10}</sup>$  p24 – last paragraph

#### 4.0 HISTORICAL BACKGROUND AND CONTEXT

#### 4.1. SUBSIDENCE KNOWLEDGE BASE

Over the past 50 years, a range of public inquiries, studies and independent assessments have been undertaken into mining in the Southern Coalfield. A number of these are particularly relevant to the mining operations of Metropolitan Coal Mine and to reviewing aspects of the Dupen Report.

In the mid-1970s, the NSW Government commissioned Mr Justice Reynolds to conduct an inquiry into coal mining under stored waters in the Southern Coalfield, including beneath Woronora Reservoir. The Reynolds Inquiry (Reynolds, 1976) made a number of recommendations relating to the design of underground mine workings in the vicinity of stored waters. Subsequently, the guidelines have been the subject of theoretical and applied research and field investigations (for example, Byrnes, 1999; Singh & Jakeman, 1999, 2001) that have informed the design of longwall panels beneath Cataract Reservoir at South Bulli Colliery and beneath Woronora Reservoir at Metropolitan Coal Mine.

During the early 1990's, it began to be recognised that surface subsidence behaviour in the Southern Coalfield of NSW was more complex than predicted by conventional methodologies. Large areas of both the Southern Coalfield and the Western Coalfield in NSW are characterised by steep, incised topography with valleys and gorges that align with natural joint systems in the host rock. The incised topography naturally interrupts the transmission of horizontal tectonic stresses and causes them to be re-directed from the hills and into the floor of valleys and gorges. This process can lead to overstressing of valley floors, causing the rock mass to shear on bedding planes at or just below the floors of valleys. This movement, in turn, can result in the near surface rock strata bending and buckling upwards. This natural process is known as 'valley bulging' and is sustained over time by weathering, leading to a progressive deepening of valleys. The planes on which the shear displacement occurs progressively daylight in the sides of a valley as it deepens.

Field investigations dating back well before the assessment of the Metropolitan Coal Project in 2009 confirmed that valley bulging can result in the creation of voids beneath watercourses, often in the form of open bedding planes which can act as underground flow paths for groundwater and stream water (Patton & Hendren, 1972; Fell et al., 1992; Everett et al., 1998; and Waddington & Kay, 2002a). Subsurface stream flow, commonly referred to as 'underflow', can occur independently of the surface flow or the two flow paths may intermittently connect.

During the late 1990s the unpredicted severity of mining-induced subsidence impacts on natural and man-made surface features associated with valleys in the Southern Coalfield and the Western Coalfield became of increasing concern and prompted a range of investigations. These established that underground mining has the potential to grossly increase both the rate and magnitude of valley bulging. Underground mining layouts involving the formation of excavations, or panels, of sufficient width to induced fracturing, caving and subsidence of the overlying strata can cause significant changes on a regional scale in the pre-mining stress field. These changes to the stress field can significantly accelerate the rate and magnitude of valley bulging and result in significant uplift of valley floors and lateral movement of valley sides. This lateral movement is referred to as 'valley closure'.

The mining-induced component of valley closure develops incrementally as panels are extracted, can extend well beyond the mining footprint and can be up to the order of 800 mm in the Southern Coalfield. The mining-induced subsidence effects on valley floors are due to a combination of conventional subsidence involving bending and sag of the bedded strata above excavations and non-conventional subsidence involving valley closure, with both

behaviours inducing (basal) shearing along bedding planes<sup>11</sup>. The subsidence effects are variable because they are a function of the location and direction of mining panels relative to that of the valleys. Depending on the relative locations of these two sources of mining-induced surface strain, surface strains associated with strata sag over each longwall panel may increase or reduce surface strains associated with valley closure. This is one reason why the prediction of mining-induced valley closure effects and impacts is an imprecise process.

One of the earliest and more detailed investigations into mining-induced valley closure involved monitoring the development of ground deformation along Waratah Rivulet at Metropolitan Coal Mine. This watercourse runs approximately parallel to and about 1400 m west of the Eastern Tributary, as shown in Figure 1. Mining-induced impacts on the Waratah Rivulet were a significant catalyst for establishing the *Strategic Review – Impacts of Underground Mining on Natural Features in the Southern Coalfield* (often referred to as the Southern Coalfield Inquiry) (DoP, 2008). Publications relating to valley closure which informed that Inquiry included Waddington and Kay (2002b), Mills and Huuskes (2004), Galvin (2005) and Mills (2007).

The PAC Panel for the Metropolitan Coal Project was required to have regard to the findings of the Southern Coalfield Inquiry. The PAC's report included the following Figure 7, sourced from Mills, 2007. The figure summarises its author's understanding of subsidence and valley closure impacts on watercourses based on the investigations conducted at Waratah Rivulet and shows the activation of bedding plane shears both in the sides and floors of a valley. Since 2009, additional detailed field investigations into the development and permeability of basal shear planes have been undertaken at a number of other sites in the Southern Coalfield, in particular at Dendrobium Mine in similar topography to that at Metropolitan Colliery.

Notable studies at Dendrobium Mine relate to setback distance of the finishing ends of LW6 to LW8 from Sandy Creek Waterfall (Walsh et al., 2014) and setback distance of the starting ends of longwalls LW12 to LW18 from Avon Reservoir (SCT, 2015, 2016, 2017; HGEO, 2020). Basal shear plane locations and mining-induced displacements were determined from borehole monitoring at both sites. HGEO (2020) reported that at Sandy Creek Waterfall, packer testing indicated these bedding plane shear horizons have a hydraulic conductivity within the normal range of naturally jointed rock at shallow depth. It reported that a comprehensive program of groundwater monitoring between Avon Reservoir and the western end of longwalls LW12 to LW18 indicated that the measured hydraulic conductivity on a bedding plane shear increases two to three orders of magnitude to 1x10-6 m/s because of mining-induced initiation and/or remobilisation of shear plane displacement. This change in hydraulic conductivity was observed in five boreholes. The report concluded that the two to three orders of magnitude change in hydraulic conductivity had the effect of bringing the hydraulic conductivity of the bedding plane shear to a hydraulic conductivity similar to that of the surrounding strata.

<sup>11</sup> This Advice report is premised on the following definitions as recommended by the Southern Coalfield Inquiry:

<sup>•</sup> Subsidence Effects: the deformation of the ground mass surrounding a mine due to the mining activity. The term is a broad one and includes all mining-induced movements, including both vertical and horizontal displacement, tilt, strain and curvature.

<sup>•</sup> Subsidence Impacts: the physical changes to the ground and its surface caused by subsidence effects. These impacts are principally tensile and shear cracking of the rock mass and localised buckling of strata caused by valley closure and upsidence but also include subsidence depressions or troughs.

Environmental Consequences: the environmental consequences of subsidence impacts, including: damage to built features; loss of surface flows to the subsurface; loss of standing pools; adverse water quality impacts; development of iron bacterial mats; cliff falls; rock falls; damage to Aboriginal heritage sites; impacts to aquatic ecology; ponding.

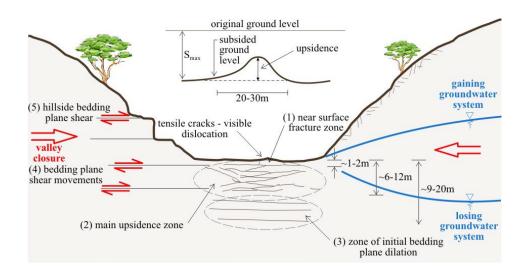



Figure 7: Cross section showing nature of rock fracturing observed due to valley closure in river channels in the Southern Coalfields (Mills, 2007)<sup>12</sup>.

In 2017, DPE placed a condition of approval on Metropolitan Coal Mine that required it to engage independent experts endorsed by DPE to prepare a Woronora Reservoir Impact Strategy (WRIS). The WRIS Panel comprised three experts covering the discipline areas of mining and subsidence, groundwater and surface water<sup>13</sup>. The issues that DPE requested the WRIS Panel to address included *probable leakage rates* and *characterization of fractures* (pre and post mining) including shear planes (WRIS, 2017) The first report of the WRIS concluded that since 2009 water make into mine workings had averaged 0.09 ML/day and the 20-day average make had been below 0.5 ML/d. It also concluded that the then current debate around whether mining-activated shear planes would extend to the base of the Woronora Reservoir when the 300 Series of longwall panels were extracted needed to be informed by more detailed monitoring and review. The WRIS's recommendations included the drilling of additional boreholes for the purpose of monitoring the development of shear planes and groundwater pressures in response to mining.

The second report of the WRIS concluded that bedding plane shear monitoring had been very successful and clearly identified multiple planes of shear that initiated at a distance of less than 400 m from the approaching longwall face (WRIS, 2019). The report concluded that not all shear planes demonstrate increased conductivity, even though they have exhibited significant shear displacement (20 mm – 50 mm).<sup>14</sup>

In 2018, the NSW Department of Planning commissioned the Office of the Chief Scientist and Engineer to convene an *Independent Expert Panel for Mining in the Catchment* (IEPMC) to undertake a Scope of Works that included a specific focus on past and future mining activities at Metropolitan Coal Mine. The IEPMC concluded in its first report (OCSE, 2018) that losses of water from the catchment into the mine workings were negligible and that, going forward, the potential for water to be diverted out of Woronora Reservoir and into other catchments through valley closure shear planes and geological structures including

\_

<sup>&</sup>lt;sup>12</sup> Gaining groundwater system means groundwater baseflow to a gaining stream; Losing groundwater system means surface water loss from a losing stream

<sup>&</sup>lt;sup>13</sup> The Chair of the WRIS Panel was Professor Bruce Hebblewhite, who is Deputy Chair of the IEAPM and not involved in the preparation of this advice report.

<sup>&</sup>lt;sup>14</sup> p92, WRIS, 2019

lineaments would require careful assessment because the remaining longwall panels in the approved area passed beneath the reservoir<sup>15</sup>, <sup>16</sup>.

The IEPMC also produced three advice reports for DPE regarding the Extraction Plans for LW303, LW304 and LW305 to LW307, respectively. These reports were concerned with limiting further impacts of valley closure on the lower reaches of the Eastern Tributary, including part of the area of particular concern to Dupen shown in red in Figure 1.

#### 4.2. GROUNDWATER AND SURFACE WATER

#### 4.2.1. Groundwater Characteristics

The geological unit of primary interest, with respect to the impacts of mining on groundwater systems and baseflows to surface water and the Woronora Reservoir, is the Hawkesbury Sandstone, shown in Figure 8.

The shallow groundwater system in this sandstone unit comprises:

- Localised perched groundwater associated with swamp colluvium and shallow sandstone (predominantly in the weathered zone); and
- Regional groundwater comprising saturated porous and fractured sandstone below the regional water table.

Rainfall infiltration over the catchment area and surface water losses from losing stream sections are the only groundwater recharge characteristics. Evapo-transpiration, baseflow discharges and leakage to deeper aquifers in the Narrabeen Group rocks are the primary discharge characteristics.

The Panel's site inspection on the 10 May 2023 (after an extended dry period) did not identify any other groundwater discharge features in the landscape apart from one seepage area in a depression towards the northern end of Fire Trail 9G. There were no obvious spring discharge areas and no evidence of basal shear zones (above stream level) that were discharging mineralised groundwater. There was no evidence of any terrestrial GDEs tapping shallow groundwater. However, the Panel recognises that during and just after rain, ephemeral springs and seeps could occur through interflow where cross bedded sandstone and bedding plane partings daylight in the valley sides.

Perched groundwater derived from rainfall occurs in colluvium beneath ridgelines and valley sides, and also in the weathered Hawkesbury Sandstone underlying swamp sites (Figure 8). Perched groundwater sits above the regional groundwater leading to different water tables at different depths. Typically, perched groundwater occurs within 10 m of surface with the water table potentially ranging from at surface during wet periods to being absent during severe droughts. The absence of permanent springs and any obvious perched groundwater in the upper Hawkesbury Sandstone (apart from in the vicinity of swamps) suggests most rainfall recharge (apart from that portion that is lost to evapo-transpiration and via interflow after rain) drains vertically to the regional water table and then moves laterally to emerge in the base of the valleys as baseflow.

<sup>&</sup>lt;sup>15</sup> piii, OCSE (2018)

<sup>&</sup>lt;sup>16</sup> The Panel notes that the Dupen Report also states that there is no concrete evidence that there is a substantial net loss of water volumes from the Woronora Reservoir catchment into underlying workings.

Groundwater flow in the Hawkesbury Sandstone in areas unaffected by mining occurs mainly through natural fractures and to a lesser extent through porous layers. The natural fracture system is complex and flow paths are tortuous from recharge zones to discharge zones. The depth to the regional water table (based on limited data) varies between 70 m below ground level (mbgl) below the major ridgelines to less than 3 mbgl near the permanent streams and Woronora Reservoir (see Figure 5). From the ridgelines, there is both lateral flow to permanent streams and vertical flow to deeper aquifers. A downward hydraulic gradient typically exists, even to the deeper strata in the Narrabeen Group and Illawarra Coal Measures underlying the Hawkesbury Sandstone. This is the case before and after mining, although downward flows are small due to the limited hydraulic conductivity of the low permeability siltstone and claystone formations.

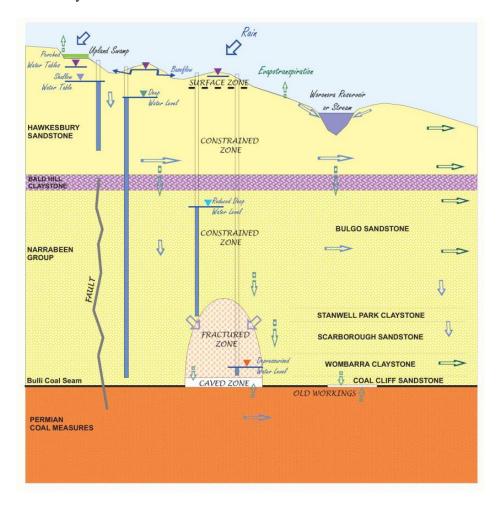



Figure 8: Conceptual groundwater system proposed by the WRIS for Metropolitan Coal Mine (Figure 3-1 from WRIS, 2017).

Longwall mining changes the groundwater flow geometry within the regional groundwater system in the Hawkesbury Sandstone above longwall panels as groundwater depressurisation occurs in deeper formations and as enhanced fracturing propagates through portions of the upper formations including the sandstone. These changes generally result in lowering of the regional water table due to:

- release of pressurised groundwater into dilated fractures;
- increased flow of groundwater to surface water due to enhanced fracturing and dilated bedding planes; and

• increased flow into the mine void.

Due to the significant depth (435 to 550 m) and relatively conservative geometry of the workings at Metropolitan Coal Mine and the hydrogeological conditions, the latter contribution is recognised as not presently significant.

Where subsidence-induced fracture systems increase the hydraulic connection of groundwater to surface watercourses, mining can result in increased surface water flows. Conversely, the possibility of surface flows being diverted to underflow due to subsidence effects, means that surface water flows may be seen to reduce over some lengths of creeks. The Dupen report refers to these potential changes as "changed baseflow patterns". Currently the magnitude and location of net baseflow gains or losses to Waratah Rivulet, Eastern Tributary and other Woronora tributaries are uncertain.

Measurement of groundwater levels is generally undertaken using piezometers. A piezometer measures a groundwater level or pressure at a specific areal location and depth. Because fractures dominate flow paths in the Hawkesbury Sandstone, and installed piezometers in this formation may or may not coincide with fracture locations, measurements cannot be interpreted as measuring the precise response of the regional groundwater system to natural recharge, flow, and any mining induced subsidence. It is not uncommon that groundwater levels and their responses to mining vary between nearby piezometers.

Care is required in attributing the cause of piezometric changes above longwall panels. Strata relaxation associated with overburden strata sagging and subsiding above a longwall excavation can result in delamination and the creation of partings (voids) between stratum, which a piezometer can report as depressurisation. Water pressure may be recovered once sufficient time has elapsed for groundwater to fill this new void space. This behaviour can be largely site specific because the sag component of total vertical displacement is site specific and has minimal interaction with sag over adjacent panels.

#### 4.2.2. Surface Water Characteristics

The Eastern Tributary consists of a series of pools, rock bars and boulder fields, which are mapped and photographed in detail in Peabody, 2022a). The Metropolitan Coal 2021 Annual Report (Peabody, 2022b) acknowledges subsidence effects and consequences on pool drainage behaviour over a ~ 2 km length of the creek overlying LW20 to LW27 and further downstream towards the Woronora Reservoir (Pools ETAG, ETAH, ETAI, ETAJ, ETAK, ETAL, ETAM, ETAN, ETAO, ETAQ and ETAR). This has led to an ongoing program of grouting in an attempt to seal surface and near-surface fractures and recover pool water levels and continuity of surface flows. Subsidence has not visibly affected pool drainage behaviour further downstream at Pools ETAS, ETAT and ETAU (Peabody, 2022b).

The Eastern Tributary hydrology is consistent with 2<sup>nd</sup> and 3<sup>rd</sup> order creeks generally in the Southern Coalfield, with sources dominated by surface runoff, interflow, discharge from shallow aquifers, and exchanges of flow between surface and subsurface zones of the creek. The potentially significant sources of water are:

• Surface water discharges. During rainfall, the rainfall in some areas of the catchment will exceed the infiltration capacity of the soil, and overland flow will be generated. This flows into the creek within a few minutes to hours, creating rapid increases in flows and being the main contributor to flood flows. A proportion of this overland flow will infiltrate as it moves over the soil surface and then migrate as interflow or evaporate or recharge the perched or regional groundwater. Disturbances to vegetation and soil such as fire can change the

balance of overland flow, interflow, recharge and evaporation, although any change should recover quickly in the case of controlled burns.

- Interflow. During and after high rainfall events, interflow occurs where water infiltrates the unsaturated zone and moves laterally to then return to the surface as an ephemeral spring or enter a nearby stream. Interflow is fast flow that occurs in the subsurface after a few hours and can last for days and weeks depending on the nature of the rainfall event and the available storage in the unsaturated zone.
- Perched groundwater discharges. Perched groundwater is recharged by rainfall and interflow and remains in the subsurface for long periods. This groundwater is localised and sits on shallow impermeable layers above the regional groundwater system (not shown in Figure 7). It can discharge slowly laterally (potentially as interflow) depending on the geometry of the impermeable layer but otherwise will remain as a localised pocket of shallow groundwater in the landscape subject to evapo-transpiration.
- Regional groundwater discharges. This discharge occurs in creek lengths where the regional water table sits above the creek level; i.e. a gaining system shown in Figure 7. This source of flow can be sustained for weeks to months over prolonged periods of dry weather and is commonly considered to be the major component of "baseflow". The low flows during prolonged dry weather (Figure 3) reflect a limited sustained contribution of regional groundwater in the Eastern Tributary catchment, although what lengths of creek this applies to is not well understood.

The baseflow rate depends on the hydraulic connectivity between the regional groundwater system and the creek, among other factors. In principle, mining can decrease baseflow rates due to lowering of the groundwater levels or increase baseflow rates if subsidence leads to an increase in the hydraulic connectivity<sup>17</sup>. Either can be a temporary or permanent effect.

The main potential mechanisms for loss of water from the Eastern Tributary are:

- Loss of water to the regional groundwater system (the losing system in Figure 7). The available groundwater data does not indicate this mechanism is widespread along the lower portion of the Eastern Tributary.
- Diversion of water through fractures to the shallow subsurface (underflow), where it flows downstream in the near-surface fracture zone (Figure 7). This water generally re-appears further downstream in the creek, where the near surface fracture flow paths reconnect with the surface. The surface and near-surface fracture zone may be natural or mining-enhanced. Exchanges between the visible surface flows and the near-surface fracture zone mean that flow may appear absent from considerable lengths of the creek during dry weather.

Measuring and modelling creek flow rates is a common approach to measuring the consequences of mining for water resources. For example, the comparison of modelled flow (representing pre-mining conditions) and measured flow (representing mining conditions) near the Waratah Rivulet inlet to the Woronora Reservoir is the basis for a flow performance indicator for Metropolitan Coal Mine. A comparison of modelled and measured flows is also reported in Peabody (2021, 2022) at the Eastern Tributary flow gauge location (Figure 3). The flow gauge consists of a prefabricated flume set into a concrete wall, the latter acting as a weir when overflow occurs. Measurements and modelling of the Eastern Tributary flows

<sup>&</sup>lt;sup>17</sup> Flow gauging in the Eastern Tributary (Figure 3) began in 2012 while longwall mining in the area dates back to 1995, including the LW20 series from 2010, so there is no pre-mining baseline data for this catchment that would allow an assessment of long-term cumulative consequences on baseflows.

are prone to errors especially at high flows: the flume is designed to accurately measure flows up to approximately 235 L/s (3.5 mm/day in Figure 3) (HEC, 2022). Any flows above this value are estimated using a rating curve (a curve showing the relationship between water level and stream flow rate), which has been approximately estimated and lacks validation (HEC, 2022). The Panel's field inspection on 10 May 2023 noted that the concrete weir stops short of the bank, which may contribute to errors at low to medium flow rates due to water escaping around the flume and weir.

The Eastern Tributary surface flow model employs the industry-standard AWBM model, which has been adjusted specifically for the Woronora catchments and peer-reviewed (Gilbert & Associates, 2015). The Panel has not undertaken an in-depth technical review of the model. The Panel's review of the model is based on the figures and commentary in Peabody (2022b) and HEC (2022). The model does not (and was not designed to) estimate high flows accurately for a number of reasons, including the reliance on daily rather than peak rainfall data, and absence of accurate high flow calibration data. The model also has some errors at medium to low flows (as can be seen in the calibration period in Figure 3). These types of errors are generally considered acceptable for this type of model application. The assessment looks for changes in errors between the calibration and the mining period and considers whether they should be attributed to mining or other effects. Further review of Figure 3 and its interpretation by the Dupen Report is in Section 5 of this advice report.

#### 4.3. PERFORMANCE MEASURES AND INDICATORS

Performance measures are set as part of the Project Approval conditions (DoP, 2009b). The performance measures most relevant for the scope of this advice report are:

- Catchment yield to the Woronora Reservoir:
  - Negligible reduction in the quality or quantity of water resources reaching the Woronora Reservoir
  - o No connective cracking between the surface and the mine
- Woronora Reservoir:
  - o Negligible leakage from the Woronora Reservoir
  - Negligible reduction in the water quality of Woronora Reservoir
- Eastern Tributary between the full supply level of the Woronora Reservoir and the maingate of Longwall 26<sup>18</sup>:
  - Negligible environmental consequences over at least 70% of the stream length (that is no diversion of flows, no change in the natural drainage behaviour of pools, minimal iron staining and minimal gas releases)
- Upland swamps, riparian vegetation and aquatic biota:
  - Negligible impact on Threatened Species, Populations, or Ecological Communities

The performance measures related to water flow are relevant to this current advice report in light of the potential significance of matters raised in the Dupen Report and arising out of the Panel's review of the Dupen Report. Specific areas of relevance for the current advice report

<sup>&</sup>lt;sup>18</sup> The location of the maingate of Longwall 26 is approximated by the blue cross in Figure 1.

relate to potential changes over time to flows into the Woronora Reservoir and to changes to the environmental conditions along the Eastern Tributary due to diversion of flows. The performance measures related to upland swamps, riparian vegetation and aquatic biota are relevant to the comments in the Dupen report that ecosystems will inevitably degrade due to the diversion of surface and near-surface flows.

As previously noted, matters of significance raised in the Dupen Report in relation to potential mining impacts on water quality fall within the brief of another IEAPM Panel and the reader is referred to IEAPM (2023).

#### 5.0 DUPEN REPORT ASSESSMENT

#### 5.1. APPROACH

This section first focusses on overviewing the primary hypothesis of the Dupen Report and key supporting statements, then identifies other key statements made in the report related to the implications of the hypothesis. The Panel has not assessed Section 3.8 (Volumetric loss calculations) of the report as it is considered to be outside of the scope of the Department's request for advice from the IEAPM.

#### 5.2. PRIMARY HYPOTHESIS AND STATEMENTS – OVERVIEW AND EVALUATION

#### 5.2.1. Prediction and appearance of impacts on Eastern Tributary

Dupen states that:

Such widespread fracturing and surface flow water diversions [on the Eastern Tributary] were not anticipated in the planning application documents (Helensburgh Coal, 2008; 2009), and their implications are not acknowledged by the mining company nor the regulators and their expert committees, based on the documentation reviewed.

It is correct that the planning application documents lodged by Helensburgh Coal for assessment by the Planning Assessment Commission (PAC) made no provision for limiting subsidence impacts on the Eastern Tributary. However, the PAC and subsequent expert panels (IEPMC and the IEAPM) did anticipate and/or acknowledge the potential for widespread subsurface fracturing.

The Eastern Tributary was designated as a significant natural feature by the PAC after it conducted a field inspection. The draft Preferred Project Report (PPR) lodged by Helensburgh Coal in the final stages of the PAC's assessment included a revised mine layout that was based on preventing fracturing and drainage of any more rock bars on Waratah Rivulet, downstream of pool L shown on Figure 2. Helensburgh Coal proposed to achieve this with a revised mine layout designed to limit predicted valley closure to no more than 200 mm downstream of pool L.

This criterion was based on minimising the potential for draining of pools due to cracking of rockbars, which had not been recorded on watercourses up to that time at sites for which predicted total closure was less than 200 mm<sup>19</sup>, <sup>20</sup>. The PAC concluded that:

"Because the 200 mm closure limit is an outcome of a prediction methodology that is under development, it is subject to change as the prediction methodology evolves (DoP, 2009a).

The PAC questioned whether closure and upsidence behaviour in the Project Area could be presumed to conform to past Southern Coalfield experience, given that conventional subsidence effects were greater in the Project Area than recorded elsewhere in the Southern Coalfield. It was advised by Helensburgh Coal that:

-

<sup>&</sup>lt;sup>19</sup> Note, as explained in Part 1 of the IEPMC's report (OCSE, 2018) that mine design criterion was (and still is) based, unusually so, on predicted values of valley closure and not on measured values (because measured values did not correlate as well with subsidence impacts)

<sup>&</sup>lt;sup>20</sup> Reference MSEC, 2007

"There is some probability, regardless of the approach, that potential impacts could occur at predicted closure values less than the minimum predicted total closure of 200 mm that has been identified to date".

The revised mine layout was based on limiting predicted valley closure along Waratah Rivulet to less than 200 mm. However, this in turn did result in a reduction in predicted valley closure along the Eastern Tributary, as shown in Figure 9.

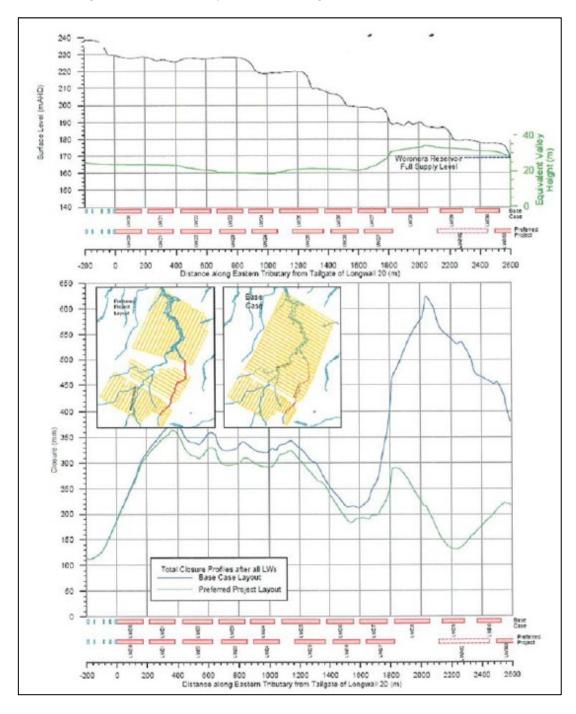



Figure 9: Profiles of predicted valley closure along the Eastern Tributary associated with both the mine layout proposed in the EIS for the Metropolitan Coal Project and the modified layout presented to the PAC during its assessment process (Peabody, 2009).

The PAC foresaw that the levels of valley closure predicted in the draft PPR were still sufficient to result in significant impacts to Eastern Tributary. Accordingly, the PAC recommended that the environmental outcome for the reach of the Eastern Tributary between the junction of the two tributaries at approximately 6214600N and 312200E and the full storage level be set at negligible consequences (i.e. no diversion of flows, no change in the natural drainage behaviour of pools, and minimal iron staining). These coordinates correspond closely to the position of the maingate of LW26 at the eastern (outbye) end of this longwall panel, marked by 'X' in Figure 1. Notwithstanding the changes to the original mine plan, the PAC did not endorse the modified mine plan nor was it required to. In fact, the PAC concluded that<sup>21</sup>:

The main problems [with the revised mine plan] appear to be:

- The predicted impacts associated with the southern ends of Longwalls 30 and 31 [since renumbered LW301 and LW302]; and
- The predicted impact associated with Longwall 27.

An expanded version of the PPR was submitted to the Department of Planning (DoP) after the PAC had concluded its review (as reported in the Department's 'Reasons for Approval'). However, the mine plan and predictions of valley closure were basically unchanged from that shown in Figure 9. DoP stated in its assessment of the PPR that:

It is generally accepted that the figure [of 200 mm of predicted valley closure] is far from established. It must be seen as indicative, rather than determinate. There remains a possibility, particularly for fragile rock types, that significant buckling and shearing of stream beds will eventually be observed where predicted valley closure is less than 200 mm.<sup>22</sup>

Subsequently, DoP relaxed the PAC's recommended Performance Measure for the lower end of the Eastern Tributary, stating:

- 1. HCPL has made a convincing case that reducing valley closure to 200 mm over this stretch of the Tributary [midway across Longwall 26 to the Reservoir] would cause it to be unable to extract Longwall 27<sup>23</sup>; and
- 2. The Department has therefore recommended a condition that the environmental outcome for the lower length of the Eastern Tributary be set at "negligible consequences" for at least 70% of the stream downstream of the maingate of Longwall 26 to full storage level.<sup>24</sup>

The Panel is unaware of the basis for determining a figure of 70% and what sections of the Eastern Tributary downstream of the maingate of LW26 were expected make up this accumulated proportion of unimpacted stream length.

Within 12 months of the PAC's assessment, it was established that some 10% of those rock bars that had been monitored in the Southern Coalfield had been impacted at predicted valley closure levels of less than 200 mm to the extent that 'pool water levels were observed to drop more than was expected after considering the rainfall and groundwater flow conditions'. This level of impact was classified as a 'Type 3' impact. On that basis, based on the mine layout as approved, the full extent of the Eastern Tributary between the maingate of LW26 and the

<sup>22</sup> p21 of DoP, 2009b

23

<sup>&</sup>lt;sup>21</sup> P126 of DoP, 2009a

<sup>&</sup>lt;sup>23</sup> p25 of DoP, 2009b

<sup>&</sup>lt;sup>24</sup> p 26 of DoP, 2009b

full supply level of Woronora Reservoir was vulnerable to environmental impacts that exceeded a performance measure of *negligible*. This always included that section of the Eastern Tributary located over the 'pillar' zone since predicted valley closure over this area still ranged up to almost 300 mm.

LW27 was completed in March 2017 and mining of LW301 commenced in June 2017. This panel was shortened for operational reasons and, as shown in Figure 10, stopped over 350 m short of its planned finish point. Hence, the contribution of this panel to cumulative valley closure along the Eastern Tributary could be expected to be minimal. LW302 was extracted to its originally planned and finished in February 2018. Soon after, it was recognised that the Performance Measure of negligible for 70% of the length of Eastern Tributary downstream of Point X had been exceeded, resulting in LW303 to LW305 being setback from Eastern Tributary substantially greater distances than planned at the time of project approval. The modified layout, shown in Figure 10, resulted in moderate to very large decreases in predicted valley closure downstream of about pool ETAM<sup>25</sup>, as evidenced by comparing predictions plotted (in green) in Figure 9 with those tabulated in Figure 10.

Nevertheless, although the actual mine layout was predicted to result in valley closure of only 125 mm at rockbar ETAO, it appears that subsidence effects were sufficient to cause subsurface flow at this rockbar. Figure 11 shows the appearance of 10 m of core recovered to one side of Rockbar ETAO. This photograph was taken during the Panel's site inspection on 20 May 2023. Drilling was in progress and the core had still to be geotechnically logged. However, the photograph clearly shows a high density of iron-stained fractures, especially in the upper 5 m of the core. No information was available at the time on the in-situ aperture of these fracture planes and how fracture density and aperture compared with that towards the centre of the watercourse. Grouting was also in progress to remediate the fracture network at the rock bar. Field observations and discussions with operators made a compelling case that subsurface flow is occurring at this location.

-

<sup>&</sup>lt;sup>25</sup> This is an informed estimate by the Panel and should be confirmed by more detailed information and analysis by Metropolitan Coal

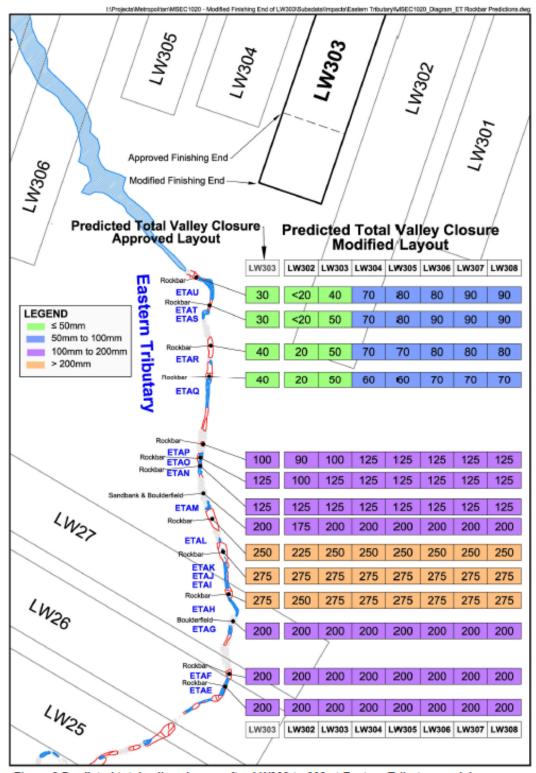



Figure 3 Predicted total valley closure after LW303 to 308 at Eastern Tributary rock bars

Figure 10: Predicted cumulative valley closure at the Eastern Tributary for LW302 to LW308 (Peabody, 2019).





Figure 11: Core observed during the Panel's site visit on 10/5/23, the core having been recovered to a depth of 10 m from one side of Rockbar ETAO on the Eastern Tributary and showing a series of iron-stained partings indicative of subsurface flowpaths.

Other subsidence related statements in Dupen (2023) relevant to the Panel's advice are:

• Again unlike the Waratah Rivulet impacts (and WC21 over Dendrobium Mine), the desiccation event occurred not gradually and progressively following undermining, but over a relatively short time period after most of the 20 series longwalls had already been mined. The wholly unpredicted drying event was first reported in November 2016 and by February 2017, over 500 m of the previously permanently flowing creek was frequently or permanently dry.

The Panel notes that the Eastern Tributary was undermined by LW27 in November and December 2017 and remained within the area of influence of active mining until the panel was completed in March 2017. The tabulations of predicted valley closure presented in Figure 10 show that after the completion of LW302, predicted valley closure plateaued at 200 mm on the southern flank and at the centre of LW27 and at 275 mm on the northern flank of LW27 and downstream to rockbar ETAL. It then progressively reduced and plateaued at 200 mm at ETAM and 125 mm at ETAN, ETAO and ETAP.

Based on the predictions of valley closure for both the original approved mine layout and the actual mine layout, it appears likely that the extraction of subsequent longwalls after LW27 would have resulted in minimal additional (incremental) predicted valley closure at rockbars upstream from ETAP; that is, the values of predicted valley closure tabulated for these rockbars in Figure 10 are likely to be close to those at the time that the Eastern Tributary was being undermined by LW27. This being the case and given the magnitudes of the predicted cumulative valley closures at that stage, it is quite plausible that the incremental increase in valley closure over not only LW27 but also over previously extracted longwalls in its vicinity was a trigger for a significant mining-induced ground deformation event beneath the Eastern Tributary, at least downstream to ETAP.

Buckling is a form of structural failure due to deflection initiated by load acting through the long axis of a structure (as opposed to bending initiated by load acting at right angles to the structure). Step increases in deflection can be initiated by very small increases in load or, in this case, valley closure. Once a threshold value is exceeded, deflection can develop rapidly. In the case of valley closure, one is dealing with high stresses on a regional basis that act on natural material that is of variable composition and contains defects. Hence, it is quite conceivable that sometime around or just after the completion of LW27 a large area that had appeared relatively benign could deform quickly as a result of incremental increases in valley closure over LW27 and earlier panels. The total valley closure at that point in the mining process had been predicted to reach a level known to result in fracturing of rock bars.

The Panel recommends for the purpose of developing a better understanding of valley closure impacts to inform mine design that, if it has not already done so, Metropolitan Coal undertake an investigation of mining impacts on the Eastern Tributary that includes an evaluation of:

- 1. How predicted valley closure developed incrementally along the Eastern Tributary.
- 2. How well incremental and total predicted valley closure correlated with measured incremental and total measured closure.
- 3. The nature and extent of natural and mining-induced fracturing to a depth of at least 20 m along the Eastern Tributary downstream from the maingate of LW26 (point 'X') to the FSL of Woronora Reservoir (noting that some of these investigations may have already been undertaken).
- 4. How well mining-induced environmental impacts along the Eastern Tributary correlate to both predicted valley closure and to measured valley closure.
- Another unexpected feature of the Eastern Tributary pool drying event is that much of it has occurred over areas in which very little subsidence occurred as they lie over unsubsided "first workings" or unmined rock (Figure 11).
  - Valley closure is not confined to above mine workings. It can develop at considerable distances beyond the mining footprint.
- There is little evidence that the Eastern Tributary pool drying event may be attributed to "rock-bar throughflow", as envisaged by Peabody's consultants (Figure 14). ... This mechanism, in which water in an upstream pool is able to seep through the fractured fabric of the intervening rock bar ........ It is worth noting

that, if shear planes have indeed been widely developed beneath the valley axis as hypothesised in Section 3.2, the remedial design that was used with considerable success at Waratah Rivulet may not be successful in restoring surface flows to Eastern Tributary.

As noted earlier, drilling being undertaken at the time of the Panel's site visit in May 2023 provides evidence that subsurface flow had occurred at Rockbar ETAO, well downstream of the footprint of LW27.

• Subsidence monitoring showed that valley closure effects in the area of the dried pools were mostly within the "conservative" valley closure threshold hypothesised by subsidence consultants MSEC (2008). MSEC's subsidence impact predictions suggest that no more than 10% of stream beds should be cracked as long as valley closure is less than 200 mm, measured across the axis of a valley). On this basis, the widespread flow diversions experienced in Waratah Rivulet were not expected to be repeated in Eastern Tributary (Metropolitan Coal, 2022b).

The mine design procedures and subsidence impact assessments were based on predicted valley closure, not measured valley closure, because measured valley closure did not produce as good a correlation with impact outcomes as did predicted valley closures (see OCSE, 2018 for a more detailed discussion on this matter). As reflected in Figure 9 and Figure 10, valley closure for Rockbar ETAI to ETAM was always predicted to be greater than 200 mm.

#### **5.2.2.** Flow measurements

Dupen suggests that the anomalously high flows recently measured at the Eastern Tributary gauge (see Figure 3) may be explained by the Dupen Report's main hypothesis, being:

My interpretation of the reported trends (Section 3.5) is that flows in Eastern Tributary and probably other undermined streams are currently being affected by increased draining of the undermined ridges through basal shear planes. Once a new equilibrium is established, quicker and smaller baseflows may reduce overall flows to the Reservoir.<sup>26</sup>

For high flows, from January 2019, Figure 3 includes several incidences of the flow rate measured at the Eastern Tributary weir being well above the rainfall rate at the nearby Darkes Forest gauge, Figure 12, which is implausible.<sup>27</sup> Following Metropolitan Coal's investigation into the flow anomalies (HEC, 2022), the rating curve (i.e. the calibration of the flow-depth relation at the flow measurement flume and weir) was updated to give the data in Peabody (2022b) reproduced as Figure 13 in this advice report. Figure 14 (Figure 8 from HEC, 2022) is the same plot, zooming in on the period 1-Jan-2020 to 1-Sept-2022.

-

<sup>&</sup>lt;sup>26</sup> p28 of Dupen, 2023a.

<sup>&</sup>lt;sup>27</sup> Groundwater contributions to the flow hydrograph, derived from prior rainfall events, would not be sufficient to allow the peaks in measured surface flows to exceed the rainfall rate for these incidences.

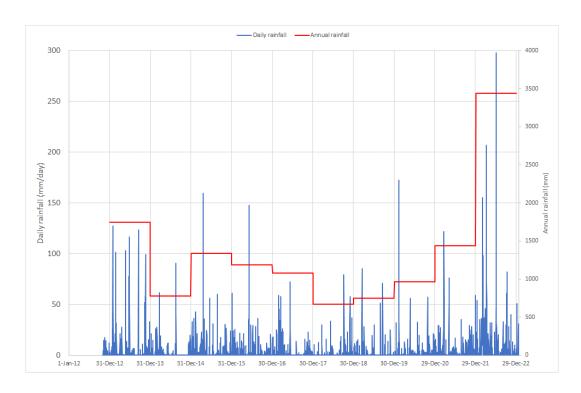



Figure 12: Daily and annual rainfall at the Darkes Forest gauge (approximately 5 km southwest of the Eastern Tributary flow gauge). Data sourced from <a href="https://www.longpaddock.qld.gov.au/silo/">https://www.longpaddock.qld.gov.au/silo/</a>.

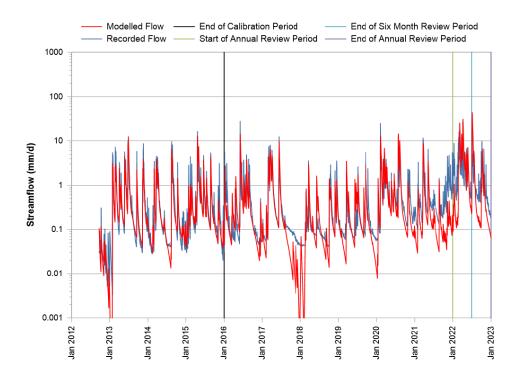



Figure 13: Flow data from the Eastern Tributary gauge. Originally Chart 4 in Peabody (2023). (The y-axis scale (mm/day) is the flow volume rate in  $mm^3/day$  divided by the catchment area in  $mm^2$ . 1 mm/day = 67 L/s.)

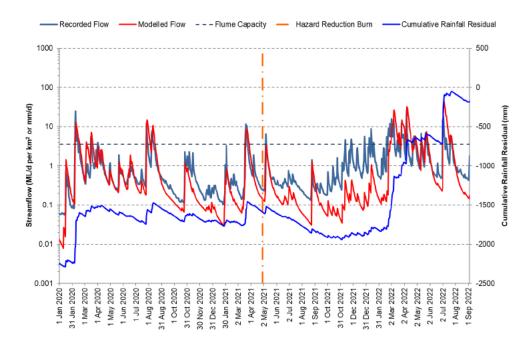



Figure 14: Flow data from the Eastern Tributary gauge between 1 January 2020 and 1 September 2022. Originally Figure 8 from HEC (2022).

HEC (2022) explores the following potential reasons for the higher-than-predicted flows during the period early 2017 to late 2022:

- 1. Flow measurement errors due to subsidence effects on the flume and weir.
- 2. Changes in catchment hydrology due to a controlled burn in the catchment on 29 April 2021.
- 3. Increased baseflow due to subsidence-induced stream bed fracturing.

The relevant conclusions and recommendations of HEC (2022) are:

- 1. It is apparent that flume movement could not conceivably lead to significant changes in monitored flow rates.
- 2. A controlled hazard reduction burn was conducted within the Metropolitan Special Area and the catchment of GS 300078 on 29 April 2021. For a period of approximately 10 months following, the divergence between the hydrographs increases and this behaviour is considered related to the effects of the burn, which likely increased the rate of catchment runoff. However, this behaviour appears to have diminished since the onset of higher rainfall in approximately March 2022.

and

the hazard reduction burn alone could not have resulted in the significant divergence between modelled and recorded streamflow

- 3. During periods of flow recession dating back to spring 2017, the modified streamflow record somewhat exceeds modelled flow. It is considered that this may be related to increased baseflow occurring due to subsidence-induced stream bed fracturing upstream of GS 300078 leading to flow diversion through the fracture network which increases flow routing.
- 4. It is recommended that Metropolitan Coal conduct high resolution survey of the stream bed and banks (including the concrete weir either side of the flume) for a

distance upstream and downstream of the flume and that this data be used as input to a numerical hydraulic model of the stream at GS 300078. The model should then be used to extend the gauging station rating relationship beyond the capacity of the flume. In the interim, streamflow in excess of flume capacity should be estimated using the quadratic extrapolation of the flume rating curve.

#### The Panel's comments on each of these are:

1. The first conclusion was based on a field survey of the flume to estimate possible movements since installation, and then testing sensitivity of the flow estimates to a revision of the flume rating curve that accounts for these movements (HEC, 2022). The level of detail provided in HEC (2022) about the nature of the movements of the flume and the rating curve revision approach is not sufficient to critically review this conclusion; nevertheless, from the information provided, the Panel considers that movement of the flume is unlikely to have caused the observed flow anomalies.

The HEC (2022) investigation did not consider the possibility of measurement errors due to the presence of flood debris behind the flume, which could create the types of flow anomaly observed. However, if the flume is regularly inspected and cleared, which is normal good practice, and is implemented in this case according to Peabody staff<sup>28</sup>, this could not be a reason for the prolonged flow anomalies.

- 2. Regarding the second conclusion, the increased flow rates from April 2021 are consistent with what might be expected due to partial clearance of vegetation due to the hazard control burn combined with the relatively persistent rainfall that occurred from September 2021 to March 2022. The modelling conducted in HEC (2022) is simplistic regarding the potential effects of fire (e.g. see Bren, 2023) and it is possible that it significantly underestimates the effect of the fire. Nevertheless, considering the presence of anomalous flows even before the burn, the Panel agrees with conclusion that the burn has likely had an effect but, by itself, is unlikely to fully explain the flow anomaly.
- 3. The substantially increased flows since August 2020, which is before the burn event, suggest larger volumes of groundwater release following rainfall events. Higher infiltration rates would be reflected in increased interflow volumes and potentially increased regional groundwater levels and discharges. While the AWBM model used to produce the red lines in Figure 13 and Figure 14 will translate high rainfall to groundwater storage and flows, it is possible there are non-linear responses to high rainfall that the model does not account for, which could create the flow anomalies in Figure 13 and Figure 14.

Drought conditions such as those experienced from early 2017 to early 2020 are capable in some situations of changing the nature of flow responses in a way that simple models, such as the AWBM model used in Peabody (2022) and HEC (2022), cannot replicate. The hydrological modelling literature has examples of higher than predicted flows following dry years (for example, Deb & Kiem, 2020). However, the magnitude of flows observed from August 2020 relative to the rainfall are probably too high to be explained by the limitations of the model.

Increased groundwater discharge is potentially consistent with the hypothesis in the Dupen report of sub-vertical fractures connecting the surface with groundwater stores combined with enhanced hydraulic connection of these stores to the creek. However, as suggested in the conclusion of HEC (2022) "It is considered that this may be related to increased baseflow occurring due to subsidence-induced stream bed

\_\_\_

<sup>&</sup>lt;sup>28</sup> As indicated to Professor McIntyre during a field visit on 19/07/2023.

fracturing", this may be related to increased connectivity between the creek and regional groundwater due to creek bed fracturing and does not necessarily mean enhanced flow through basal shear planes as proposed in the Dupen Report. The clear divergence in model and recorded flows commences in August 2020 during the extraction of LW305 (the closest longwall to the Eastern Tributary gauging station).

Another possible explanation for increased surface flows is the recent rise in reservoir levels. There has likely been underflow beneath the flow gauge that has not been recorded via the flume while the reservoir levels are low. As the reservoir level began to rise in early 2020, the piezometric head of the underflow and regional groundwater may have risen forcing the underflow to become surface flow captured by the flume.

- 4. Regarding the recommendation under HEC (2022) point 4 above, the Panel agrees. The Panel also recommends that:
  - i. Spot flow measurements are taken and used to validate the rating curve for the flume, to further check whether subsidence of the flume or damage to the weir has caused flow estimation errors.
  - ii. Repairs to the weir are carried out.

In summary, the Panel concludes that HEC (2022) has undertaken a detailed analysis of potential reasons for the apparent flow anomalies. While there remain questions about the sufficiency of both the flow measurements and the model used for that analysis, the Panel agrees with the main conclusions and recommendations of that report, including that the flow anomalies observed may be partially due to enhanced release of groundwater due to subsidence effects. However, there are additional hypotheses for the flow anomalies that should be explored.

Regarding the timing of the flow anomaly in relation to mining, the clear flow anomaly in Figure 13 and Figure 14 begins in August 2020, whereas mining of LW27 ceased in early 2017, so it seems unlikely that this change in flow response is associated with basal shear plane movement as a result of mining, unless this happened during the 300 longwall series. Predicted valley closure due to cumulative effects of LW302 to LW308 are shown in Figure 10. This shows a small increase in predicted closure from rockbars ETAU to ETAM due to the extraction of LW302 and LW303, being a maximum 25 mm in the vicinity of ETAM. Subsequent longwalls do not result in any increases in predicted valley closure. Where there are closure increments due to LW302 and LW303, it is only in the vicinity of ETAM that the predicted cumulative closure reaches above 125 mm. The Panel concludes it is conceivable but unlikely that ground movements upstream of the Eastern Tributary flow gauge since 2017 were significant enough to increase hydraulic conductivity of shear planes. The Panel recommends that available measurements and predictions of ground movements due to the 300 series of longwalls, including measured valley closures, are reviewed to determine if ground deformation might be responsible for changes in flow responses observed since August 2020.

#### In summary, the Panel recommends:

- 1. Extension of the Eastern Tributary flow gauge rating curve as recommended in HEC (2022); also spot measurements of flow covering flow rates as high as safely practicable; and urgent repair of the weir. Revised rating curves and the spot measurements of flow should be published in annual reports.
- 2. Re-analysis of the flow data including the most recent data. This analysis should be of the nature of HEC (2022) but also consider the possibility of increased flows being related to high groundwater or reservoir levels or errors in the modified AWBM model.

- 3. Further reporting of the modelling in annual report appendices should contain details of the modified AWBM model and parameter values needed to allow independent assessment.
- 4. If it is concluded after review and extension of the rating curve and analysis using the most recent flow data that baseflows may have substantially increased due to subsidence effects, further investigation should be undertaken regarding the source of the increased baseflow and its significance for aquatic ecology and water quality entering the Woronora Reservoir.
- 5. The Metropolitan Coal 2023 Annual Report should provide information on the success of the Eastern Tributary remediation program.

#### 5.2.3. Pool levels

The Dupen Report proposes that the drying of pools over a 500 m length of the Eastern Tributary (Figure 1) supports the ridge fracture drainage hypothesis <sup>29</sup>. This is based on the concept in Figure 6 that water is diverted from the ridges and hillsides through vertical fractures and shear planes into the fractured zone below the creek. The Report includes the statements 'This evidence includes the unpredicted drying of all pools along a partly undermined section of Eastern Tributary'<sup>30</sup> and 'Since 2017, the previously permanent Pools ETAG to ETAR (Figure 11) have been dry except for short periods following major rainfall events'<sup>31</sup>.

The latter statement does not accurately reflect the data, which shows that outside the period of unusually dry weather from 2017-2019 (see Figure 12), the pools were generally flowing in the reported period (2017-2022). This is illustrated in Figure 15 for pool ETAI, which is generally representative of the data for other pools from ETAG to ETAR (as shown in Peabody (2023), Charts 5-12) although pools ETAM to ETAR are less frequently dry during the dry weather of 2017-2019. This shows that weather is the dominant control on pool levels. Nevertheless, mining subsidence consequences on pool levels and drainage at pools ETAG-ETAR have been acknowledged (Peabody, 2023)

In order to support the hypothesis that ridge fracture drainage and pool drying in the Eastern Tributary during 2017-2019 are connected, the Dupen Report proposes that loss of pool water due to fracturing of rock-bars, which has been widely observed in the Waratah Rivulet, is an unlikely reason for dry pools in the Eastern Tributary. The Panel does not accept the reasons behind this argument, as explained in Section 5.2.1 of this advice report.

The Dupen report states<sup>32</sup>:

"It is worth noting that, if shear planes have indeed been widely developed beneath the valley axis as hypothesised in Section 3.2, the remedial design that was used with considerable success at Waratah Rivulet may not be successful in restoring surface flows to Eastern Tributary".

This is yet to be tested: the remediation, which started in the Eastern Tributary in 2020-2021, was not assessed by Peabody in the Metropolitan Coal 2022 Annual Report. The Panel assumes this lack of assessment was due to lack of pool level data during 2022 and anticipates

<sup>30</sup> pES1 of Dupen, 2023b

<sup>&</sup>lt;sup>29</sup> p22 of Dupen, 2023b

<sup>&</sup>lt;sup>31</sup> p18 of Dupen, 2023b

<sup>&</sup>lt;sup>32</sup> p21 of Dupen, 2023b

an assessment in the 2023 Annual Report. However, this is unlikely to provide definitive further evidence regarding the hypothesis. If assessments of pool levels show that remediation has not been successful, this indicates that flow is being diverted downstream by fractures deeper or wider than the influence of the remediation, possibly but not necessarily including shear planes. Therefore, while the assessment of the outcome of the remediation of the Eastern Tributary is essential, it is not critical to testing the hypothesis.

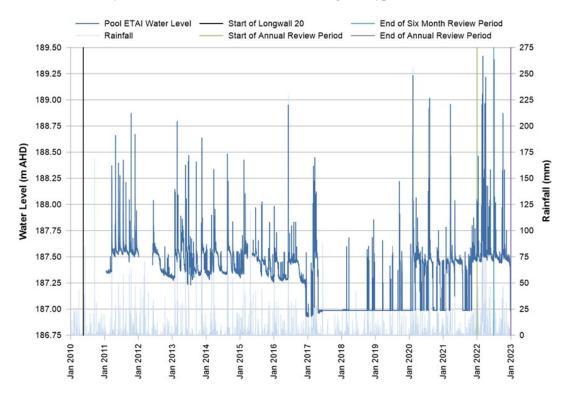



Figure 15: Chart 7 from Peabody (2022) showing recorded water levels at Pool ETAI

# 5.2.4. Bedding planes shears

The Dupen hypothesis lacks clarity as to the criteria used by Dupen to define shear planes as 'large-scale'. The Panel considers that these criteria should at least include the regional extent of a shear plane and the magnitude of shear displacement that it has undergone. The magnitude of shear displacement is not considered in the Dupen Report.

Figure 4 of the Dupen Report (reproduced as Figure 6 of this advice report) is a schematic that represents most of the perched and regional groundwater flow and discharge processes that occur in the Hawkesbury Sandstone landscape across the Southern Coalfields. However, the schematic is not representative of the specific groundwater processes that are occurring in the Eastern Tributary catchment. The schematic shows:

• bedding shear planes daylighting on the valley side and labelled 'Subsidence-induced basal shear planes as intercepted by T3 and TBS02.

These are shown as both linear and extensive beneath both the valley sides and valley floor. The Panel believes that the nature of the valley side shears is exaggerated in this schematic. The Panel's visit to the Eastern Tributary area on the

10 May 2023 did not locate any valley side shears that were actively discharging regional groundwater.<sup>33</sup>

TBS02 is located over the centreline of LW302 and TBS03 is located over the centreline of LW303, both adjacent to the Eastern Tributary. WRIS (2019) reported that bedding plane shear movement occurred at depths of 105 m, 114 m, 162 m and 202 m below surface, with the deeper bedding plane being at approximately the top interface of the Bald Hill Claystone. The WRIS Panel reported that the extent of shear movement at each horizon differed slightly but was in the range of at least 20 mm – 50 mm and that there were only very small differences in hydraulic conductivity for the 105 m, 114 m and 162 m horizons, but a dramatic increase in hydraulic conductivity for the 202 m shear horizon at the top of the Bald Hill Claystone (shown in Figure 5 to be some 70 m below the Eastern Tributary). It concluded that the results confirm the view that whilst shears can occur on multiple horizons, not all horizons represent increased flow paths.

• 'inferred sub-vertical fractures due to valley bulging'.

The caption to Figure 4 of Dupen (2023) refers to the inferred sub-vertical fractures as being *stress relief fractures*. As the valley sides are not subjected to lateral stress, stress relief is not a plausible mechanism for inducing vertical cracking. However, sub-vertical fracturing can be associated with conventional subsidence (subsidence troughs) and with unravelling of slope material caused by subsidence movement, although these fractures tend to close. This is because surface alluvium and rock displace downhill under the effect of gravity, resulting in tensile strains accumulating towards ridge tops and being expressed as wide, open cracks. For example, Galvin (2005) reported the presence of a +200 mm wide crack on a fire trail at the top of the ridge above Waratah Rivulet.

Against this background, subsidence can be expected to increase the capacity of the surface to absorb rainfall, however, the distributions and depth of the inferred subvertical fracturing shown in Figure 4 of the Dupen Report (Figure 6 of this Panel Advice report) is considered highly conceptual and very unlikely to represent the situation in the field.

The Panel concludes that the subsidence environment and ground response to subsidence is not unique to Eastern Tributary and, therefore, if the drainage mechanism hypothesised by Dupen has merit, it should be able to be validated by field evidence at other sites above mine workings at Metropolitan Coal Mine and at other mines operating in similar topography in the Southern and Western Coalfields of NSW. The Panel is unaware of any other such evidence.

"Photographs taken in a railway cutting undermined by approximately 150 m wide longwall panels at an approximate depth of 300 m ( $W/H \sim 0.5$ ) in the Southern Coalfield showing the development of vertical fractures and shear displacement on bedding planes in response to mining-induced subsidence."

35

<sup>&</sup>lt;sup>33</sup> The Panel does not consider the photo of the bedding plane shear shown in Figure 6 of the Dupen report to be representative of the process being hypothesised by Dupen. The photograph has appeared in multiple publications, including as Figure 10B in the first report of the IEPMC (OCSE, 2018) where it was captioned:

## 5.2.5. Hydrogeological behaviour

Figure 4 in the Dupen Report, reproduced as Figure 6 of this advice report, and associated explanations in Sections 3.2 and 3.3 of the Dupen Report are an over-simplification of the groundwater flow processes in the Waratah Rivulet and Eastern Tributary catchments.

It is important to recognise that for these two catchments:

- There are localised shallow perched water tables in upland swamp colluvium and underlying/adjacent weathered sandstones;
- The regional water table occurs at depth beneath the ridgelines, and naturally discharges to permanent streams. Regional groundwater does not present or discharge at elevated sites on the valley sides;
- The regional water table is a subdued reflection of the topography and in these catchments does not support the upland swamps or terrestrial vegetation on ridgelines and steep hillslopes; and
- The post mining water table does not always occur at depth below previously gaining streams the current conceptualisation suggests there are most likely connected gaining and losing sections along Waratah Rivulet and the Eastern Tributary (Peabody, 2022a) but that overall regional groundwater continues to flow to these streams.

Dupen argues that the transect boreholes T1 - T6 (located above the northern portion of LW305 and LW306 adjacent to Woronora Reservoir) provide a good profile of aquifer levels through the upper aquifer (Hawkesbury Sandstone) within the ridge immediately east and west of the reservoir.

While the Panel agrees that these monitoring bores are useful to assess the regional water table elevation and level variations between the ridgeline and the reservoir, these locations do not provide any vertical piezometry data to better understand lateral and vertical flows, and the potential for deep drainage. Ideally, to better understand groundwater flow in the fracture network, a more appropriate design would have included multiple (3 or 4 elevation) level monitoring in separate monitoring bores with the lower two intervals occurring below the minimum reservoir level.

Two of the five transect boreholes (T3R and T1) confirm the intersection of a fracture zone that is hydraulically connected to the Woronora Reservoir. Water levels at these two sites rise and fall with reservoir levels. The latest published trends for all six transect bores are shown in Figure 16.

# Dupen states:

The aquifers which sit above and feed the incised valley streams are draining at rates measurably higher than pre-mining, in places rapidly and completely, due to unexpected and unpredicted formation of large-scale shear planes opening up at their base. These shear zones are inferred to be 500 m long in one location and over 250 m wide at another. Where they are developed they appear to be acting as drains centred on the undermined valley centers which now accommodate creeks and Sydney's stored drinking water (Figure 4) [Figure 6 of this advice report].

Dupen does not provide corroborating evidence of substantial aquifer drainage. The groundwater data provided by Metropolitan (SLR, 2023b) show no large scale groundwater drainage in the near surface environment. Only one borehole over the 300 series longwalls

shows any near surface impact from mining, namely: Swamp 50 10m Piezometer where the perched water level fell by 6.5 m (SLR, 2023b). The sharp decline occurred during the passage of LW304 followed by stabilisation and some recovery.

For the Hawkesbury Sandstone aquifer, there are many monitoring sites at ridgeline locations with multiple depth sensors that show no evidence of aquifer depressurisation or drainage (SLR, 2023b). Many sites show subtle increases in water table levels during recent years as a result of increased rainfall recharge and/or an increase in the Woronora reservoir level. However, the borehole T1 to T5 transect does show some evidence of mining-induced water level declines (Figure 14 in this report taken from SLR, 2023a):

- Water level in Borehole T5 has declined by 10-12 m since the commencement of LW305;
- Water level in Borehole T4 (inoperable since August 2021) declined by approx. 5 m at the commencement of LW306; and
- Water level in the original Borehole T3 declined by approx. 5 m at the commencement of LW305 but has since risen in the deeper replacement bore T3-R with the increase in the reservoir storage levels.

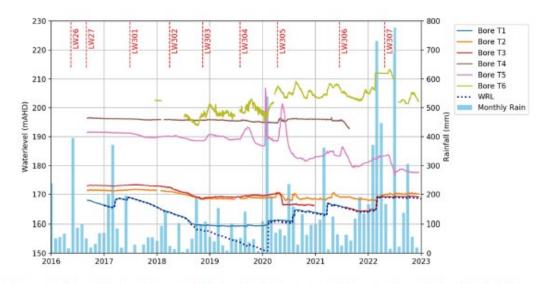



Figure 3 Groundwater hydrographs for bores T1 to T6 compared with reservoir water level and rainfall

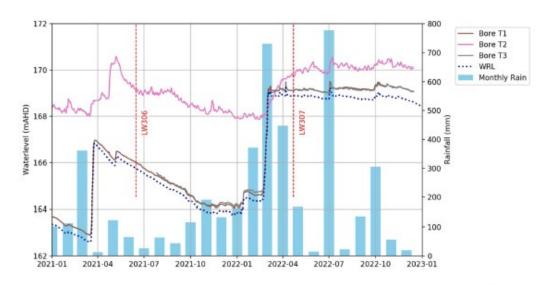



Figure 4 Groundwater hydrographs for bores T1 to T3 compared with reservoir water level and rainfall

Figure 16: Groundwater hydrographs for transect boreholes T1 to T6. (Figures 3 and 4 from SLR, 2023a)

Gradients are still towards the reservoir and the observed declines at just one transect cannot be considered sufficient evidence of substantial aquifer drainage to creek lines and the reservoir through the ridge fracture drainage mechanism without a better understanding of the vertical piezometry and spatial/temporal variations in the Hawkesbury Sandstone groundwater system.

The inferred sizes of the basal shear with increased transmissivity due to mining associated with the Eastern Tributary seems to be solely inferred from the length of the 'dry' section of Eastern Tributary and the position of Borehole T3 lower in the catchment. As noted in Sections 5.2.1 and 5.2.3, there is evidence that the 500 m dry section identified by Dupen is not completely dry and surface flows do occur. Underflow is apparent for the section but the connection to a large-scale basal shear extending along the full length of the 'dry' tributary cannot be confirmed by the available observations. It is clear that the groundwater at Borehole

location T3 has a strong connection to the reservoir and while this indicates how far away from the reservoir a high conductivity connection can extend, it also cannot define the length of tributary or reservoir section that it connects to. Without further observations these data do not provide strong support to the ridge fracture drainage hypothesis.

There are several hypotheses that can explain the drop in water level at Borehole T3 including by fracturing connecting the borehole to an existing basal shear that has already been identified in Borehole T1. The Panel is of the view that the change in conditions in May 2020 at Borehole T3 is most likely due to local ground movements forming a connection between the local groundwater at the measurement depth in Borehole T3 with an existing underlying fracture or basal shear that is also identified in Borehole T1. The fracture permeability is sufficiently high to bring the hydraulic head at location T3 close to the reservoir water level.

As noted in Section 3.0, Dupen states that there are only two hydrogeologically plausible hypotheses that he can think of which could account for behaviours in streamflow affected by subsidence, the first of which is related to crushing of bedrock due to non-conventional subsidence impacts to create a 'tunnel' of shallow fractures. He states that 'it is difficult to comprehend using this conceptual model, how sub-surface flows through a 500 m long, poorly interconnected "crush zone" of compressive fractures can have mimicked aboveground catchment flow responses as closely as shown in Figure 12 since the desiccation event in 2016/2017'.

The Panel does not agree with the reasoning presented by Dupen because the comparisons of catchment flow responses in his Figure 12, reproduced as Figure 3 of this advice report, are based on observed and modelled daily flows. The modelled flows are derived using the Australian Water Balance Model (AWBM), which is a spatially lumped catchment model. Neither this model nor the use of daily flows are designed to simulate local (500 m scale) effects on flow travel times, and so Figure 12 in the Dupen Report should not be used to support or challenge the "tunnel" concept. The Report goes on to state "I also struggle to identify a plausible mechanism for the increasing flows observed since about October 2021 using this conceptual model". While other mechanisms can be identified to explain the increased flows, no mechanism has been validated to explain the increased flows at this stage. The increased flows need to be better understood, as has been partly addressed by HEC (2022) and commented on by the Panel in Section 5.2.2.

## 5.2.6. Evaluation summary

The Panel's findings from its evaluation of the primary Dupen hypothesis and statements can be summarised as follows.

An important initial observation is that the subsidence mechanism underpinning Dupen's hypothesis is not new. However, Dupen has placed new emphasis on the significance of this mechanism for the long-term behaviour of the regional groundwater system and the resulting downstream impacts on the quantity and quality of water entering Woronora Reservoir and upstream impacts on the hydrology and ecology of ridge line ecosystems. Previous studies and investigations have addressed ground movements on basal shears and have assessed the magnitude of associated impacts on the groundwater system. These studies do not provide evidence supporting major impacts of the style and magnitude suggested in the Dupen report.

Dupen's hypothesis was developed through assessment of several features of the data collected from monitoring of surface and groundwater conditions in and around the Eastern Tributary. The data relied upon by Dupen has been reviewed by the Panel as well as that derived from additional studies undertaken by Metropolitan Coal's consultants. While corrections to the stream flow data have been made by the consultants, these have not

removed the anomalies used by Dupen to build his hypothesis. Nevertheless, the further review has offered up viable alternative explanations for the anomalies. Neither Dupen's hypothesis nor the alternative explanations can be validated at this time based on the available evidence. For this reason, a range of additional work is recommended to provide the necessary field evidence to support or reject each of these explanations for the mining-induced impacts on both groundwater and surface water.

A wider assessment of the groundwater data, including more recent data than that available to Dupen, has not provided evidence of the widespread dewatering of the regional groundwater system predicted by Dupen's hypothesis. Dupen's interpretation of the impacts of changing groundwater baseflow contributions to Woronora Reservoir arising from his hypothesis is also not consistent with enhanced basal shears and the dewatering of the Hawkesbury Sandstone aquifer beneath the ridgelines.

The Dupen Report recommends stopping mining until the validity of the Dupen hypothesis has been adequately tested and the long-term implications of groundwater dewatering are fully assessed. As noted above, consideration by the Panel of a wider set of data, notably of groundwater responses to mining, indicates that the inferences made by Dupen about the scale of impacts unfolding on the regional ecology and the Woronora Reservoir are likely overstated. For this reason, the Panel does not agree with this recommendation.

Even though the scale of impacts suggested by Dupen are not expected by the Panel to be as large as Dupen predicts, the Panel accepts that components of Dupen's hypothesis should be evaluated through new data collection and further interpretation to build confidence in Metropolitan Coal's assessment of the long-term impacts of mining under the catchment.

If the drainage mechanism hypothesised by Dupen has merit, it should be able to be validated by field experience at other sites above mine workings at Metropolitan Coal Mine and at other mines operating in similar topography in the Southern and Western Coalfields of NSW.

# **5.3.** EVALUATION OF OTHER DUPEN STATEMENTS

#### 5.3.1. Implications for aquifer storage and baseflows

The aquifers which sit above and feed the incised valley streams are draining at rates measurably higher than pre-mining, in places rapidly and completely, due to unexpected and unpredicted formation of large-scale shear planes opening up at their base.

The desaturation of the undermined ridges hypothesised in Section 3 is likely to continue for some years or decades to come even if mining is stopped at this point.

My interpretation of the reported trends (Section 3.5) is that flows in Eastern Tributary and probably other undermined streams are currently being affected by increased draining of the undermined ridges through basal shear planes. Once a new equilibrium is established, quicker and smaller baseflows may reduce overall flows to the Reservoir.

The Panel is of the opinion that apart from the water level declines observed at three bores along the T1-T5 transect, there is no evidence of widespread desaturation of the ridges around the reservoir from monitoring groundwater levels in the shallow Hawkesbury Sandstone aquifers at any other locations across the catchment. If the Dupen hypothesis is correct, then there should be evidence of regional groundwater depletion within days to weeks based on the apparent increased flows in the Eastern Tributary. The observed localised declines at the

transect bores cannot be considered sufficient evidence of substantial aquifer drainage beneath the catchment ridgelines.

If ridge fracture drainage were occurring, it is unlikely that "Once a new equilibrium is established, quicker and smaller baseflows may reduce overall flows to the Reservoir." Indeed, any lowering of groundwater levels would likely increase overall flows due to accelerated drainage and reduced evapotranspiration. Overall flows could reduce if the changes in hydraulic conductivity of the shear planes meant that water was being diverted to outside the Woronora catchment, but there is no evidence to suggest that inter-catchment diversions of flow is happening. In summary, the Panel is of the view that the ridge fracture drainage hypothesis has no bearing on overall flow volumes into the reservoir.

The mining-induced shear planes and fractures are causing the drainage of the sandstone aquifers within the ridges that lie above the undermined creeks and stored waters. The desaturation of the aquifers through the newly imposed fracture system would permanently change the hydrological ecological and geochemical nature of the drinking water catchment.

The current 300 series longwall designs have been adopted to minimise the risk of hydrological impacts to the Woronora Reservoir by minimising the likelihood of vertical leakage. The available field observations are consistent with the adopted design aims. The historical and current longwall design also appear to have limited impact on the regional groundwater system based on the available evidence, however additional monitoring of the piezometry within the Hawkesbury Sandstone aquifer for the remaining longwalls in the current 300 series is required to confirm any long-term drainage impacts.

The ecological and geochemical implications are reviewed below.

# 5.3.2. Implications for water quality

Formation of rapid subsurface flowpaths through fractures are expected to add a substantial but as yet unquantified addition of metal and salt (drinking water contaminants) discharged into this drinking water via subsurface springs created by basal shear planes

The discharges of water diverted through these new fracture systems are emerging with high concentrations of iron, manganese, aluminium and other metals and salts. The sampled discharges to the reservoir from Eastern Tributary already appear to be breaching performance measures, and these effects can be expected to worsen significantly as unmeasurable discharges from aquifer drainage emerge at or below the axis of the valley. The long-term fate of these additional contaminants in the reservoir is currently unknown, but so far the dissolved metal concentrations have not been greatly elevated at the drinking water off-take at the northern end of the reservoir near the Woronora Dam wall.

The quantity of natural contaminants that will enter the reservoir will be directly related to the size and density of fracture/shear zone that has occurred. If the fracture zone due to valley closure is restricted to the tributary floor and neighbouring rock then the total contaminant mass may be quite limited. However, it is not immediately possible to determine the size or density.

The question of water quality is out of scope of the current Panel and the reader is referred to IEAPM (2023).

#### 5.3.3. Implications for ecosystems/swamps

A likely result of these changed baseflow patterns is that a large proportion (potentially all) of the riparian, swamp and forest ecosystems on the undermined ridges will become drier and presumably less capable of filtering surface flows entering the reservoir (ES2)

The regional groundwater table under the ridgelines (between 50 and 70mbgl based on available piezometric data) is well below the limit of groundwater extraction by terrestrial ecosystems. There is no evidence to suggest that these terrestrial ecosystems on the ridgelines and steep slopes will become drier.

The riparian, swamp and forest ecosystems all rely on the moisture in the shallow soils and any perched groundwater at shallow depth. The upland swamps in these catchments are maintained by perched groundwater that is not in hydraulic connection with the regional water table. Provided there is no fracturing of the base of swamps that causes accelerated drainage of perched groundwater, then these terrestrial ecosystems should continue to survive. They are maintained by rainfall, interflow and runoff from adjacent sideslope areas and should continue to filter runoff that enters the permanent streams and the reservoir.

All available borehole data indicate that there has yet to be any significant impact to the shallow perched groundwater systems other than the weathered sandstone underlying Swamp 50 and here the impact of the groundwater decline is not likely to be sufficient to impact the near surface hydrology or ecological functioning of the swamp.

Extensive fracturing in the Hawkesbury Sandstone aquifer is leading to desaturation of the ridges around the reservoir, as well as the possibly permanent loss of ecologically important surface flows

The lack of evidence for desaturation of shallow groundwater beneath the ridgelines is discussed in Section 5.3.1.

There is no evidence for the permanent loss of baseflows that help to sustain surface flows. In fact, stream flow data primarily since August 2020, suggest an increase in flows compared to model predictions (Section 5.2.2)

# 5.3.4. Implications for performance measures and indicators

Contrary to Peabody's interpretation, my conclusion from the review reported herein is that a diversion of around 500 m of virtually all surface water flows via subsurface channels (Figure 1) constitutes more than a negligible environmental consequence, and therefore an exceedance of the Performance Measure

The Performance Indicators now used to enable evaluation of Performance Measure success in respect to Eastern Tributary are unfortunately not useful for evaluating the environmental consequences of basal shear planes developing beneath the stream surface, a mechanism which was not predicted nor yet publicly recognised. The Environmental Indicators provided in the 2021 Annual Review are focused instead entirely on the important role of protecting the integrity of the flow gauge at Rockbar ETAU

Diversion of nearly all surface water into the subsurface is not correct based on observations of flow and pooling in the tributary.

It is acknowledged by Peabody (2022a) that mining has resulted in environmental consequences in regards to the drainage behaviour of the rock pools ETAG, ETAH, ETAI, ET

The unexpected increase in flows that is seen in Figure 13 does not breach the quantity component of the performance measure "negligible reduction in the quantity and quality of water resources reaching the Woronora Reservoir" as the flows to the reservoir are higher than expected. The Dupen Report considers long term changes to the flows by suggesting that "Once a new equilibrium is established, quicker and smaller baseflows may reduce overall flows to the Reservoir"34 but does not present the basis for this suggestion. The Panel agrees that the pattern of baseflows to Woronora Reservoir would change if the Dupen hypothesis is correct. This is because of the more rapid transit of water through the groundwater system leading to quicker rises and falls in the baseflow component of the reservoir inflows. However, the Panel does not agree with the suggestion that the baseflows would be smaller. The total volume of baseflow would only reduce if groundwater recharge is reduced or if groundwater is diverted out of the reservoir catchment. The Dupen Report identifies higher groundwater recharge conditions as "stress relief fractures are expected to result in increased infiltration of rainfall runoff from undermined ridge surfaces and soilrock interfaces"35. No mechanism is presented in the report that indicates that groundwater is likely to be diverted away from the reservoir catchment. In these circumstances, inflows to the reservoir are not expected to reduce unless the climate changes. This is contrary to Dupen's assertion.

Of greater significance for catchment yield to the Woronora reservoir is the potential impact of subsidence on the quality of flows reaching the reservoir. This is an issue associated with mining subsidence impacts whether or not the Dupen hypothesis is accepted. The monitoring and assessment of water quality in the Eastern Tributary has been considered by a separate IEAPM panel (IEAPM, 2023).

As covered in Section 5.3.3 the Panel considers that the Dupen Report has no implications for performance measure *Negligible impact on Threatened Species, Populations, or Ecological Communities* in relation to riparian and swamp ecosystems. If long-term changes to baseflow regimes are confirmed by the further analysis, the potential implications for that performance measure in relation to aquatic biota will need to be considered.

# 5.3.5. Dupen Report recommendations

Consideration should be given to applying causal science to the analysis of volumetric and water quality changes discussed in this report, in order to truly understand the

<sup>&</sup>lt;sup>34</sup> p28 Dupen (2023)

<sup>&</sup>lt;sup>35</sup> p26 Dupen (2023)

impacts of what is now unfolding in the catchments of Sydney's water supply due to Metropolitan's proposed progress towards the deepest parts of the catchment.

Data collection to date at the mine has not been focussed on developing statistical models to examine the linkages between cause and effect. Consequently, new data plans would be needed to underpin a causal science assessment based on statistical approaches. New statistical techniques would be required to accompany the new data that would be difficult to explain and demonstrate to both mine owners and the regulators. This would take considerable time given the complexity of the natural environment applicable to hydrology and hydrogeology and the limitations of modern data collection methods. It would not be guaranteed to add new knowledge in time to be effective.

At this point in time, the Panel considers that stage assessing causal relationships through traditional modelling using deterministic flow models combined with careful sensitivity studies that are implemented by experts and rigorously peer reviewed represents the most effective means of eliciting the necessary knowledge about the system responses given current practices. It will also be the most easily understood by the operators, regulators and the wider community.

As the Dupen Report demonstrates, inferences about hydrogeological processes based on sparse data sets with unrecognised errors are fraught with difficulties. These difficulties are not likely to be reduced by adopting a new paradigm for their analysis.

#### 6.0 SUMMARY PANEL ADVICE

The nature of the structure and content of the Dupen Report results in a range of conclusions and recommendations being developed progressively throughout the Panel's advice report. The reader is referred to these for further insight into the following summary advice:

<u>Identify</u> and comment on the elements of the Report that are relevant to the operation and environmental performance of Metropolitan Coal

#### **Subsidence Focussed**

- 1. The two basic mining-induced elements that constitute Dupen's hypothesised *ridge* fracture drainage model are sub-vertical surface fractures and sub-horizontal bedding plane shears. Both elements are well established in subsidence engineering and, individually and collectively, have been the subject of a number of detailed subsidence and hydrogeological studies in the Southern Coalfield over recent decades for the purpose of detecting and monitoring their formation, including at the Eastern Tributary. Hence, ridge fracture drainage cannot be considered a new subsidence mechanism
- 2. If the Dupen hypothesis concerning surface flows and shallow groundwater being widely diverted and drained as a result of mining-induced fracturing is validated then ridge fracture drainage could, arguably, be considered to be a *new subsidence consequence*. This depends on the spatial scale and the magnitude and distribution of shear displacement on what Dupen refers to as *large scale shear planes opening up at their base*, in comparison to documented past experience. The term *large scale* is not defined in the Dupen Report.
- 3. The Dupen Report does not provide sufficient evidence to cause the Panel to believe that the scale of bedding plane shears in the vicinity of the Eastern Tributary might be materially different to that of other shear planes detected and studied in the Southern Coalfield.
- 4. Due to the low values of predicted incremental valley closures during the 300 series of longwalls, it is unlikely that ground movements were significant enough to increase the hydraulic conductivity of shear planes in the Eastern Tributary during the period of flow anomalies.

## **Groundwater Focussed**

- 5. Perched water in swamp colluvium and very shallow weathered Hawkesbury Sandstone is hydraulically disconnected from the deeper regional groundwater systems and will not drain unless near surface fracturing intersects these features. There is no clear evidence of drainage of these shallow groundwater systems in the available monitoring records.
- 6. There is no evidence from Metropolitan Coal's groundwater monitoring network (except at the transect bore locations overlying LW305 and LW306) that water levels in the Hawkesbury Sandstone aquifers across the Eastern Tributary catchment have fallen and desaturated the ridgelines. In fact, most monitored regional water table levels have stabilised or risen in recent years.
- 7. Alternative explanations of the increased surface flows at the Eastern Tributary gauging station observed since August 2020 (which corresponds with the commencement of an above average rainfall period) include:
  - i. underflow that previously discharged to Woronora Reservoir downstream of the Eastern Tributary gauging station is now reporting as surface water flow upstream of the gauging station; and

- ii. larger volumes of (natural) interflow and regional groundwater are discharging and contributing to surface water flows across the whole catchment.
- 8. Increased groundwater discharge is potentially consistent with the Dupen hypothesis of sub-vertical fractures and shears with enhanced hydraulic connection connecting regional groundwater to the Eastern Tributary. However, there is no widespread evidence of a reduction in water levels or groundwater storage volumes across the catchment in the Hawkesbury Sandstone aquifer, which is contrary to the Dupen hypothesis.
- 9. Beneath ridgelines and hillslopes, the absence of permanent springs and any obvious perched groundwater (apart from in the vicinity of swamps) suggests most rainfall recharge (apart from that portion that is lost to evapo-transpiration and via interflow after rain) drains vertically to the regional water table and then moves laterally to emerge in the base of the valleys as baseflow.
- 10. The shallow perched water table in colluvium and underlying/adjacent weathered sandstone supports upland swamps. The upland swamps will not drain and will not be impacted unless near surface fracturing intersects and drains these features.
- 11. The regional water table occurs at depth beneath the ridgelines, and naturally discharges to permanent streams. Regional groundwater does not discharge at elevated sites and does not support ridgeline and hillside terrestrial ecosystems, however it may contribute to some riparian communities.

#### **Surface Water Focussed**

- 12. Metropolitan Coal (through consultants) has undertaken a detailed analysis of potential reasons for the Eastern Tributary flow anomalies that Dupen uses to support the ridge fracture drainage hypothesis. The Panel agrees with main conclusions and recommendations from that analysis, being:
  - i. There are serious errors in the flow data used by Dupen but this is not the reason for the anomalies. To address these errors the rating curve for the Eastern Tributary should be extended to improve high flow measurement accuracy.
  - ii. The flow anomalies are unlikely to be due to subsidence movements of the flume
  - iii. The controlled burn conducted from September 2021 to March 2022 in the Eastern Tributary catchment has likely contributed but, by itself, is unlikely to fully explain the flow anomalies.
  - iv. The flow anomalies may be related to mining-induced increases in the hydraulic conductivity of the creek bed.
- 13. Additional to the considerations in the consultant's analysis, the Panel concludes that:
  - i. While blockage of the flume by debris is another potential reason for the flow anomalies, regular inspection and clearance of the flume makes this unlikely.
  - ii. Errors in the rainfall-runoff modelling may also contribute to flow anomalies, including non-linearity in the groundwater storage-discharge relation and non-stationarity in hydrological processes related to drought. This has not been assessed by Metropolitan Coal.
- 14. Contrary to the observation by Dupen that "Since 2017, the previously permanent Pools ETAG to ETAR have been dry except for short periods following major

- rainfall events", these pools were generally flowing during 2017-2022 except during prolonged dry weather.
- 15. The reason for the Eastern Tributary flow anomalies remains unknown, and the Dupen hypothesis cannot be discounted based on the flow data.
- 16. The status of the pools and whether remediation improves the status of the pools, while important for assessing the environmental performance of the mine, will not be a decisive factor regarding the Dupen hypothesis.

# **Overarching Conclusions**

- 17. Previous studies and investigations have been undertaken of basal shears and the magnitude of associated impacts on the groundwater system and these do not provide evidence supporting major impacts of the style and magnitude suggested in the Dupen Report.
- 18. The evidence that Dupen has used for the development of his hypothesis is limited (as acknowledged by Dupen) and incomplete and additional evidence sourced by the Panel confirms that this data contained errors, in some cases of a serious nature.
- 19. A wider assessment of the groundwater data, including more recent data than that available to Dupen, has not provided evidence of the widespread dewatering of the regional groundwater system predicted by Dupen's hypothesis.
- 20. Dupen's interpretation of the impacts of changing groundwater baseflow contributions to Woronora Reservoir arising from his hypothesis is also not consistent with enhanced basal shears and the dewatering of the Hawkesbury Sandstone aquifer beneath the ridgelines.
- 21. Consideration by the Panel of a wider set of data indicates that the inferences made by Dupen about the scale of impacts unfolding on the regional ecology and the Woronora reservoir are likely overstated. For this reason, the Panel does not support the Dupen Report's primary recommendation "that further undermining of the Woronora Reservoir should be halted until the implications of these unexpected changes now unfolding in Woronora Reservoir Catchment can be urgently evaluated".
- 22. Even though the scale of impacts suggested by Dupen are not expected by the Panel to be as large as Dupen predicts, the Panel accepts that components of Dupen's hypothesis should be evaluated through new data collection and further interpretation to build confidence in Metropolitan Coal's assessment of the long-term impacts of mining under the catchment.
- 23. If the drainage mechanism hypothesised by Dupen has merit, it should be able to be validated by field experience at other sites above mine workings at Metropolitan Coal Mine and at other mines operating in similar topography in the Southern and Western Coalfields of NSW.

<u>Provide advice as to what actions or further investigations would be required to test or confirm the hypothesis put forward in the Report</u>

The Panel recommends (from a groundwater perspective) that:

1. Additional bores (standpipes) be established at the T5 monitoring location to monitor the vertical piezometry in the Hawkesbury Sandstone and to establish whether extensive basal shears occur at depth below this eastern ridgeline area.

2. Additional bores (standpipes) be established at the T6 monitoring location and at other accessible locations overlying the proposed LW311 to LW316 panels as soon as practicable to monitor the natural vertical piezometry in the Hawkesbury Sandstone below this western ridgeline area.

The Panel recommends (from a surface water perspective):

- 3. Extension of the Eastern Tributary flow gauge rating curve as recommended by Metropolitan Coal's consultant (HEC, 2022); also spot measurements of flow covering flow rates as high as safely practicable; and urgent repair of the weir. Revised rating curves and the spot measurements of flow should be published in annual reports.
- 4. Re-analysis of the flow data including the most recent data. This analysis should be of the nature of HEC (2022) but also consider the possibility of increased flows being related to high groundwater or reservoir levels or errors in the modified AWBM model (Australian Water Balance Model).
- 5. Further reporting of the modelling in annual report appendices should contain details of the modified AWBM model and parameter values needed to allow independent assessment.
- 6. If it is concluded after review and extension of the rating curve and analysis using the most recent flow data that baseflows may have substantially increased due to subsidence effects, further investigation should be undertaken regarding the source of the increased baseflow and its significance for aquatic ecology and water quality entering the Woronora Reservoir.
- 7. Metropolitan Coal's 2023 Annual Report should provide information on the success of the Eastern Tributary remediation program.

# Any other significant advice that the Panel may wish to provide concerning this issue

- The Panel recommends for the purpose of developing a better understanding of valley closure impacts to inform mine design that, if it has not already done so, Metropolitan Coal undertakes and makes available to the Department, an investigation of mining impacts on the Eastern Tributary that includes an evaluation of:
  - i. How predicted valley closure developed incrementally along the Eastern Tributary.
  - ii. How well incremental and total predicted valley closure correlated with measured incremental and total measured closure.
  - iii. The nature and extent of natural and mining-induced fracturing to a depth of at least 20 m along the Eastern Tributary downstream from the maingate of LW26 to the Full Supply Level (FSL) of Woronora Reservoir (noting that some of these investigations may have already been undertaken).
  - iv. How well mining-induced environmental impacts along the Eastern Tributary correlate to both predicted valley closure and to measured valley closure.
  - v. The hydraulic characterisation of the fracture system and the underflows that are taking place along that portion of the Eastern Tributary between the maingate of LW26 and the Eastern Tributary gauging station. This could include establishing new shallow groundwater bores in a longitudinal section to assist in better assessing long term water level and water quality behaviour.

#### REFERENCES

- Advisian. (2016). Literarure Review of Underground Mining Beneath Catchments and Water Bodies.: Prepared for WaterNSW by Advisian.
- Bren, L. (2023). Impacts of Burning on Catchment Hydrology and Management. In L. Bren (Ed.), Forest Hydrology and Catchment Management An Australian Perspective.
- Byrnes, R. P. (1999). *Longwall Extraction Beneath Cataract Water Reservoir*. MEngSc (Geotechnical Eng), University of New South Wales, Sydney.
- Deb, P., & Kiem, S. (2020). Evaluation of Rainfall–runoff Model Performance under Non-stationary Hydroclimatic Conditions. *Hydrological Sciences*, 65 (10), 1667-1684. doi: 10.1080/02626667.2020.1754420
- DoP. (2008). Impacts of Underground Coal Mining on Natural Features in the Southern Coalfield Strategic Review. Hebblewhite, B.K., Galvin, J.M., Mackie, C.D., West, R. & Collins, D., ISBN 978 0 7347 5901 6, pp. 168. Sydney: NSW Government, Department of Planning.
- DoP. (2009a). The Metropolitan Coal Project Review Report Planning Assessment Commission. ISBN 978-0-9806592-0-7, pp. 282. Sydney: Department of Planning, NSW Government.
- DoP. (2009b). Project Approval Metropolitan Coal Project. pp. 28. Sydney: Department of Planning, NSW Government.
- Dupen, P. (2023a). Metropolitan Coal Mine independent review of environmental performance to 2022.: Prepared for Nature Conservation Council of NSW.
- Dupen, P. (2023b). Metropolitan Coal Mine independent review of environmental performance to 2022. Prepared for Nature Conservation Council of NSW.
- Everett, M., Ross, A., & Hunt, G. (1998). Final Report of the Cataract River Taskforce. Report to the Upper Nepean Catchment Management Committee. Picton, NSW: Cataract River Taskforce, NSW Government.
- Fell, R., MacGregor, P., & Stapledon, D. (1992). Weathering Processes and Profiles in Valleys *Geotechnical Engineering of Embankment Dams*. Chapter 2. Rotterdam: A.A. Balkema.
- Galvin, J. M. (2005). A Risk Study and Assessment of the Impacts of Longwall Mining on Waratah Rivulet and Surrounds at Metropolitan Colliery. Report to NSW Department of Primary Industries., Galvin & Associates Report No: 0504/17-1c, pp. 128. Report No. 0504/17-1c. Sydney: Galvin & Assoc.
- Gilbert & Associates. (2015). AWBM Model Calibration Warratah Rivulet, Woronora River and O'Hares Creek. Report prepared for Metropolitan Coal.
- HEC. (2022). Metropolitan Coal Review of Recorded Streamflow GS300078 Eastern Tributary. Letter to Peabody Energy Dated 1 Nov 2022.
- HGEO. (2020). Dendrobium Mine Assessment of strata permeability adjacent to Avon Dam following extraction of Longwall 16, Area 3B. HGEO Report No: D20370.
- IEAPM. (2023). Water Quality Performance Measures for Metropolitan Coal Mine. Independent Expert Advisory Panel for Mining. Report No. 2309-1. N. D. o. P. a. Environment.
- Mills, K. W. (2007). Subsidence Impacts on River Channels and Opportunity for Control. Paper presented at the 7th Triennial Conf. Mine Subsidence Technological Society, Wollongong, 207-217. Mine Subsidence Technological Society.

- Mills, K. W., & Huuskes, W. (2004). *The Effects of Mine Subsidence on Rockbars in the Waratah Rivulet at Metropolitan Colliery*. Paper presented at the 6th Triennial Conf. Mine Subsidence Technological Society, Maitland, 47-63. Mine Subsidence Technological Society.
- MSEC. (2007). Dendrobium Mine Area 3 Report on The Prediction of Subsidence Parameters and the Assessment of Mine Subsidence Impacts on Natural Features and Surface Infrastructure Resulting from the Extraction of Proposed Longwalls 6 to 10 in Area 3A and Future Longwal.
- OCSE. (2018). Independent Expert Panel for Mining in the Catchment Report: Part 2. Review of Specific Mining Activities at the Metropolitan and Dendrobium Coal Mines. Galvin, J.M., McIntyre, N., Young, A., Williams, R.M., Armstrong, C., Canbulat, I., pp. 216.
- Patton, F. D., & Hendren, A. J. (1972). *General Report on Mass Movements*. Paper presented at the 2nd Int. Congr. Int. Ass. Eng. Geol., São Paulo, GR1 GR57.
- Peabody. (2009). Preferred Project Report, Metropolitan Coal Project (Draft).
- Peabody. (2019). Metropolitan Coal Longwall 303 Extension Application. Letter from Metropolitan Coal to Secretary, Department of Planning and Environment. 5 February 2019.
- Peabody. (2022a). Longwalls 308-310 Water Management Plan, Appendix 2. Eastern Tributary Stream Mapping and Photographic Record.
- Peabody. (2022b). Metropolitan Coal 2021 Annual Report.
- Peabody. (2023). Metropolitan Coal 2022 Annual Report.
- Reynolds, R. G. (1976). Coal Mining Under Stored Waters Report on the Inquiry into Coal Mining Under or in the Vicinity of Stored Waters of the Nepean, Avon, Cordeaux, Cataract and Woronora Reservoirs, New South Wales. Sydney: Department of Mines, NSW State Government.
- SCT. (2015). Assessment of Potential Inflows from Avon Reservoir into Area 3B via Basal Shear Planes Associated with Valley Closure.
- SCT. (2016). Avon Reservoir: Basal Shear Inflow Assessment, South 32.
- SCT. (2017). Review of Potential Interactions Between Dendrobium Mine and Avon Reservoir; Longwall 13 Update. . pp. 10: SCT Operations Pty Ltd. Report No. DEN4740.
- Singh, R. N., & Jakeman, M. (1999). *Longwall Mining Under Cataract Reservoir*. Paper presented at the International Mine Water Association, Sevilla, Spain, 27-34.
- Singh, R. N., & Jakeman, M. (2001). Strata Monitoring Investigations Around Longwall Panel Beneath the Cataract Reservoir. *Mine Water and the Environment*, 20, 55-64.
- SLR. (2023a). Memo to Metropolitan Coal Groundwater Investigation 2022 Transect bores T2, T3 and T5.
- SLR. (2023b). Metropolitan Coal Groundwater Six-Monthly Report 1 Jul 31 Dec 2022.
- Waddington, A. A., & Kay, D. R. (2002a). Management Information Handbook on the Undermining of Cliffs, Gorges and River Systems. ACARP Research Projects No. C8005 and C9067. Brisbane: Australian Coal Association Research Program (ACARP).
- Waddington, A. A., & Kay, D. R. (2002b). Research into the Impacts of Mine Subsidence on the Strata and Hydrology of River Valleys and Development of Management Guidelines for Undermining Cliffs, Gorges and River Systems - Stage 2. ACARP

- Research Report Project C9067, pp. 278. Brisbane: Australian Coal Association Research Program (ACARP).
- Walsh, R. V., Mills, K. W., Nicholson, M. A., Barbato, J., Hebblewhite, B. K., Li, G., & Brannon, P. J. (2014). *Monitoring of Ground Movements at Sandy Creek Waterfall and Implications for Understanding the Mechanics of Valley Closure Movements*. Paper presented at the 9th Triennial Conf. Mine Subsidence Technological Society, Hunter Valley, 227-244. Mine Subsidence Technological Society.
- WRIS. (2017). Woronora Reservoir Strategy Report Stage 1 Metropolitan Coal Longwall Mining near and beneath Woronora Reservoir. Hebblewhite, B.K., Kalf, F., McMahon, T.
- WRIS. (2019). Woronora Reservoir Impact Strategy Stage 2 Report Metropolitan Coal Longwall Mining near and beneath Woronora Reservoir. Hebblewhite, B.K., Kalf, F., McMahon, T.

# INDEPENDENT EXPERT ADVISORY PANEL FOR MINING

# **ADVICE RE:**

# Water Quality Performance Measures for Metropolitan Coal Mine

October 2023

**Report No: IEAPM 202310-1(R1)** 

# **EXECUTIVE SUMMARY**

#### Overview

On 4 April 2023 the Department of Planning and Environment wrote to the Chair of the Independent Advisory Panel for Underground Mining (IAPUM), which is now the Independent Expert Advisory Panel for Mining (IEAPM, referred to as "the Panel" here on), requesting advice on Water Quality Performance Measures for Metropolitan Coal Mine.

The Metropolitan Coal Project Approval (08\_0149) requires Metropolitan Coal to ensure that its mining activities do not cause any exceedance of subsidence impact performance measures that include "negligible reduction to the quality or quantity of water resources reaching the Woronora Reservoir" and "negligible reduction in the water quality of Woronora Reservoir". While there has been a succession of triggers in recent years indicating a degradation of water quality reaching the reservoir and water quality in the reservoir, Peabody has consistently concluded that the impacts of the Metropolitan Mine have been negligible.

In this context, advice was requested on:

- 1. The Assessments Against Water Quality Performance Measures, and whether the justifications and conclusion that the water quality performance measure for Woronora Reservoir have not been exceeded are reasonable.
- 2. Whether the performance indicator for negligible reduction to the quality of water resources reaching the Woronora Reservoir defined in WMPs is appropriate.
- 3. Whether additional water quality monitoring, analysis and/or assessment is required to further determine compliance with the water quality performance measure for Woronora Reservoir.
- 4. Whether any further reasonable and feasible actions to mitigate and manage water quality impacts are considered necessary, beyond the existing requirements to continue implementing monitoring and management programs.
- 5. Whether a cumulative impact assessment study is considered necessary to review water quality trends and potential impacts on drinking water supply from increased metals loads from the catchments impacted by mine subsidence at Metropolitan Mine.

The Department also noted that it would welcome any other significant advice that the Panel may wish to provide concerning this issue.

This is the first advice provided by the Panel or IAPUM that focusses on water quality, which the Panel views as a topic relevant not only for the Woronora Reservoir but also for the other water bodies subject to mining impacts in the Special Areas. Understanding the advice requires background knowledge of the relations between subsidence, tributary water quality, reservoir water quality and the operational targets of the reservoir. This report provides this basic knowledge, prior to addressing the five items of advice listed above.

#### **Conclusions**

The quality of the Woronora Reservoir has been poor during 2022-2023 (and during other periods historically) and has led to significant complications for water treatment and water supply. Although there are natural influences on water quality that might explain the observed variations in water quality, the Panel cannot rule out the possibility that the Metropolitan Mine has had a non-negligible adverse impact.

While dissolved forms of iron, manganese and aluminium (Fe, Mn and Al) are of primary relevance to raw water quality, there is potential for particulate forms to be transported from the catchment into the reservoir and thereafter, in the case of Fe and Mn, be transformed into dissolved forms. Hence, total (dissolved plus particulate) Fe, Mn and Al concentrations are relevant and the reliance on dissolved Fe, Mn and Al concentrations in the Metropolitan Mine performance indicators for water quality reaching the reservoir is unsatisfactory.

The assessments of the quality of water reaching the Woronora Reservoir presented by Peabody in response to level 3 triggers are not based on sufficient data and analysis and therefore do not provide sufficient justification and reasonable conclusions. The assessments do not adequately consider the potential significance of the impaired water quality for the WaterNSW Raw Water Supply Agreement and Water Quality Incident Management trigger levels.

The assessments of the quality of water in the Woronora Reservoir are not based on sufficient data and analysis and therefore do not provide sufficient justification and reasonable conclusions. The Panel considers that the depth of analysis provided in the annual and six-monthly reports, while significant, is incommensurate with the uncertainty regarding mining's potential contribution to the degraded water quality and incommensurate with the consequences of the degradation in terms of the ability of WaterNSW to meet the Raw Water Supply Agreement and in terms of the disruption to operation of the Water Filtration Plant (WFP).

Aside from the need to transition to the use of total metals, the existing descriptions of the performance indicators and trigger levels for the Eastern Tributary and Waratah Rivulet are satisfactory. They will need to be reviewed when and where performance indicators are changed to the use of total metals concentrations.

The performance indicators and trigger levels for the reservoir (which use total Fe, Mn and Al concentrations) are appropriate, although should be subject to annual review.

The significance of the impaired water quality reaching the reservoir can only be fully determined using contaminant loads (concentration x flow rate) as well as concentrations because high loads can coincide with low concentrations and vice-versa. Improved high flow data and flow event water quality is required to understand water quality impacts and to estimate contaminant loads.

Due to data constraints and monitoring practicalities, analysis of contaminant loads will have limited applicability to determining cumulative impacts of mining in the Eastern Tributary and Waratah Rivulets and other catchments that are being undermined as part of the 300 longwall series. Nevertheless, approximate estimates of loads from these catchments will support scenario analysis to assess whether water quality risks from mining are potentially significant for the operation of the reservoir and WFP. Application of contaminant load estimates to future mining areas including baseline periods and control sites will allow a complete Before-After-Control-Impact (BACI) analysis based on loads as well as concentrations.

An appropriate hydrodynamic and contaminant transport model can support determination of whether a measured or estimated increase in metal loads due to mining affects the current or future ability of WaterNSW to meet raw water supply agreements. It can also allow testing of hypotheses that measured changes in water quality in the reservoir are attributable partially to mining. WaterNSW is planning to implement such a model for the Woronora Reservoir in the 2023-2024 financial year. Due to the catchment and reservoir data sets required, and knowledge of reservoir operations required, it is unlikely to be sensible for Peabody to undertake an independent hydrodynamic and contaminant transport analysis.

Temperature and water quality data obtained at various depths through the water column in the upper reservoir would capture both the temperature stratification behaviour and the water quality at this point. As well as supporting assessments of whether changes in the water quality reaching the reservoir due

to mining have been non-negligible, these data will be of value in calibrating and validating a hydrodynamic and contaminant transport model of the reservoir.

There would be value in improved understanding of the extent of any increase in iron and manganese concentrations in reservoir sediments. Sediment cores can provide a historical record of changes to inputs to the reservoir though it should be recognised that increased inputs are likely to be associated with both high rainfall events and, possibly, increased loads of iron and manganese as a result of mining.

The program of remediation (grouting of fractures) in the Waratah Rivulet and Eastern Tributary has contributed and continues to contribute to the sealing of fractures and reducing subsidence-induced contamination. The Panel expects this program to continue to have positive impacts on contaminant loads to the reservoir. However, because the grouting cannot and does not aim to seal all fractures that interact with the surface flows, the Panel does not expect the remediation to return contaminant concentrations or loads to pre-mining values.

At this time, the Panel does not advise additional mitigation and management measures (aside from the monitoring and analysis recommended above) beyond the ongoing grouting program.

Long-term risks to water quality in the Special Areas arise from:

- The potential for cumulative consequences of historical, current and future mining areas on reservoir water and sediment composition and quality.
- The potential for widespread mobilisation of contaminants from subsidence fractures if regional groundwater levels and pressures rebound.

The current advice partially addresses these concerns for the Woronora reservoir by recommending monitoring and analysis that supports a better understanding of the contaminant loads from longwall mining areas of the catchment, improved capability to predict the consequences for water quality supplied to the WFP and better baseline data and modelling capability for assessing future mining proposals.

If the unexpectedly high flow rates that have been measured at the Eastern Tributary from early 2020 to late 2022, which are assessed in detail in IEAPM (2023), are due to increased groundwater discharge through subsidence fractures or shear planes, they may be associated with highly elevated contaminant loads. This illustrates the need for reporting of contaminant loads wherever possible with available data. Furthermore, measurement of water chemistry can assist in determining the source of these unexpectedly high flows.

#### Recommendations

Performance indicators and associated trigger levels for water reaching the Woronora Reservoir should be assessed using total Fe, Mn and Al where sufficient baseline data exist. Both total and dissolved Fe, Mn and Al concentrations should be reported in six-month and annual reports.

Contaminant loads as well as concentrations should be considered in performance measure assessments and six-monthly and annual reporting as far as data allow. Current data limitations mean that reliance on concentrations for monthly assessment of performance indicators is appropriate for the current series of longwalls.

Flow event water quality (including dissolved and total Fe, Mn and Al concentrations) using automatic samplers at ETWQ AU, WQWQ9 and WOWO2 should be obtained to support analysis of contaminant loads. At the same sites, continuous measurements of electrical conductivity, pH, redox potential, and turbidity should also be obtained.

After a database of flow and concentration measurements has been built up, analysis should be conducted towards generalisation of flow-concentration relationships, and approximation of loads, and whether these have changed as mining has progressed. Initial results including total Fe, Al and Mn loads at ETWQ AU, WQWQ9 and WOWO2 should be reported in the 2024 Annual Report and updates provided in subsequent annual reports.

For future mining areas, flow and contaminant concentrations should be measured and loads estimated at least two years in advance of mining at impact and control sites to allow BACI analysis.

Suitable methods for improving the extension of the Eastern Tributary rating curves to improve high flow measurement accuracy should be undertaken by Peabody. WaterNSW should review whether the extension of the rating curve at the Waratah Rivulet could be improved. Selected watercourses in future mining areas should have flow gauges installed with validated rating curves. Where it is impractical to extend rating curves to high flows, alternative methods of high flow estimation should be considered.

Temperature and water quality data should be obtained at various depths through the water column in the upper reservoir (at a location such as WDFS1 that is downstream of the entry of both the Waratah Rivulet and Eastern Tributary) to capture both the temperature stratification behaviour and the water quality at this point. Frequency of data collection should increase following significant flow events and following level 3 triggers for water quality reaching the reservoir.

It is recommended that an agreement be reached whereby a hydrodynamic and contaminant transport model set-up is designed to support assessments of potential mining impacts. Consideration should be given as to how the responsibility for the modelling is shared between WaterNSW and Peabody.

Peabody should procure sediment cores at selected locations downstream of the confluence of Waratah Rivulet and Eastern Tributary with the reservoir and at control sites in the reservoir in order to assess the possible impacts of mining on alterations to sediment composition (with implications to possible mobilisation of Fe and Mn should these sediments become anoxic).

When quality of water reaching the reservoir at performance indicator sites surpasses a level 3 trigger, analysis should be extended to:

- once installed, water quality data collected at various depths at WDFS1 or similar site representing the confluence of the Eastern Tributary and Waratah Rivulet arms of the reservoir,
- if available, contaminant load estimates,
- if available, reference to results of a lake hydrodynamic and contaminant transport model run using relevant scenarios of increased contaminant loads.

In any future mining areas, performance indicators and triggers should be based on loads as well as concentrations.

When reservoir water quality passes a level 3 trigger, more detailed analysis of the reservoir water quality should be undertaken including:

- data collected at various depths at DW01 (i.e., at the vertical profiler),
- data collected at various depths at Woronora Reservoir at DWO\_THMD (Honeysuckle Creek Junction),
- once installed, data collected at various depths at WDFS1 (Figure 3) (or similar site representing the confluence of the Eastern Tributary and Waratah Rivulet arms of the reservoir),

• once available, iron and manganese concentrations in reservoir sediments.

Irrespective of these recommendations for further analysis in response to triggers, the Panel recommends that a more detailed analysis be undertaken of historical reservoir water quality and sediment cores in order to analyse potential trends and relations with mining development. This should be included in the 2023 Annual Review and updated in subsequent annual reviews.

Following the conclusions in IEPMC (2019), it is recommended that a broader study of potential long-term cumulative impacts of mining on water quality in the Special Areas is needed.

# TABLE OF CONTENTS

| 1.0         | SCOPE OF WORKS                                                                                    | 7  |
|-------------|---------------------------------------------------------------------------------------------------|----|
| 2.0         | METHOD OF OPERATION                                                                               | 7  |
| 3.0         | BACKGROUND                                                                                        | 9  |
| 3.1.        | Woronora reservoir and mining in the catchment                                                    | 9  |
| 3.2.        | Woronora reservoir – water quality criteria                                                       | 9  |
| 3.3.        | Raw water quality monitoring                                                                      | 14 |
| 3.4.        | Water quality incidents and trends                                                                | 15 |
| 3.5.        | Subsidence impacts on water quality – mechanisms                                                  | 17 |
| 3.6.        | Subsidence impacts management and performance measures                                            | 19 |
| 3.7.<br>Wor | Previous investigations and advice relating to mining impacts on the water qualitronora reservoir | •  |
| 3.8.        | WaterNSW comments                                                                                 | 25 |
| 3.9.        | Cumulative impacts assessment using numerical models                                              | 26 |
| 4.0         | PANEL ADVICE                                                                                      | 26 |
| 4.1.        | Assessments Against Water Quality Performance Measures                                            | 26 |
| 4.2.        | Performance Indicators                                                                            | 31 |
| 4.3.        | Monitoring, analysis and assessment                                                               | 31 |
| 4.4.        | Mitigation and management of water quality impacts                                                | 33 |
| 4.5.        | Cumulative impact assessment                                                                      | 33 |
| 4.6.        | Other matters                                                                                     | 34 |
| 5.0         | CONCLUSIONS AND RECOMMENDATIONS                                                                   | 35 |
| REFE        | RENCES                                                                                            | 40 |

# 1.0 SCOPE OF WORKS

On 4 April 2023, the Department of Planning and Environment wrote to the Chair of the Independent Advisory Panel for Underground Mining (now the Independent Expert Advisory Panel for Mining, referred to as "the Panel" here on) requesting advice on Water Quality Performance Measures for Metropolitan Coal Mine. Specifically, advice was requested on:

- 1. The Assessments Against Water Quality Performance Measures<sup>1</sup>, and whether the justifications and conclusion that the water quality performance measure for Woronora Reservoir have not been exceeded are reasonable.
- 2. Whether the performance indicator for negligible reduction to the quality of water resources reaching the Woronora Reservoir defined in WMPs is appropriate.
- 3. Whether additional water quality monitoring, analysis and/or assessment is required to further determine compliance with the water quality performance measure for Woronora Reservoir.
- 4. Whether any further reasonable and feasible actions to mitigate and manage water quality impacts are considered necessary, beyond the existing requirements to continue implementing monitoring and management programs.
- 5. Whether a cumulative impact assessment study is considered necessary to review water quality trends and potential impacts on drinking water supply from increased metals loads from the catchments impacted by mine subsidence at Metropolitan Mine.

The Department also noted that it would welcome any other significant advice that the Panel may wish to provide concerning this issue.

The Chair of the IEAPM (Em. Professor Jim Galvin) nominated the following members of the Panel to prepare the advice:

- Professor Neil McIntyre Surface water (and Chair of the Panel for this advice)
- Mr John Ross Groundwater
- Professor David Waite Water quality

## 2.0 METHOD OF OPERATION

As part of developing its advice, the Panel undertook the following activities:

- Online meeting with WaterNSW on 12 July
- Field visit on 19 July to Eastern Tributary, Waratah Rivulet and Woronora dam attended by Neil McIntyre and David Waite of the Panel and representatives of DPE, WaterNSW and Peabody.
- Online meeting with Sydney Water and WaterNSW on 26 July

<sup>&</sup>lt;sup>1</sup> The Assessments Against Water Quality Performance Measures are primarily a series of assessments from 2018 to 2022 conducted for Peabody by Associate Professor Barry Noller of The University of Queensland that followed exceedances of performance indicators for water quality reaching the Woronora Reservoir.

• Online meetings of Panel members on 5 July, 7 August and 28 August.

The following primary documentation was referred to by the Panel:

- HEC (2023) Metropolitan Coal Surface Water Review 1 July to 31 December 2022 (App B2 of Metropolitan Coal Annual Review 2022)
- Peabody (2022) Metropolitan Coal Water Management Plan for Longwalls 308-310
- The University of Queensland (2018-2022), Assessments Against Water Quality Performances. A series of 25 letters from Associate Professor Barry Noller of The University of Queensland to Peabody between November 2018 to December 2022.
- Peabody (2023) Assessment Against The Water Resources Subsidence Impact Performance Measure, Letter of 10 January 2023 to NSW Department of Planning and Environment
- Metropolitan Coal Project Approval (08\_0149)
- WaterNSW letter to Peabody in response to Annual Review Report 2021 (dated 31 August 2022)
- WaterNSW letter to Peabody in response to Assessment against Water Quality Performance Measure April 2022 (dated 26 September 2022)
- WaterNSW letter to Peabody in response to Assessment against Water Quality Performance Measure April, May and June 2022 (dated 15 February 2023)
- WaterNSW Annual Water Quality Monitoring Reports 2020-2021, 2021-2022
- WaterNSW Greater Sydney Destratification Systems Operating Considerations, March 2023
- WaterNSW Water Quality Incident Response Protocol, June 2021
- Independent Expert Panel for Mining in the Catchment (IEPMC), 2018, Initial report on specific mining activities at the Metropolitan and Dendrobium coal mines, Prepared for the NSW Department of Planning and Environment
- Independent Expert Panel for Mining in the Catchment (IEPMC), 2019, Independent Expert Panel for Mining in the Catchment Report: Part 2. Coal Mining Impacts in the Special Areas of the Greater Sydney Water Catchment, Prepared for the NSW Department of Planning, Industry and Environment
- Responses to Panel's request for information provided by WaterNSW on 14 July, 1 August and 1 September (emails).
- Responses to Panel's request for information provided by Sydney Water on 4 September (email).

### 3.0 BACKGROUND

#### 3.1. WORONORA RESERVOIR AND MINING IN THE CATCHMENT

Woronora Reservoir (Figure 1) is one of the raw water storages that serves the Sydney area. Its capacity is 71.79 GL with catchment area 74.1 km² and surface area 3.996 km² when at capacity. The average total inflow over 2012-2017 was estimated to be approximately 28,000 ML/year or 900 L/s (WRIS 2019). The Eastern Tributary and Waratah Rivulet, which are the main tributaries affected by mining (Figure 1 and Figure 2), enter the reservoir approximately 10 km upstream of the dam. The catchment areas of these tributaries are 6.7 km² and 20.2 km² respectively (at flow gauge station numbers GS2132102 and GS300078).

Metropolitan Coal has undertaken longwall mining within the Woronora Reservoir catchment boundaries since mining of Longwall 1 in 1995 (Figure 2). Mining of longwalls 1-27 was complete in 2017 and, following mining of longwalls 301-308 from 2017 to 2023, mining of longwall 309 (immediately to the west of the reservoir in Figure 2) commenced in August 2023 (Peabody 2023).

The presence of mining subsidence-induced fractures and dilated bedding planes at locations in the Eastern Tributary and Waratah Rivulet and changes in pool drainage behaviour have been the subject of previous assessments (IEPMC 2018) and are summarised in Peabody's annual reports (e.g. Tables 7-9 of Peabody 2023). Further assessment of the subsidence effects, impacts and environmental consequences<sup>2</sup> for the Eastern Tributary catchment is provided in concurrent Panel advice (IEAPM 2023) whereas the current advice focusses on the potential consequences for water quality.

#### 3.2. WORONORA RESERVOIR – WATER QUALITY CRITERIA

The Woronora Reservoir supplies raw water to the Woronora Water Filtration Plant (WFP), situated at Woronora Dam and operated for Sydney Water by Veolia. The design capacity of the WFP is approximately 160 ML/day and its minimum output in order to prevent shut-down and to maintain a minimum supply is approximately 40 ML/day.

WaterNSW also has a Water Quality Incident Management protocol based on trigger levels and associated responses. The responses include notifying WFP operators when delivered raw water quality exceeds specified trigger levels (Table 1). The WFP operation, including its output rate, are adjusted when the input water quality reduces below specified limits. These limits are aligned with the trigger levels in Table 1.

The raw water supply agreement (RWSA) standards for Woronora Reservoir for total iron, total manganese and total aluminium (WaterNSW 2022a, Table 4.2) correspond to the major incident levels

<sup>&</sup>lt;sup>2</sup> The advice is premised on the following definitions as recommended by the Southern Coalfield Inquiry:

<sup>•</sup> Subsidence Effects: the deformation of the ground mass surrounding a mine due to the mining activity. The term is a broad one and includes all mining-induced movements, including both vertical and horizontal displacement, tilt, strain and curvature.

<sup>•</sup> Subsidence Impacts: the physical changes to the ground and its surface caused by subsidence effects. These impacts are principally tensile and shear cracking of the rock mass and localised buckling of strata caused by valley closure and upsidence but also include subsidence depressions or troughs.

<sup>•</sup> Environmental Consequences: the environmental consequences of subsidence impacts, including: damage to built features; loss of surface flows to the subsurface; loss of standing pools; adverse water quality impacts; development of iron bacterial mats; cliff falls; rock falls; damage to Aboriginal heritage sites; impacts to aquatic ecology; ponding

in Table 1. The significance of the RWSA standards is described by WaterNSW (2022a) as "WaterNSW has established terms and conditions of supply with wholesale customers to ensure treated water is not harmful to consumers' health. ... These standards are based on the treatment capabilities of the plants and the natural characteristics of the catchment. This ensures that raw water can be treated to meet ADWG requirements". WaterNSW (2021a, p19) further explains "These RWSAs include site specific water quality standards applicable for each Water Filtration Plant (WFP) based on typical historical raw water quality and plant capabilities".

The ADWG requirements referred to above and also referred to in the Peabody assessments (e.g., The University of Queensland 2022) are the Australian Drinking Water Guidelines published by the National Health and Medical Research Council and National Resource Management Ministerial Council (NHMRC & NRMMC, 2011). The ADWG requirements include maximum concentrations of metals in drinking water following treatment in a WFP. While the ADWG requirement for total manganese is 0.5 mg/L, the ADWG also indicate that some nuisance microorganisms can concentrate manganese and give rise to taste, odour and turbidity problems in distribution systems. A discretionary target of 0.01 mg/L is suggested by the ADWG for waters leaving a WFP. High filterable manganese concentrations in raw waters necessitate use of permanganate dosing to ensure treated waters contain less than 0.02 mg/L, above which manganese will form a coating on pipes that can slough off as a black ooze.

Another water quality guideline, which is referred to in the Peabody assessments (e.g., The University of Queensland 2022), is the Australian and New Zealand Guidelines for fresh and marine water quality (ANZG 2018), which includes guidelines for protection of aquatic species.

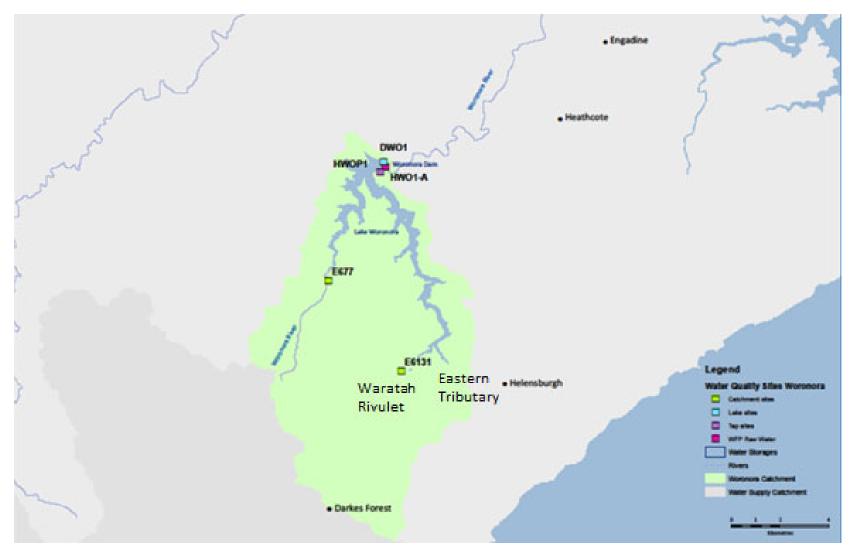



Figure 1. The Woronora Reservoir and its catchment (Figure 5.3 from WaterNSW 2021b, with the Eastern Tributary and Waratah Rivulet labels added to indicate their locations). HWOP1 is the picnic ground drinking water tap (and is not referred to again in this advice); DW01, HW01-A, E677 and E6131 are other WaterNSW monitoring points referred to in Section 3.3 below.

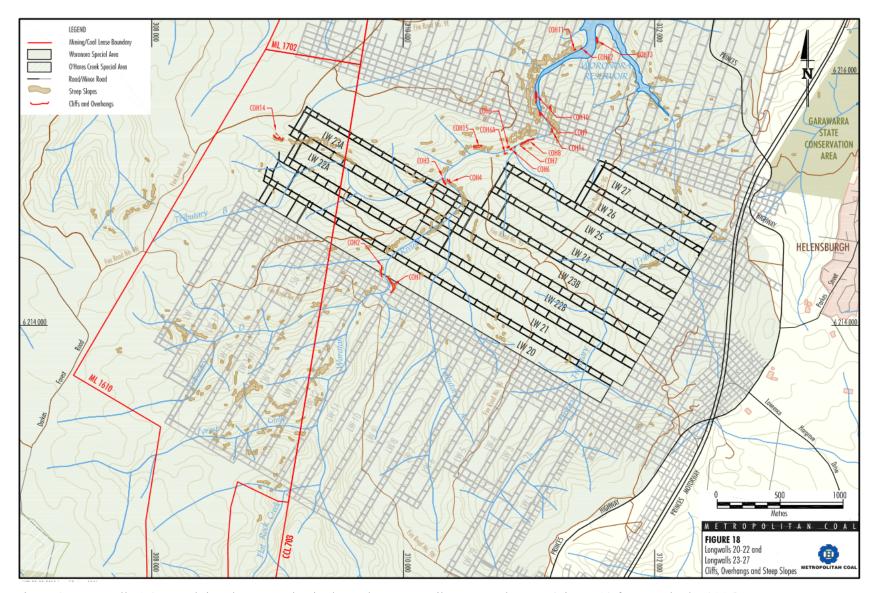



Figure 2. Longwalls 1-27 overlying the Waratah Rivulet and Eastern Tributary catchments (Figure 18 from Peabody, 2016)

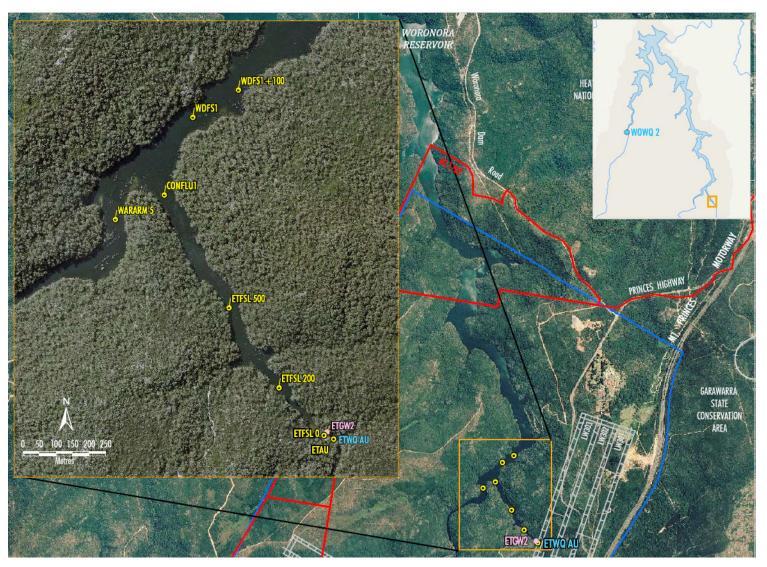



Figure 3. Peabody's monitoring locations at ETWQ AU and below the Full Supply Level of the Woronora Reservoir (copied from Figure 1 of The University of Queensland 2022)

Table 1 Water Quality Incident Management trigger levels for selected parameters at point of supply to Woronora Water Filtration Plant (from Table 7 of WaterNSW 2021)

| Parameter                   | Alert level | Minor incident level | Major incident<br>level <sup>[1]</sup> |  |
|-----------------------------|-------------|----------------------|----------------------------------------|--|
| Turbidity (NTU)             | >3-11       | >11-20               | >20                                    |  |
| True Colour @ 400 nm (CU)   | >6-52.5     | >52.5-70             | >70                                    |  |
| Filterable Iron (mg/L)      | >0.1        |                      |                                        |  |
| Total Iron (mg/L)           | >0.5-0.75   | >0.75-1.0            | >1.0                                   |  |
| Filterable Manganese (mg/L) | >0.02       |                      |                                        |  |
| Total Manganese (mg/L)      | >0.03-0.07  | >0.07-0.1            | >0.1                                   |  |
| Total Aluminium (mg/L)      |             | >0.3-0.4             | >0.4                                   |  |
| Total Organic Carbon (mg/L) | >4          |                      |                                        |  |

<sup>[1]</sup> The major incident level corresponds to the Raw Water Supply Agreement (RWSA) for Total Iron, Total Manganese and Total Aluminium (Table 4.2 of WaterNSW 2022a)

#### 3.3. RAW WATER QUALITY MONITORING

As well as at the point of supply to the water filtration plant (HW01-A in Figure 1), raw (i.e., untreated) water quality is regularly monitored by WaterNSW near to the dam wall (DWO1) and at the junction of the reservoir and Honeysuckle Creek (DWO\_THMD) (Figure 1). DW01 has long-term data (e.g., total iron since 1953, total manganese since 1986 and total aluminium since 1990) while water quality monitoring at DWO\_THMD began in 2012. The frequency of monitoring varies, typically 1 to 2 weeks at DWO1. DWO1 and DWO\_THMD samples are taken over a range of depths from the surface down to near the bed of the reservoir (at up to 59.5 m depth). Water quality has been sampled by WaterNSW at six other sites in the reservoir over the decades. Three reservoir sites are currently operational: DWO1, DWO\_THMD and a new site downstream of Bee Creek that was added in 2023<sup>3</sup>. WaterNSW routinely monitor the Waratah Rivulet and Woronora River (E6131 and E677 in Figure 1). The WaterNSW monitoring results are reported in WaterNSW annual reports and, for DWO1, in Metropolitan Mine annual and six-month reviews.

Peabody monitors water quality at many locations in the Metropolitan mining areas and control sites to inform performance assessments and to contribute to six-monthly and annual reporting (e.g., see locations of sites in Figure 7 of Peabody 2022). For performance assessments, the key sites are ETWQ AU, WRWQ9 and WOWQ2 (ETWQ AU is shown in Figure 3, while WRWQ9 and WOWQ2 are colocated with E6131 and E677 in Figure 1). ETWQ AU is co-located with the Eastern Tributary Gauging station immediately upstream of the reservoir at its Full Supply Level, WRWQ9 is co-located with the WaterNSW flow gauge on the Waratah Rivulet, approximately 700 m upstream of the Full Supply Level, and WOWQ2 is the Woronora River control site, unaffected by mining. Measurement of water quality at site ETWQ AU commenced in 2010, while at WQWQ9 it commenced in 2006 though measurements elsewhere in the Waratah Rivulet date back to 2001 (Parsons Brinckerhoff 2010). Additionally, monitoring has been undertaken by Peabody at sites in the reservoir downstream of the Full Supply Level at the Eastern Tributary and Waratah Rivulet (ETFSL (x3), WDFS (x2), CONFLU1

<sup>&</sup>lt;sup>3</sup> This summary of water quality monitoring is based on a spreadsheet provided to the Panel by WaterNSW

and WARARM 5 sites in Figure 2), which allow sampling from the "mixing zone" (The University of Queensland 2022) where the incoming contaminants are mixed with the upper reservoir water.

# 3.4. WATER QUALITY INCIDENTS AND TRENDS

Historically and most recently in July 2022, the Woronora reservoir water quality reduces during and after floods. This is illustrated here in Figure 4 and Figure 5 replicated from HEC (2022), showing that iron (Fe), aluminium (Al) and manganese (Mn) concentrations were unusually high during 2022 at DWO1<sup>4</sup> (i.e., all consistently above the 10 year Average Recurrence Interval curves and often above the 20 year Average Recurrence Interval curves). Sediment (turbidity) and Natural Organic Matter (NOM) concentrations were also elevated. Twelve months after the July 2022 flood event, the Woronora reservoir water quality had not recovered to average historical concentrations.

High sediment and Natural Organic Matter (NOM) concentrations necessitate the use of high coagulant dosages and frequent filter backwash with resultant high sludge loads and thus greater difficulty and increased cost in treating these waters compared to waters of lower turbidity and NOM content. For this reason, the WFP is currently operating at its minimum operational flow of 40 ML/day. This has financial implications for Sydney Water related to the contractual arrangements with the water treatment provider and the need to provide alternative drinking water sources including running the Kurnell desalination plant. While the principal operational challenges with the WFP are due to increased organic matter concentrations and increased turbidity associated with flood events (which result in the need for increased addition of coagulants, increased sludge loads and decreased filter run times), the challenges due to elevated metal concentrations cannot be ignored with high total iron concentrations contributing to high turbidity and high manganese concentrations requiring treatment to meet the 0.01 mg/L discretionary guideline referred to previously.

The quality of feed waters to the Woronora WFP is monitored by WaterNSW. WaterNSW has provided details of exceedances of the alert and incident levels (Table 1) since 2013 with a tabulation of numbers of exceedances (and severity of the exceedance) per year for particular parameters provided in Table 2 below.

Woronora Reservoir is artificially mixed by aerators deployed at the base of the reservoir near the dam wall with the injection of air preventing stratification and potential subsequent development of anoxic (low oxygen) conditions at depth. This aims to avoid the development of poor water quality at depth, including preventing the release of iron and manganese and associated nutrients (particularly phosphorus) from the sediments that can occur in anoxic conditions. The aerators are operated when temperature differences between deep and shallow water indicates the potential for stratification. The aerators destratify the reservoir in the vicinity of the dam wall but are unlikely to prevent stratification in the upper reaches of the reservoir, meaning that any redox-active metals (particularly iron and manganese) accumulated in the sediments of the upper reaches due to mining may be prone to release during anoxic conditions and potentially transported downstream towards the dam.

15

<sup>&</sup>lt;sup>4</sup> Trends and variations in reservoir water quality are assessed only at DWO1 due to relatively short lengths of record at all other monitoring stations

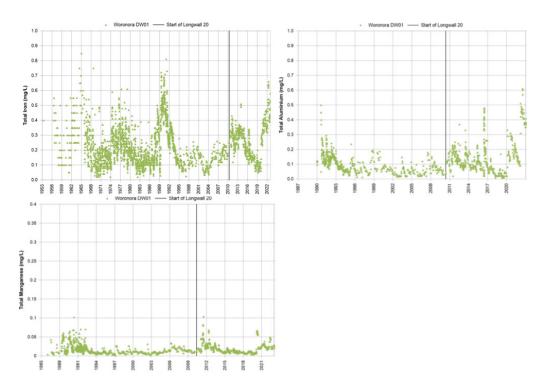



Figure 4. Time-series of total iron, aluminium and manganese at set DWO1 (Charts 42-44 of Peabody 2023). The far right-hand side of each plot shows the spike in July 2022.

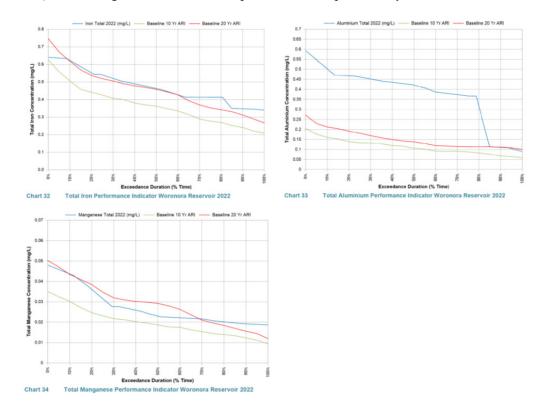



Figure 5. Exceedance durations of concentrations of total iron, aluminium and manganese at DWO1 during 2022, compared with exceedance durations in two historical years with poor quality water (10 Yr and 20 Yr ARI years) (Charts 45-47 of Peabody 2023).

Table 2 Number of exceedances at alert, minor and major levels per year for water quality parameters listed in Table 1. Data provided to Panel by WaterNSW based on monitoring data from HW01-A (location in Figure 1).

| Year               | Turbidity  | Colour     | TOC        | Al tot                  | Fe tot     | Fe filt    | Mn filt    |
|--------------------|------------|------------|------------|-------------------------|------------|------------|------------|
| 2023 (to end June) | 0          | 6          | 6          | 2 (minor)               | 4 (alert)  | 0          | 6 (alert)  |
| 2022               | 36 (alert) | 40 (alert) | 41 (alert) | 5 (minor)<br>33 (major) | 26 (alert) | 41 (alert) | 27 (alert) |
| 2021               | 2 (alert)  | 23 (alert) | 23 (alert) | 1 (minor)               | 2 (alert)  | 23 (alert) | 10 (alert) |
| 2020               | 6 (alert)  | 11 (alert) | 22 (alert) | 6 (minor)<br>1 (major)  | 0          | 22 (alert) | 5 (alert)  |
| 2019               | 1 (alert)  | 0          | 2 (alert)  | 0                       | 0          | 0          | 0          |
| 2018               | 0          | 0          | 0          | 0                       | 0          | 0          | 0          |
| 2017               | 0          | 0          | 12 (alert) | 0                       | 0          | 0          | 0          |
| 2016               | 11 (alert) | 0          | 26 (alert) | 2 (minor)<br>6 (major)  | 0          | 0          | 0          |
| 2015               | 6 (alert)  | 0          | 20 (alert) | 0                       | 0          | 0          | 0          |
| 2014               | 1 (alert)  | 0          | 9 (alert)  | 0                       | 0          | 0          | 0          |
| 2013               | 0          | 0          | 6 (alert)  | 0                       | 0          | 0          | 0          |

#### 3.5. SUBSIDENCE IMPACTS ON WATER QUALITY – MECHANISMS

The mechanisms of mining subsidence impacts and effects as relevant to the watercourses in the Metropolitan mining area are described in IEPMC (2018), WRIS (2017, 2019) and IEAPM (2023). Previous studies by and for the Sydney Catchment Authority have investigated in detail the mechanisms and evidence of the consequences of subsidence for water quality in the Waratah Rivulet, and reviewed water quality consequences of mining in other watercourses of the Southern Coalfield (Parsons Brinckerhoff 2007, 2010, Jankowsi 2010, Jankowsi and Knights 2010). Here, a summary of the mechanisms is given.

Of primary relevance here is the diversion of surface water and groundwater through mining-induced rock fractures and subsequent discharge of contaminated water into creeks and then into the reservoir. A variety of physicochemical processes influence the particular forms of iron, aluminium and manganese likely to be present. Under anoxic conditions, as is typical in subsurface environments, iron and manganese will be present predominantly in their soluble ferrous (Fe(II)) and manganous (Mn(II)) forms. On exposure to oxygen-containing water, the reduced forms of these redox-active elements should, thermodynamically, be transformed to their oxidised ferric (Fe(III)) and manganic (Mn(IV)) forms. Given the tendency of these oxidised forms to hydrolyse and precipitate, these elements will eventually be present, under oxic conditions, principally as particulate iron and manganese oxyhydroxides (typically represented as FeOOH(s) and MnOOH(s)). The rates of Fe(II) and Mn(II) oxidation by oxygen however differ markedly and are strongly pH dependent with Fe(II) expected to transform to particulate FeOOH(s) within minutes at circumneutral pH while Mn(II) transformation may take many days or even weeks to reach its preferred MnOOH(s) form. The oxidised forms of these elements will initially form nanosized particulates that may aggregate to micron-sized assemblages that will be trapped on the 0.45 µm membrane filters used to separate the "dissolved" (filterable) fraction

from the total metal oxyhydroxide present though a portion of the particulates may remain in fine colloidal form and pass through the membrane filters (and appear in the "dissolved" fraction)<sup>5</sup>.

The presence of natural organic matter (NOM) in oxic waters may inhibit the aggregation process (as a result of adsorption of this organic matter to particulates and imposition of negative surface charge) with resultant increase in proportion of the metal oxyhydroxide present in colloidal form. Unlike redox active iron and manganese, aluminium occurs only in the trivalent (Al(III)) form and will be present either as aluminium oxyhydroxides (AlOOH(s)) or, more likely, as aluminosilicate clays. Like FeOOH(s), these particulate forms of aluminium may be retained by the 0.45 µm membrane filters or, if sufficient NOM is present, a portion of the particulate aluminium may remain in colloidal form and pass through the filters into the filterable fraction. High concentrations of total aluminium are often observed together with high turbidity as suspended aluminosilicate clays are typically the cause of high turbidity.

#### In summary,

- The mass of iron, aluminium and manganese transported from rock fractures to the reservoir depends on the degree and location of fracturing, properties of the rock, chemistry of the water, and flow pathways, flow rates, and the interactions of all these.
- If baseflow discharges from regional groundwater increase after a high rainfall event, or if regional water table levels recover post mining, then increased loads of iron, aluminium and manganese transported from rock fractures could be expected.
- The physicochemical processes influencing the forms of iron, aluminium and manganese result in iron and aluminium being present in streams flowing into Woronora Reservoir predominantly in particulate form and manganese being present predominantly in filterable ("dissolved") form.
- Iron, aluminium and any particulate manganese present in streams flowing into Woronora Reservoir would be expected to deposit, for the most part, to the sediments in solid oxyhydroxide form though a portion may remain in suspension if stabilised in colloidal form by adsorbed natural organic matter.
- Dissolved manganous (Mn(II)) manganese, the predominant form of manganese in streams flowing into Woronora Reservoir, is likely to remain in this form for some time (days-weeks) though would be expected to eventually oxidise to manganic (Mn(III)) form and deposit to the sediments as particulate oxyhydroxide (MnOOH(s)).

The eventual fate of the redox active elements iron and manganese that are deposited to benthic Woronora Reservoir sediments will be dependent on the oxidation state of the sediments. In winter, the reservoir will typically be well-mixed with sufficient oxygen through the water column to maintain iron and manganese in their oxidised particulate forms within the benthic sediments. In summer, when the reservoir naturally thermally stratifies (i.e., separates into a higher temperature well-mixed oxic surface layer (the epilimnion) and a lower temperature anoxic deeper layer (the hypolimnion)), the particulate forms of iron and manganese are likely to be transformed, to some extent, to filterable ("dissolved")

<sup>&</sup>lt;sup>5</sup> While the word "dissolved" has been consistently used in the Metropolitan Water Management Plan, it should be recognised that "dissolved" concentrations may also include colloidal materials that may have passed through the 0.45 μm filter used in field sampling. In this advice, "filterable" is used to include both dissolved and colloidal forms.

forms that, subsequently, may be transported through the reservoir and, potentially, to the raw water offtake near the dam wall.

As noted above, the reservoir is artificially destratified (by injection of air) near the dam wall during summer to reduce the extent of release of iron and manganese from the sediments and to minimise the likelihood of high concentrations of iron and manganese being present in raw waters supplied to the WFP. This destratification process is effective in preventing formation of an anoxic zone in the vicinity of the aerator but is unlikely to break the stratification that will occur in summer in the upper reservoir. It is possible that natural convective forces and/or the aeration process could result in the transport of high iron and manganese content waters from the upper reaches of the reservoir toward the dam wall though hydrodynamic and contaminant transport modelling of the reservoir would be required to assess the likelihood of this occurring.

While the diversion of surface water and groundwater through mining-induced rock fractures and subsequent discharge of contaminated water into creeks and then into the reservoir is evident, the extent to which the increased loads of iron, aluminium and manganese transported to reservoir benthic sediments as a result of mining subsequently impacts reservoir water quality is uncertain given that these elements occur naturally in the runoff from non-mined catchments and in the benthic sediments. It should be noted however that freshly deposited particulate oxyhydroxides of these elements are likely to be more reactive and more readily mobilised on onset of low oxygen conditions than the more crystalline (and thus less reactive) forms of these elements that are intrinsically present naturally in the sediments.

Aside from metals leaching from rock fractures, potential consequences of mine subsidence on water quality include:

- Physical drying of affected swamps and subsequent increase risk of erosion of swamp organic material, and reduced capacity of the swamp to moderate contaminant export.
- Changes to slopes of watercourses and associated soil erosion.
- Accidental spills of contaminants from surface operations within the catchment.

These mechanisms, if and when they exist in this catchment, could affect reservoir water quality, particularly during and after flood events. However, these mechanisms are relatively localised and the diversion of surface water and groundwater through mining-induced rock fractures is considered to be the more relevant mechanism for the purpose of this advice.

#### 3.6. SUBSIDENCE IMPACTS MANAGEMENT AND PERFORMANCE MEASURES

The Metropolitan Coal Project Approval (08\_0149) requires Metropolitan Coal to ensure that its mining activities do not cause any exceedance of subsidence impact performance measures outlined in Table 1 of Condition 1, Schedule 3 of the Approval, which includes:

- Negligible reduction to the quality or quantity of water resources reaching the Woronora Reservoir
- Negligible reduction in the water quality of Woronora Reservoir

The associated Performance Indicators (Peabody's proposed measure of whether the performance measure in being met) are:

• Changes in the quality of water entering Woronora Reservoir are not significantly different post-mining compared to pre-mining concentrations that are not also occurring at control site WOWO2

• Changes in the quality of water in the Woronora Reservoir are not significantly different postmining compared to pre-mining concentrations.

The first of these is based on comparing pre-mining baseline with post-mining measurements of water quality on the Eastern Tributary (site ETWQ AU) and Waratah Rivulet (WRWQ9), taking into account variations at the control site on the Woronora River (WOWQ2). The parameters considered for the creek water quality performance indicators are filterable (field filtered using  $0.45~\mu m$  filter) iron, filterable manganese and filterable aluminium.

The second of these performance indicators – that focusses on Woronora Reservoir water quality - is based on comparing pre-mining baseline and post-mining measurements of water quality at site DWO1 in the reservoir without use of a control site (although variations in water quality in other reservoirs have been considered in the analysis of results). In this case the parameters are total iron, total manganese and total aluminium.

A series of three water quality triggers (defined in Table 24-a, 24-b and 26 of Peabody 2022, copied as Tables 3, 4 and 5 below) are used to escalate management actions based on the degree of difference between pre-mining and post-mining water quality. If trigger level 3 for creek sites ETWQ AU or WRWQ9 is surpassed for any of the three parameters this is treated by Peabody as requiring an investigation to determine if it should be regarded as a non-negligible impact that would constitute an exceedance of the performance measure related to the quality of water resources entering the Woronora Reservoir. This investigation has been provided by Associate Professor Barry Noller of The University of Queensland resulting in a series of reports from November 2018 to December 2022 (and earlier assessments are referred to in Peabody 2022), which concluded that the performance measure has not been exceeded. The rationale of that conclusion is reviewed as part of Section 4 of this advice. If the trigger level 3 for reservoir water quality at site DWO1 (Table 5 below) is triggered, then an investigation is also required. The Panel has not seen specific reports associated with the reservoir water quality triggers except those in the 6-month and annual reports, which have concluded that the level 3 triggers during 2022 were not associated with mining. This conclusion is also reviewed in Section 4 of this advice.

Table 24-A

Trigger Action Response Plan – Negligible Reduction to the Quality of Water Resources Reaching the Woronora Reservoir

| Performance Performance Indi                                                                                                                            |                                                                                        | onitoring<br>Site(s)                      | Parameters                                                   | Frequency/<br>Sample<br>Size | Analysis Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Error Types                                                    | Baseline                                                                                                                                                                                                                                                                | Significance Levels/Triggers |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Action/Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Negligible reduction to the quality of water resources reaching the Woronora Reservoir.  Changes quality of Reservoi grace from the woronora reservoir. | vater the W foronora are not site E on the sst- npared ing Contro o W Woror at control | Waratah<br>ulet.<br>ETWQ AU<br>he Eastern | Iron (Fe). Manganese (Mn). Aluminium (Al). [Field filtered]. | Monthly.                     | Water quality data analysed quarterly, following the receipt of laboratory data <sup>1</sup> :  • Adjusted baseline mean plus two standard deviations <sup>2, 3</sup> have been calculated for each water quality parameter and are provided in Table 24-B.  • Adjusted baseline mean plus one standard deviation <sup>4, 5</sup> has been calculated for each water quality parameter and are rovided in Table 24-B.  The six month mean metal concentration will also be calculated at the end of each six month review period. | Potential for sampling. Iaboratory and data management errors. | WRWQ9 • Fe (0.03 to 0.39 mg/L). • Mn (0.01° to 0.069 mg/L). • Al (0.001° to 0.15 mg/L).  ETWQ AU • Fe (0.1 to 0.5 mg/L). • Mn (0.005° to 0.033 mg/L). • Al (0.03 to 0.11 mg/L).  WOWQ2 • Fe (0.05° to 1.3 mg/L). • Mn (0.01° to 0.1 mg/L). • Al (0.0005° to 0.11 mg/L). | Level 2 Level 3              | Data analysis indicates no water quality parameter exceeds the adjusted baseline mean plus two standard deviations.  Data analysis indicates any water quality parameter exceeds the adjusted baseline mean plus two standard deviations for one month.  Data analysis indicates:  any water quality parameter exceeds the adjusted baseline mean plus two standard deviations for two consecutive months; or over a three month period the water quality parameter exceeds the adjusted mean plus two standard deviations in the first month, the adjusted mean plus one standard deviation in the next month and the adjusted mean plus two standard deviations in the third month; or the six month mean exceeds the adjusted baseline mean plus one standard deviation for two consecutive assessment periods (i.e. over two six month) reports), and  there was not a similar exceedance of the trigger at the control site. | Continue monitoring.  Six monthly reporting.  Increase the frequency of data analysis to monthly (until such time that data analysis indicates a return to Level 1).  Six monthly reporting.  Increase the frequency of data analysis to monthly (until such time that data analysis indicates a return to Level 1).  If the water quality parameter is greater than the historical maximum, then undertake an investigation and assess against the performance measure. If the water quality parameter is less than the historical maximum, then undertake an investigation and assess against the performance measure at the end of the quarter?  Report to DPE, WaterNSW, DPE — Water and BCS within one month of assessment completion.  Consider the need for management measures, in accordance with Sections 8 and 9. |

Table 3 Trigger Action Response Plan for water quality entering the Woronora Reservoir (Table 24-A of Peabody 2022).

Table 24-B
Adjusted Baseline Mean plus Standard Deviations for Sites WRWQ9, ETWQ AU and WOWQ2

| Assessment                                           | Site                                          | Water Quality Indicator | Baseline Mean<br>Plus Two Standard<br>Deviations (mg/L) | Adjusted Baseline<br>Mean Plus Two<br>Standard<br>Deviations (mg/L) | Baseline Mean<br>Plus One Standard<br>Deviation (mg/L) | Adjusted Baseline<br>Mean Plus One<br>Standard Deviation<br>(mg/L) |
|------------------------------------------------------|-----------------------------------------------|-------------------------|---------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|
| Waratah Rivulet water                                | WRWQ9                                         | Dissolved Iron          | 0.544                                                   | 0.706                                                               | 0.284                                                  | 0.337                                                              |
| quality post-mining versus baseline, and compared to |                                               | Dissolved Aluminium     | 0.097 0.100                                             |                                                                     | 0.041                                                  | 0.047                                                              |
| control site WOWQ2                                   |                                               | Dissolved Manganese     | 0.092                                                   | 0.117                                                               | 0.055                                                  | 0.066                                                              |
|                                                      | WOWQ2 (using same baseline period as WRWQ9 to | Dissolved Iron          | 0.741                                                   | 0.961                                                               | 0.324                                                  | 0.385                                                              |
|                                                      |                                               | Dissolved Aluminium     | 0.244                                                   | 0.250                                                               | 0.094                                                  | 0.109                                                              |
|                                                      | allow comparison)                             | Dissolved Manganese     | 0.064                                                   | 0.082                                                               | 0.042                                                  | 0.051                                                              |
| Eastern Tributary water                              | ETWQ AU                                       | Dissolved Iron          | 0.543                                                   | 0.543                                                               | 0.336                                                  | 0.336                                                              |
| quality post-mining versus baseline, and compared to |                                               | Dissolved Aluminium     | 0.094                                                   | 0.188                                                               | 0.065                                                  | 0.106                                                              |
| control site WOWQ2                                   |                                               | Dissolved Manganese     | 0.029                                                   | 0.030                                                               | 0.017                                                  | 0.020                                                              |
|                                                      | WOWQ2                                         | Dissolved Iron          | 1.657                                                   | 1.657                                                               | 0.555                                                  | 0.555                                                              |
|                                                      | (using same baseline                          | Dissolved Aluminium     | 0.075                                                   | 0.151                                                               | 0.061                                                  | 0.100                                                              |
|                                                      | period as ETWQ AU to allow comparison)        | Dissolved Manganese     | 0.090                                                   | 0.094                                                               | 0.052                                                  | 0.058                                                              |

Table 4 Water quality criteria that define the water quality trigger levels referred to in Table 3 (Table 24-B of Peabody 2022).

Table 26
Trigger Action Response Plan – Negligible Reduction to the Quality of Water Resources in the Woronora Reservoir

| Performance<br>Measure                                                          | Performance<br>Indicator                                                                                                                                                                                                                                                             | Monitoring<br>Site(s)                                                                                                                                                                                                                                                                                                 | Parameters                                                                  | Frequency/<br>Sample Size       | Analysis Methodology                                                                                                                                                                                                                                                                                                                       | Error Types                                                                                                                                                                                                                                                                    | Baseline                                                                                                                                                                                                                                                                                 |         | Significance Levels/<br>Triggers                                                                                                                                                                                                                                                                   | Action/Response                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Negligible<br>reduction in<br>the water<br>quality of<br>Woronora<br>Reservoir. | Changes in the quality of<br>water in the Woronora<br>Reservoir are not<br>significantly different<br>post-mining compared to<br>pre-mining<br>concentrations.                                                                                                                       | Woronora<br>Reservoir (site<br>DW01)<br>(subject to<br>data<br>availability<br>from<br>WaterNSW)<br>Nepean<br>Reservoir                                                                                                                                                                                               | Total Iron (Fe).<br>Total<br>Manganese<br>(Mn).<br>Total Aluminium<br>(Al). | Sampling frequency is variable. | Water quality data analysed annually, following the receipt of data from WaterNSW. Water quality parameters, measured in the same location on the same day will be geometrically averaged. The parameter records will be interpolated to provide daily records. Concentration exceedance duration                                          | Potential for<br>sampling,<br>laboratory and<br>data<br>management<br>errors.                                                                                                                                                                                                  | Baseline 10 and<br>20 year ARI<br>exceedance curve                                                                                                                                                                                                                                       | Level 1 | The current year's duration exceedance curve for a water quality parameter in Woronora Reservoir (total iron, total manganese and total aluminium) is below the baseline 10 year ARI exceedance curve for any range of the duration percentages from 0% to 75%.                                    | Continue monitoring. Annual reporting.                                                                                                                                                                                                    |
|                                                                                 |                                                                                                                                                                                                                                                                                      | (subject to<br>data<br>availability<br>from<br>WaterNSW)<br>Cataract<br>Reservoir<br>(subject to<br>data<br>availability                                                                                                                                                                                              |                                                                             |                                 | curves will be calculated for each parameter by determining the concentration exceeded at each location by percentages of days of the year covering the full range from 0% to 100%, at 5% intervals.  Baseline data will be analysed in an annual format to determine concentration exceeded with an estimated average recurrence interval |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                          | Level 2 | The current year's duration exceedance curve for a water quality parameter in Woronora Reservoir (total iron, total manganese and total aluminium) is above the baseline 10 year ARI but below the baseline 20 year ARI exceedance curve for any range of the duration percentages from 0% to 75%. | Plot and qualitatively assess the<br>Woronora Reservoir, Nepean<br>Reservoir and Cataract Reservoir<br>water quality data every six months<br>(until such time that data analysis<br>indicates a return to Level 1).<br>Annual reporting. |
|                                                                                 | from  (ARI²) curve of 20 years by percentages of days in the yes 0% to 100%. For each percer time selected from this range, curve will be calculated by fitti Generalised Extreme Value distribution to the concentratio exceeded each year of the ba record by that percentage of d | (ARI²) curve of 20 years by percentages of days in the year from 0% to 100%. For each percentage of time selected from this range, an ARI curve will be calculated by fitting a log Generalised Extreme Value distribution to the concentration exceeded each year of the baseline record by that percentage of days. |                                                                             |                                 | Level 3                                                                                                                                                                                                                                                                                                                                    | The current year's duration exceedance curve for<br>a water quality parameter in Woronora Reservoir<br>(total iron, total manganese and total aluminium)<br>is above the baseline 20 year ARI exceedance<br>curve for any range of the duration percentages<br>from 0% to 75%. | Plot and qualitatively assess the data from the Nepean Reservoir and Cataract Reservoir.  Undertake investigation and assess against the performance measure.  Report to DPE, WaterNSW, DPE – Water and BCS within one month of assessment completion.  Consider the need for management |         |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |
|                                                                                 |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                       |                                                                             | 1 (A)                           | For each water quality parameter, the<br>concentration exceedance curve for<br>the current year of monitoring and the<br>20 year ARI exceedance curve<br>calculated from the baseline records<br>will be plotted on a graph.                                                                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                    | measures, in accordance with<br>Sections 8 and 9.                                                                                                                                                                                         |

Baseline data includes data prior to 19 May 2010 (i.e. prior to the commencement of Longwall 20).

Table 5 Trigger Action Response Plan for Woronora Reservoir water quality (Table 26 of Peabody 2022).

Average Recurrence Interval. This term has been used here for consistency with previous Annual Reviews and Water Management Plans. Based on recommendations by the Institution of Engineers Australia, the preferred terminology now involves the term Annual Exceedance Probability (AEP) expressed as a percentage probability. This is to avoid confusion that the term ARI has caused within the industry, community and other stakeholders. A 20 year ARI is equivalent to a 5% AEP.

# 3.7. PREVIOUS INVESTIGATIONS AND ADVICE RELATING TO MINING IMPACTS ON THE WATER QUALITY OF THE WORONORA RESERVOIR

Parsons Brinckerhoff (2010) conducted a study for the Sydney Catchment Authority that included understanding the consequences of subsidence for water quality of the Waratah Rivulet. Relevant conclusions were:

- The effects of longwall mining induced subsidence on surface water quality were most apparent under low flow conditions. During low flow conditions EC, major ion concentrations, dissolved manganese, barium and strontium concentrations were elevated. In addition, dissolved iron readily oxidised to form orange/brown precipitates of iron oxides and hydroxides on the creek bed and thick bacterial mats flourished under the low flow conditions.
- The long term impacts on surface water in Waratah Rivulet are difficult to assess due to lack of baseline (pre-mining) data. During the study period [2006-2009], there was no significant increase in major ion or metal concentrations over time. However a comparison of the current data with the only available historical water quality data (from 2001) does show an increase in salinity, and some major ions and metals in Waratah Rivulet at Flat Rock Crossing.

Although assessing in some detail the water quality of the Waratah Rivulet, which accounts for 29% of the Woronora Reservoir catchment, Parsons Brinckerhoff (2010) did not quantify or comment in any detail on the implications of modifications to the Waratah Rivulet water quality for the Woronora Reservoir. The WaterNSW annual reviews include a data summary and brief commentary on water quality at a site on Waratah Rivulet (downstream of Flat Rock Crossing, near where Fire Road 9H crosses the Waratah Rivulet on Figure 1), with WaterNSW (2022) stating "Aluminium and indices reflecting increases in organic loading (pH and dissolved oxygen) showed increased exceedances mainly due to increased inflows". Trends are assessed biannually by WaterNSW, with the last assessment in WaterNSW (2021) (Table 9.3 of that document) showing statistically significant negative trends (reducing concentrations) at DW01 during 2011-2021 for total and filterable manganese, total aluminium, and total and filterable iron.

Considering the implications of impaired water quality due to mining in the Special Areas, IEMPC (2019) cited a literature review prepared for WaterNSW (Advisian 2016):

"In summary, although some consequences on water quality within the watercourses in the study are documented in the literature, these consequences are likely to be short term, sporadic and localised... Any consequences on water quality at the reservoirs would be treatable by the existing Sydney Water treatment plants."

The adequacy of relying on water treatment capacity in context of the relevant performance measures is considered in Section 4 of this advice.

# IEMPC (2019) continued:

However, the literature review did not consider potential consequences of groundwater outflows from spill points following mine closure and groundwater repressurisation. This needs careful consideration because of the potential for the outflow to leach metals as it travels through the overburden fracture network. The total surface area of fractures in this network is orders of magnitude greater than that of local fracture networks that affect water quality in watercourses impacted by valley closure. This could have serious potential implications for both the volume of metals reporting to the Sydney water supply in the future and for the unknown but likely extremely long duration of these elevated metal loads, unless appropriately managed. As management options may be limited where spill points occur inside Special Areas, considerations arise as to whether it is feasible to restore water table in the long term.

Better understanding of the potential long-term contaminant loads to reservoirs and other water supply works is essential. This should include integrating monitoring of contaminant concentrations with flow monitoring at operational mines so that contaminant loads<sup>6</sup> can be calculated and modelled at key locations. Relevant contaminants should be agreed between primary stakeholders.

The Independent Advisory Panel for Underground Mining (IAPUM 2021) echoed that advice in the context of the Dendrobium mine:

The Panel regards contamination as a potential strategic concern if mining in the Special Areas is to continue long-term or if groundwater levels might recover and lead to increased discharge of contaminated water following the cessation of mining. If either scenario is possible, further consideration by stakeholders of the value and feasibility of estimating contaminant loads and their incorporation in TARPs is recommended.

Where creeks enter a large reservoir such as the Woronora Reservoir, the creek's contaminant load over periods of days, weeks or months (depending on the flows and hydrodynamics) significantly influences the contaminant concentrations. Basing assessments only on concentrations has limited value, since high loads often coincide with low concentrations and vice versa.

The Woronora Reservoir Impact Strategy (WRIS) expert group was initiated in 2017 for "Engagement of independent experts to prepare a Woronora Reservoir Impact Strategy, which provides a staged plan of action for further investigations and a report into the impacts of mining near the Reservoir". Potential impacts on water quality were not considered in the WRIS reports (WRIS 2017, 2019).

#### 3.8. WATERNSW COMMENTS

The Panel was provided by the Department with two documents (WaterNSW 2022b, 2023) in which WaterNSW comment on the water quality performance assessments undertaken by Associate Professor Barry Noller and one document (WaterNSW 2022c) that includes comments on the water quality results in the Metropolitan Coal 2021 Annual Review.

WaterNSW concerns of particular relevance to this advice are:

- Ongoing exceedances of filterable manganese performance indicators (Level 3) for water reaching the reservoir
- 2021 exceedances (Level 3) of water quality indicators for total aluminium, manganese and iron in the Woronora Reservoir (following the WaterNSW letter of 31 Aug 2021 these exceedances have been repeated during 2022)
- Lack of assessment of water quality trends and the impacts of mining on loads
- The potential for more frequent impacts from extreme events as mining footprint increases
- Monitoring and assessment is not rigorous enough to evaluate cumulative impacts on water quality in Woronora Reservoir

<sup>6</sup> Load rate = concentration x flow. This needs to be calculated continuously over time in order to determine loads, which requires methods of measuring or estimating flow and water quality continuously over time. Lack of measurement or estimation of flows and concentrations at high flows currently precludes the estimation of loads in the mine-impacted areas of the Woronora Reservoir catchment (and other mining-impacted catchments in the Special Areas).

- The inadequacy of performance indicators based on filterable metals
- The potential for water quality impacts beyond the upper reservoir due to reservoir flood hydrodynamics.

#### 3.9. CUMULATIVE IMPACTS ASSESSMENT USING NUMERICAL MODELS

In the current context, cumulative impact assessment can include: 1) analysis of historical trends in water quality to assess whether there is a relation with the development of mining, 2) numerical modelling of historical and future impacts of mining on water quality at the reservoir dam wall, and 3) examination of sediment cores to assess the change in nature of benthic sediments. The need for and applicability of these assessments is addressed in Section 4 of this advice. Some introduction to numerical modelling is given here as background.

Modelling potential impacts of mining on water quality at the reservoir dam wall would require a hydrodynamic and contaminant transport numerical model of the Woronora Reservoir. Such models are widely used to support understanding of water quality variability over time and space, to predict risks from environmental changes, and to help identify sediment and water quality management options. A hydrodynamic model simulates the details of how flow moves through the reservoir over time, including the effects of incoming surface and groundwater flows, wind effects and vertical stratification. A contaminant transport model simulates how the relevant contaminants are carried with the flow and their physical and chemical transformations, including transformations between dissolved and particulate states and exchanges between the water and the sediments. The validation of such a model, which is essential to have good confidence in its results, generally requires specific monitoring of reservoir flows, temperature and water chemistry in addition to the routine monitoring that has been undertaken historically. The modelling would also require estimates of flow and contaminant loads at all inflow points.

A hydrodynamic and contaminant transport model does not exist for Woronora although WaterNSW advised that such models exist or are under development for a number of the water supply reservoirs and one is planned for Woronora, with its development underway in the current financial year (2023-2024). WaterNSW has the capacity to employ these models for operational and strategic purposes, including predicting spatial and temporal variations of contaminants in response to loading events, with a recent example in Rumman et al. (2023). These models, if developed considering the relevant physical and chemical processes (including storage and release of metals from sediments under anoxic conditions), have the capacity to estimate how loads of metals associated with mining are translated to the concentrations of metals and other contaminants at the drinking water off-take. They do not have the capacity to estimate the input loads, which must be based on measurements and scenarios.

# 4.0 PANEL ADVICE

# 4.1. ASSESSMENTS AGAINST WATER QUALITY PERFORMANCE MEASURES

The Assessments Against Water Quality Performance Measures, and whether the justifications and conclusion that the water quality performance measure for Woronora Reservoir have not been exceeded are reasonable

There are two relevant water quality performance measures to consider: 1) Negligible reduction to the quality or quantity of water resources reaching the Woronora Reservoir; 2) Negligible reduction in the water quality of Woronora Reservoir. The associated performance indicators are listed in Section 3.6 of this advice.

## Assessment against the performance measure for water reaching the reservoir

To assess whether the justifications and conclusion that the water quality performance measures for Woronora Reservoir have not been exceeded are reasonable requires careful consideration of both the performance indicators used and the criteria used to assess whether reduction to the quality of water resources reaching the Woronora Reservoir is "negligible". The definition of "negligible" in the Project Approval is "Small and unimportant, such as not to be worth considering".

The parameters considered for the creek water quality performance indicators are filterable (field filtered using  $0.45 \mu m$  filter) iron, manganese and aluminium.

The case of manganese is considered first. While the Panel has not re-analysed the extensive water quality data set that is now available for sites ETWQ AU, WRWQ9 and control site WOWQ2, HEC (2022) and previous assessments concluded that exceedances in filterable manganese concentrations at site ETWQ AU and the lack of exceedances at the control site equated to a Level 3 trigger. This triggered the assessment against the performance measure conducted by Associate Professor Barry Noller of The University of Queensland.

In his reports regarding manganese (e.g. The University of Queensland 2022), Associate Professor Noller notes that low levels of filterable manganese, e.g. <0.1 mg/L, exist in the natural creek water but comments that, while increases in manganese concentrations in the Eastern Tributary have been observed as a result of the transfer of soluble manganese from groundwater to surface water through mine-induced subsidence and cracking, values at ETWQ AU and at the various monitoring sites in the mixing zone<sup>7</sup> have been below the ADWG health limit of 0.5 mg/L except for occasional observations above this ADWG value. In drier years prior to 2022, in particular 2018, manganese concentrations at ETWQ AU were considerably higher, up to approximately 2.8 mg/L (Figure 6 below); nevertheless, manganese concentrations in the mixing zone have been, with some exceptions, below 0.5 mg/L. The dilution of high concentrations as the flow moves from the Eastern Tributary at ETWQ AU to the mixing zone at ETFSL 100 and ETFSL 200 is illustrated in Figure 7 below.

The series of assessments from 2018 to 2022 (e.g. The University of Queensland 2018, 2022) consistently conclude that "Manganese concentrations are easily diluted by freshwater flow to low levels when higher creek flows occur" and "The watercourse performance measure, Negligible reduction to the quality of water resources reaching the Woronora Reservoir, is not considered to have been exceeded".

Regarding whether or not the justifications and conclusions presented in the performance assessments are reasonable for manganese, the Panel has considered the following issues.

-

<sup>&</sup>lt;sup>7</sup> The mixing zone is where the creek water is mixed with the upper reservoir water represented by Peabody monitoring sites ETFSL 0, ETFSL 200, ETFSL 500, WDFS1, WDFS1 +100, CONFLU1 and WARARM5 in Figure 2

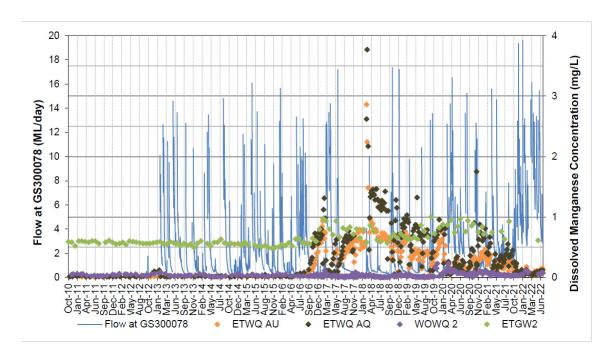



Figure 6. Chart 2 from The University of Queensland (2022): Dissolved Manganese Concentrations at Surface Water Quality Sites ETWQ AU, ETWQ AQ and WOWQ 2 and Groundwater Quality Site ETGW2, and Stream Flow at ETWQ AU (to 30 June 2022)

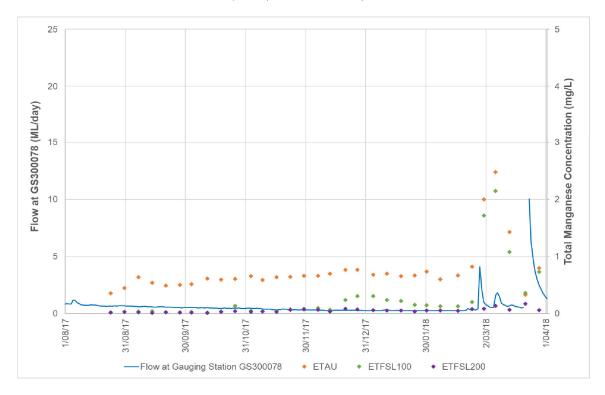



Figure 7. Chart 4 of The University of Queensland (2018): Total Manganese Concentrations at Surface Water Quality Sites ETWQ AU, ETFSL 100 and ETFSL 200 and Stream Flow at ETWQ AU (August 2017 to 31 March 2018)

- 1. The Water Quality Incident Management protocols and RWSA that define the operational targets and trigger levels of WaterNSW are relevant to the operation of the WFP, and therefore the Panel considers them to be relevant to determining the significance of mining impacts. In particular, the Panel considers that any impact that contributes to concentrations at the off-take point (i.e., at the dam) rising above the alert levels should be treated as a non-negligible impact. The main criterion used in the assessment reports (e.g. The University of Queensland 2022) for manganese is the ADWG limit of 0.5 mg/L, which is considerably higher than the alert level of 0.02 mg/L for filterable manganese.
- 2. It is unknown how a concentration measured near the entrance to the reservoir (i.e., ETWQ AU, WRWQ9 and the sites in the mixing zone), and the potential accumulation of contaminants in the reservoir sediments, can translate to raw water supply quality at the Woronora dam off-take point some 10 km further downstream. The ADWG criterion applied in the assessment reports for determining a negligible impact might be conservative due to the large potential for dispersion and dilution of manganese between the mixing zone and the dam; on the other hand, it does not consider the potential for manganese to accumulate in the reservoir sediments and subsequently to be released from the sediments and contribute to disruptive events such as that beginning in July 2022.
- 3. The significance of the impaired water quality reaching the reservoir can only be fully determined using loads as well as concentrations, together with an appropriate hydrodynamic and contaminant transport model to calculate how loads propagate to concentrations at the off-take point, including consideration of cumulative impacts.
- 4. The persistence of elevated manganese concentrations entering the Woronora Reservoir since, at least, 2017 raises concerns about cumulative impacts, which requires improvement of the assessment approach as addressed in Sections 4.2-4.5 of this advice.

The Panel concludes that the assessment reports presented by Peabody from 2018-2022 and the Peabody Annual Reviews are not based on sufficient data and analysis and therefore do not provide sufficient justification and reasonable conclusions. The assessments do not adequately consider the significance of the impaired water quality (including cumulative impacts) to the ability of WaterNSW to meet the RWSA and Water Quality Incident Management trigger levels. The Panel recognises the significant additional monitoring and modelling that would be required for a fuller assessment and there are associated challenges and uncertainties, which are addressed in Sections 4.2-4.5.

Each of the four points and the conclusion above also apply, in general terms, to aluminium and iron. For these two parameters, there have been occasional level 3 triggers at either ETWQ AU or WRWQ9 during the period 2018-2022 (e.g. HEC 2022, The University of Queensland 2018). These triggers have been based on measurements of filterable iron and filterable manganese although the subsequent assessments of concentrations in the mixing zone sites have included total as well as filterable iron (e.g. The University of Queensland 2018). The Panel emphasises the need for measurement and assessment of both total and filterable concentrations of these elements at all water quality sites (as addressed further in Section 4.2 below). This is particularly the case for iron in view of the possibility that particulate iron oxyhydroxides, the major form of iron present in waters reaching the reservoir, may subsequently undergo reductive dissolution if/when reservoir sediments experience low oxygen conditions (as is likely under thermally stratified conditions in summer) and contribute to an increase in iron concentrations within the reservoir. As emphasised in Section 4.2 below, the measurement of total concentrations of iron, aluminium and manganese will also be critical to obtaining a reliable estimate of total loads of these elements transported to the reservoir.

# Assessment against performance measure for the reservoir

The water quality performance measure for Woronora Reservoir is that changes in the quality of water in the Woronora Reservoir are not significantly different post-mining compared to pre-mining concentrations. As prescribed in Table 26 of Peabody (2022) (reproduced in Table 5 above), the water

quality performance measure for Woronora Reservoir is quantified by determination of the percentage of time that total concentrations of iron, aluminium and manganese for any particular year are above the 10 and 20 year average recurrence interval (ARI) exceedance curves with increasing incidence of exceedances defining the Levels 1, 2 and 3 triggers. Exceedances of these triggers results in the requirement for particular actions by Peabody as described in Table 26 of Peabody (2022). Assessment against this water quality performance measure for Woronora Reservoir is presented in the six-monthly and annual surface water review reports (e.g. HEC 2022). HEC (2022) states that "Total iron exceeded the baseline 10 Year exceedance curve for 100% of the review period and marginally exceeded the baseline 20 Year ARI exceedance curves for approximately 92% of the review period (refer Chart 32). Total aluminium exceeded the baseline 10 Year and 20 Year ARI exceedance curves for 100% and 85% of the review period respectively (Chart 33). Total manganese exceeded the baseline 10 Year exceedance curve for 100% of the review period and marginally exceeded the baseline 20 Year ARI exceedance curve for approximately 31% of the review period (Chart 34). The results for total iron, total aluminium and total manganese equate to a Level 3 significance."

Implementing the Level 3 exceedance actions (listed in Table 5 above), HEC (2022) concluded that reasonably similar trends in total iron, aluminium and manganese concentrations were observed in Woronora, Nepean and Cataract Reservoirs through 2022. HEC also compared total aluminium, iron and manganese concentrations with the Water Quality Incident Management trigger levels (Table 1 above) and concluded that:

- The water quality standard applicable for (total) aluminium of 0.4 mg/L was slightly exceeded from March to October 2022
- The water quality standard applicable for (total) iron of 1.0 mg/L was not exceeded during 2022
- The water quality standard applicable for (total) manganese of 0.1 mg/L was not exceeded during 2022.

On the basis of these analyses, HEC advised that the Performance Measure of "Negligible reduction in the water quality of Woronora Reservoir" had not been exceeded.

In providing advice on compliance with this Performance Measure, the Panel has taken into account the advice from Sydney Water Corporation that operators of the Woronora Filtration Plant have experienced difficulty in operating the plant at outputs above the minimum of 40 ML/day since mid-2022 with this difficulty associated with the high sediment and natural organic matter (NOM) content of incoming raw water from Woronora Reservoir.

In assessing the extent of potential challenges associated with maintenance of water of good quality in Woronora Reservoir, the Panel has considered WaterNSW's Water Quality Incident Response Protocol (WaterNSW 2021a) (a partial list of incident trigger levels is provided in Table 1). Increased incidence of exceedances of the alert, minor or major response levels provides a clear indication of deterioration of reservoir water quality as a result of either natural or man-made phenomena or both.

While it is likely that high rainfall in the Woronora Reservoir catchment and resultant increase in transport of sediment and dissolved materials (such as natural organic matter and manganese) has contributed to the increase in number of water quality exceedances in recent years, the Panel is unable to rule out the possibility, on the basis of the information provided, that mining-related activity may have also been a contributing factor.

In summary, the assessment of HEC (2022) is not sufficient in that water quality during 2022-2023 (and during other periods historically) has been poor and caused significant water treatment and water supply operational complications, and the contribution of mining to this is yet to be determined. The Panel considers that the depth of analysis provided in the annual and six-monthly reports (e.g. HEC 2022), while significant, is incommensurate with the impacts and the uncertainty regarding mining's potential contribution to these impacts and their consequences. Advice on further assessment is provided in Section 4.3.

#### 4.2. PERFORMANCE INDICATORS

Whether the performance indicator for negligible reduction to the quality of water resources reaching the Woronora Reservoir defined in WMPs is appropriate

Due to the potential for particulate forms of Fe, Mn and Al to be transported into the reservoir and thereafter be transformed into filterable forms (see the description of mechanisms in Section 3.5 of this advice) and due to the relevance of total Fe, Mn and Al for the WaterNSW Water Quality Incident Response Protocol, the performance indicators and associated trigger levels should be assessed using total Fe, Mn and Al where sufficient baseline data exist. Sufficient baseline data should be ensured for future mining areas. Both total and filterable metals concentrations should be reported in six-month and annual reports.

The descriptions of the performance indicators and trigger levels for ETWQ AU and WRWQ9 in Table 24-A of Peabody (2022) (Table 3 above) are satisfactory, although will need to be reviewed where performance indicators are changed to use of total metals concentrations. The Panel emphasises the importance of also considering loads for impacts assessment and six-monthly and annual reporting when supporting data sets become available (see advice in 4.3); however, data limitations mean that the reliance on concentrations for monthly assessment of performance indicators and associated trigger levels is appropriate for the current series of longwalls.

The performance indicator for the reservoir (comparison of ARI curves for <u>total</u> Fe, Mn and Al) and associated trigger levels are appropriate. As noted above, the assessment of the performance indicators against the performance measures has not been sufficient.

# 4.3. MONITORING, ANALYSIS AND ASSESSMENT

Whether additional water quality monitoring, analysis and/or assessment is required to further determine compliance with the water quality performance measure for Woronora Reservoir

#### Additional water quality monitoring

Flow event water quality (including filterable and total Fe, Mn and Al) using automatic samplers at ETWQ AU, WQWQ9 and WOWO2 should be obtained to support analysis of loads. At the same sites, continuous measurements of electrical conductivity, pH, redox potential, and turbidity should be obtained. This is required to understand water quality impacts at high flows and to estimated metal loads. It is recommended that Peabody develop a monitoring plan in consultation with WaterNSW. The plan should include additional sites that will allow BACI (Before-After-Control-Impact) analysis of concentrations and loads to be applied to creek sites in potential future mining areas.

It is recommended that temperature and water quality data be obtained at various depths through the water column in the upper reservoir (at a location such as WDFS1 that is downstream of the entry of both the Waratah Rivulet and Eastern Tributary as shown in Figure 3) to capture both the temperature stratification behaviour and the water quality at this point. Time series analysis of this information should be used in assessing the possible impact of increased loads of metals resulting from mining on reservoir water quality at this location. These data will also be of value in calibrating and validating a hydrodynamic and contaminant transport model of the reservoir that would assist in assessing whether increased concentrations of filterable and particulate metals, that may arise as a result of mining, impact the quality of feed waters to the Woronora Filtration Plant (see Section 4.5).

#### Reservoir sediment sampling

Diversion of surface water and groundwater through mining-induced rock fractures and subsequent discharge of contaminated water containing elevated concentrations of iron and manganese into creeks and then into the reservoir would be expected to result in an accumulation of freshly deposited iron and manganese oxyhydroxides in benthic sediments in Woronora Reservoir. As noted earlier, freshly

deposited particulate oxyhydroxides of iron and manganese are likely to be more reactive and more readily mobilised on onset of low oxygen conditions than the more crystalline (and thus less reactive) forms of these elements that are intrinsically present naturally in the sediments. While the iron and manganese minerals deposited to the sediments in the upper reaches of the reservoir may not necessarily lead to increased exceedances of alert levels for these elements at the offtake point to the WFP, the Panel is of the view that there would be value in improved understanding of the extent of any increase in iron and manganese concentrations in reservoir sediments as a result of mining through the procurement and subsequent analysis of sediment cores at selected locations downstream of the confluence of Waratah Rivulet and Eastern Tributary with the reservoir. An advantage of analysis of sediment cores is that it can provide a historical record of changes to inputs to the reservoir though it should be recognised that increased inputs are likely to be associated with both high rainfall events and, possibly, increased loads of iron and manganese as a result of mining.

# Improved high flow estimation

A constraint in estimating loads is the uncertainty in high flow rates measured at the Eastern Tributary and Waratah Rivulet flow gauges. For example, the rating curve for the Waratah Rivulet indicates that maximum accurately measured flow (approximately 17,000 L/s) is less that the maximum estimated flow (230,000 L/s)<sup>8</sup>. The Eastern Tributary flow gauge is accurate up to a flow rate of 235 L/s, while flows have been estimated up to approximately 2,000 L/s (see IEAPM 2023).

Suitable methods for improving the extension of the Eastern Tributary rating curves should be undertaken by Peabody. WaterNSW should review whether the extension of the rating curve at the Waratah Rivulet could be improved. Selected watercourses in future mining areas should have flow gauges installed with, as far as practicable, validated rating curves. For flow gauges in the small tributaries, it may be impractical to extend rating curves to high flows, and alternative methods of high flow estimation may be required (rainfall-runoff modelling).

#### Additional analysis and assessment

When reservoir water quality passes a level 3 trigger, more detailed analysis of the reservoir water quality should be undertaken to help determine whether the consequences of subsidence impacts have been negligible. This more detailed analysis should include:

- i) data collected at various depths at DW01 (i.e., at the vertical profiler),
- ii) data collected at various depths at Woronora Reservoir at DWO\_THMD (Honeysuckle Creek Junction),
- once installed, data collected at various depths at WDFS1 (Figure 3) (or similar site representing the confluence of the Eastern Tributary and Waratah Rivulet arms of the reservoir),
- iv) iron and manganese concentrations in reservoir sediments.

Similarly, when water quality reaching the reservoir at performance indicator sites surpasses a level 3 trigger, analysis should be extended to:

i) once installed, data collected at various depths at WDFS1 (Figure 3) (or similar site representing the confluence of the Eastern Tributary and Waratah Rivulet arms of the reservoir),

<sup>8</sup> Rating curve and maximum flow estimate is from the Waratah Rivulet entry on <a href="https://realtimedata.waternsw.com.au/">https://realtimedata.waternsw.com.au/</a>

- ii) if available, metal load estimates (see below).
- iii) if available, reference to results of a lake hydrodynamic and contaminant transport model (see Section 4.5).

After a database of flow and concentration measurements has been built up, analysis should be conducted towards generalisation of flow-(total metal) concentration relationships, and approximation of loads, and whether these have changed as mining has progressed. Initial results including total Fe, Al and Mn loads at ETWQ AU, WQWQ9 and WOWO2 should be reported in the 2024 Annual Report, and updates provided in subsequent annual reports. The same reports should be provided for water quality performance indicator sites in future mining areas. BACI analysis should be undertaken as far as permitted by data.

For both flow and load estimation, the Panel acknowledges that high accuracy is not achievable for high flows; furthermore, there is a lack of baseline data covering historical longwall mining in the catchment, which started in 1995 (measurement of water quality at site ETWQ AU commenced in 2010, while at WQWQ9 it commenced in 2006 though measurements elsewhere in the Waratah Rivulet date back to 2001). For these reasons a BACI analysis will have limited applicability to determining cumulative impacts of mining in the Eastern Tributary and Waratah Rivulets, and smaller catchments being undermined as part of the 300 longwall series. Furthermore, estimation of loads from current mining areas will be limited by difficulty of monitoring flows and water quality in the smaller and less accessible tributaries of the reservoir. Nevertheless, approximate estimates of loads and mining impacts on loads from these catchments will support scenario analysis to assess whether water quality risks from mining are potentially significant for the operation of the reservoir and WFP. Application of load estimates to future mining areas including baseline periods and control sites will allow a complete BACI analysis based on loads as well as concentrations.

#### 4.4. MITIGATION AND MANAGEMENT OF WATER QUALITY IMPACTS

Whether any further reasonable and feasible actions to mitigate and manage water quality impacts are considered necessary, beyond the existing requirements to continue implementing monitoring and management programs

A significant program of remediation (grouting of fractures) in the Waratah Rivulet and Eastern Tributary has contributed and continues to contribute to the sealing of fractures and reducing subsidence-induced contamination. The Panel expects this program to continue to have positive impacts on contaminant loads to the reservoir. However, because the grouting cannot and does not aim to seal all fractures that interact with the surface flows, the Panel does not expect the remediation to return concentrations or loads of metals to pre-mining values. Some fractures may self-seal due to accumulation of oxidised contaminants and other particles.

At this time, the Panel does not advise additional mitigation and management measures (aside from the monitoring and analysis recommended above) beyond the ongoing grouting plan. Depending on future water quality trends, there may be a need for mitigation and management measures by WaterNSW and Sydney Water, which might include expansion of reservoir de-stratification and adjustments to the WFP operation. Depending on future water quality trends and the degree of attribution to mining, there may also be a need for mitigation and management measures by Peabody in forms of changing the nature of water quality trigger levels, expansion of the remediation program, and changes to mine plans.

# 4.5. CUMULATIVE IMPACT ASSESSMENT

Whether a cumulative impact assessment study is considered necessary to review water quality trends and potential impacts on drinking water supply from increased metals loads from the catchments impacted by mine subsidence at Metropolitan Mine.

As previously noted, although there are natural influences on water quality that might explain the observed variations in water quality including the extreme event in July 2022, the Panel cannot rule out the possibility that the Metropolitan Mine has had a non-negligible adverse impact based on the existing analyses in Annual Reports. The Panel recommends that a more detailed analysis be undertaken of historical reservoir water quality (including control sites in reservoirs not affected by mining) in order to analyse potential trends and relations with mining development. This should be included in the 2023 Annual Review and updated in subsequent annual reviews.

As noted earlier, analysis of cores of reservoir benthic sediments can provide a historical record of changes to inputs to the reservoir and represents one of the few ways of assessing cumulative changes. It should be recognised however that increased inputs are likely to be associated with both high rainfall events and, possibly, increased loads of iron and manganese as a result of mining. Also, it should be emphasised that any increase in the extent of iron and manganese minerals deposited to the sediments in the upper reaches of the reservoir may not necessarily lead to increased exceedances of alert levels for these elements at the offtake point to the WFP. Despite this, the Panel is of the view that such information would add to general understanding of potential impacts of mining on reservoir water quality.

Development and application of a hydrodynamic and contaminant transport model may be useful to inform assessments required by level 3 trigger exceedances (either those for water entering the reservoir, or those for water in the reservoir). The model results could support determination of whether a measured or estimated increase in metal loads due to mining affects the current or future ability of WaterNSW to meet raw water supply agreements. It would also allow testing of hypotheses that measured changes in water quality in the reservoir are attributable partially to mining. The Panel understands that WaterNSW is commissioning a hydrodynamic and contaminant transport model for the Woronora Reservoir in the 2023-2024 financial year. Due to the catchment and reservoir data sets required, and knowledge of catchment and reservoir operations required, it is unlikely to be sensible for Peabody to undertake an independent hydrodynamic and contaminant transport analysis. It is recommended that a model set-up is designed to support assessments of potential mining impacts with consideration of how the responsibility for the modelling is shared between stakeholders. For example, the model may be run over a long time-frame to capture potential effects of historical, current and future mining, updated every year to allow for advances in data (in particular load estimates). Peabody could refer to the model results when assessments against performance measures are required.

#### 4.6. OTHER MATTERS

# Strategic water quality risks

As noted by the IEPMC (2019), there are strategic risks to water quality in the Special Areas related to the cumulative and long-term consequences of mining subsidence. These arise from:

- The potential for cumulative consequences of historical, current and future mining areas on reservoir water and sediment quality.
- The potential for widespread mobilisation of contaminants from subsidence-induced fractures if regional groundwater levels and pressures increase. This could occur if voids (such as roadways and adits) are sealed following mining, or due to wet weather increasing groundwater levels and pressures beyond those seen during the mining period. Increasing groundwater pressure has the potential to drive groundwater to surface water through fractures that have not previously been flushed of contaminants.

The current advice partially addresses these concerns for the Woronora reservoir by recommending monitoring and analysis that supports a better understanding of the contaminant loads from longwall mining areas of the catchment, improved capability to predict the consequences for water quality supplied to the WFP and better baseline data and modelling capability for assessing future mining

proposals. The Panel emphasises the recommendation of the IEPMC (2019) that a broad study is needed of long-term cumulative impacts of mining on water quality in the Special Areas. While some elements of this are addressed in this advice, there are other considerations that may affect long-term water quality management that need considered for Metropolitan mine (including post-mining monitoring design, closure and post-closure planning, and groundwater and hydrogeochemical modelling).

# The Dupen (2023) report

The Dupen (2023) report raises concerns that unforeseen impact mechanisms are having adverse consequences for hydrology, ecology and water quality in the Woronora catchment. In the IEAPM's advice to the Department on the Dupen (2023) report (IEAPM 2023), matters related specifically to water quality were deferred to this advice.

Dupen (2023) put forward the views that:

- The aquifers which sit above and feed the incised valley streams are draining at rates measurably higher than pre-mining, in places rapidly and completely, due to unexpected and unpredicted formation of large-scale shear planes opening up at their base.
- If this new subsidence mechanism is indeed widespread, a likely outcome is that a range of protected Special Area ecosystems overlying the mine will dry and change. The other major risk from widespread basal shear formation is that it will cause the water quality in the Woronora drinking water reservoir to become increasingly degraded by metal-laden discharges from unmeasured shear plane vents.

As discussed elsewhere in this advice, the Panel advises that there is a risk that mining-induced fracturing has and will continue to have adverse consequences for the quality of water entering the Woronora Reservoir from subsidence-affected creeks and therefore for the water quality of the reservoir. Further, the Panel considers that, if the increased flow rates associated with the Dupen hypothesis are due to the formation of large-scale shear planes then this is expected to result in an increased load of contaminants entering the Woronora reservoir. Indeed, the unexplained high flows from April 2020 to late 2022 (the latter being the end of the data period presented in Dupen 2023) combined with the elevated Mn concentrations in Figure 6 above raise concern and illustrate the need in future for loads to be assessed as well as concentrations. However, if contaminant load estimation at site ETAU WQ indicates an increased load of Mn, Fe or Al, this could be caused by increased flow though fractures underlying the creek or an increased discharge of regional groundwater by natural pathways and would not by itself confirm the Dupen hypothesis. If further investigation of the source of the increased flows is required (the reader is referred to the IEAPM (2023) for recommendations on this), the use of chemical and physical tracers of regional groundwater discharge should be considered as an element of that analysis.

# 5.0 CONCLUSIONS AND RECOMMENDATIONS

#### **5.1 CONCLUSIONS**

The quality of the Woronora Reservoir (and during other periods historically) has been poor during 2022-2023 and has led to significant complications for water treatment and water supply. Although there are natural influences on water quality that might explain the observed variations in water quality, the Panel cannot rule out the possibility that the Metropolitan Mine has had an adverse impact.

While dissolved forms of iron, manganese and aluminium (Fe, Mn and Al) are of primary relevance to raw water quality, there is potential for particulate forms to be transported from the catchment into the reservoir and thereafter, in the case of Fe and Mn, be transformed into dissolved forms. Hence, total

(dissolved plus particulate) Fe, Mn and Al concentrations are relevant and the reliance on dissolved Fe, Mn and Al concentrations in the Metropolitan Mine performance indicators is unsatisfactory.

The assessments of the quality of water reaching the Woronora Reservoir presented by Peabody in response to level 3 triggers are not based on sufficient data and analysis and therefore do not provide sufficient justification and reasonable conclusions. The assessments do not adequately consider the potential significance of the impaired water quality for the WaterNSW Raw Water Supply Agreement and Water Quality Incident Management trigger levels.

The assessments of the quality of water in the Woronora Reservoir are not based on sufficient data and analysis and therefore do not provide sufficient justification and reasonable conclusions. The Panel considers that the depth of analysis provided in the annual and six-monthly reports, while significant, is incommensurate with the uncertainty regarding mining's potential contribution to the degraded water quality and incommensurate with the consequences of the degradation in terms of the ability of WaterNSW to meet the Raw Water Supply Agreement and in terms of the disruption to operation of the Water Filtration Plant (WFP).

Aside from the need to transition to the use of total metals, the existing descriptions of the performance indicators and trigger levels for the Eastern Tributary and Waratah Rivulet are satisfactory. They will need to be reviewed when and where performance indicators are changed to the use of total metals concentrations.

The performance indicators and trigger levels for the reservoir (which use total Fe, Mn and Al concentrations) are appropriate, although should be subject to annual review.

The significance of the impaired water quality reaching the reservoir can only be fully determined using contaminant loads (concentration x flow rate) as well as concentrations because high loads can coincide with low concentrations and vice-versa. Improved high flow data and flow event water quality is required to understand water quality impacts and to estimate contaminant loads.

Due to data constraints and monitoring practicalities, analysis of contaminant loads will have limited applicability to determining cumulative impacts of mining in the Eastern Tributary and Waratah Rivulets and other catchments that are being undermined as part of the 300 longwall series. Nevertheless, approximate estimates of loads from these catchments will support scenario analysis to assess whether water quality risks from mining are potentially significant for the operation of the reservoir and WFP. Application of contaminant load estimates to future mining areas including baseline periods and control sites will allow a complete Before-After-Control-Impact (BACI) analysis based on loads as well as concentrations.

An appropriate hydrodynamic and contaminant transport model will support determination of whether a measured or estimated increase in metal loads due to mining affects the current or future ability of WaterNSW to meet raw water supply agreements. It would also allow testing of hypotheses that measured changes in water quality in the reservoir are attributable partially to mining. WaterNSW is planning to implement such a model for the Woronora Reservoir in the 2023-2024 financial year. Due to the catchment and reservoir data sets required, and knowledge of reservoir operations required, it is unlikely to be sensible for Peabody to undertake an independent hydrodynamic and contaminant transport analysis.

Temperature and water quality data obtained at various depths through the water column in the upper reservoir would capture both the temperature stratification behaviour and the water quality at this point. As well as supporting assessments of whether changes in the water quality reaching the reservoir have been non-negligible, these data will be of value in calibrating and validating a hydrodynamic and contaminant transport model of the reservoir.

There would be value in improved understanding of the extent of any increase in iron and manganese concentrations in reservoir sediments. Sediment cores can provide a historical record of changes to inputs to the reservoir though it should be recognised that increased inputs are likely to be associated with both high rainfall events and, possibly, increased loads of iron and manganese as a result of mining.

The program of remediation (grouting of fractures) in the Waratah Rivulet and Eastern Tributary has contributed and continues to contribute to the sealing of fractures and reducing subsidence-induced contamination. The Panel expects this program to continue to have positive impacts on contaminant loads to the reservoir. However, because the grouting cannot and does not aim to seal all fractures that interact with the surface flows, the Panel does not expect the remediation to return contaminant concentrations or loads to pre-mining values.

At this time, the Panel does not advise additional mitigation and management measures (aside from the monitoring and analysis recommended above) beyond the ongoing grouting program.

Long-term risks to water quality in the Special Areas arise from:

- The potential for cumulative consequences of historical, current and future mining areas on reservoir water and sediment composition and quality.
- The potential for widespread mobilisation of contaminants from subsidence fractures if regional groundwater levels and pressures rebound.

The current advice partially addresses these concerns for the Woronora reservoir by recommending monitoring and analysis that supports a better understanding of the contaminant loads from longwall mining areas of the catchment, improved capability to predict the consequences for water quality supplied to the WFP and better baseline data and modelling capability for assessing future mining proposals.

If the unexpectedly high flow rates that have been measured at the Eastern Tributary from early 2020 to late 2022 (which are assessed in detail in a separate report by the IEAPM) are due to increased groundwater discharge through subsidence fractures or shear planes, they may be associated with highly elevated contaminant loads. This illustrates the need for reporting of contaminant loads wherever possible with available data. Furthermore, measurement of the water chemistry of these streams can assist in determining the source of these unexpectedly high flows.

#### **5.2 RECOMMENDATIONS**

Performance indicators and associated trigger levels for water reaching the Woronora Reservoir should be assessed using total Fe, Mn and Al where sufficient baseline data exist. Both total and dissolved Fe, Mn and Al concentrations should be reported in six-month and annual reports.

Contaminant loads as well as concentrations should be considered in performance measure assessments and six-monthly and annual reporting as far as data allow. Current data limitations mean that reliance on concentrations for monthly assessment of performance indicators is appropriate for the current series of longwalls.

Flow event water quality (including dissolved and total Fe, Mn and Al concentrations) using automatic samplers at ETWQ AU, WQWQ9 and WOWO2 should be obtained to support analysis of contaminant loads. At the same sites, continuous measurements of electrical conductivity, pH, redox potential, and turbidity should also be obtained.

After a database of flow and concentration measurements has been built up, analysis should be conducted towards generalisation of flow-concentration relationships, and approximation of loads, and whether these have changed as mining has progressed. Initial results including total Fe, Al and Mn loads

at ETWQ AU, WQWQ9 and WOWO2 should be reported in the 2024 Annual Report and updates provided in subsequent annual reports. Load estimates should be provided in future Annual Reports for performance indicator sites in future mining areas.

For future mining areas, flow and contaminant concentrations should be measured at least two years in advance of mining at impact and control sites to allow BACI analysis.

Suitable methods for improving the extension of the Eastern Tributary rating curves to improve high flow measurement accuracy should be undertaken by Peabody. WaterNSW should review whether the extension of the rating curve at the Waratah Rivulet could be improved. Selected watercourses in future mining areas should have flow gauges installed with validated rating curves. Where it is impractical to extend rating curves to high flows, alternative methods of high flow estimation should be considered.

Temperature and water quality data should be obtained at various depths through the water column in the upper reservoir (at a location such as WDFS1 that is downstream of the entry of both the Waratah Rivulet and Eastern Tributary) to capture both the temperature stratification behaviour and the water quality at this point. Frequency of data collection should increase following significant flow events and following level 3 triggers for water quality reaching the reservoir.

It is recommended that an agreement be reached whereby a hydrodynamic and contaminant transport model set-up is designed to support assessments of potential mining impacts. Consideration should be given as to how the responsibility for the modelling is shared between WaterNSW and Peabody.

Peabody should procure sediment cores at selected locations downstream of the confluence of Waratah Rivulet and Eastern Tributary within the reservoir and at control sites in the reservoir in order to assess the possible impacts of mining on alterations to sediment composition (with implications to possible mobilisation of Fe and Mn should these sediments become anoxic).

When quality of water reaching the reservoir at performance indicator sites surpasses a level 3 trigger, analysis should be extended to:

- once installed, water quality data collected at various depths at WDFS1 or similar site representing the confluence of the Eastern Tributary and Waratah Rivulet arms of the reservoir,
- if available, contaminant load estimates,
- if available, reference to results of a lake hydrodynamic and contaminant transport model run using relevant scenarios of increased contaminant loads.

In any future mining areas, performance indicators and triggers should be based on loads as well as concentrations.

When reservoir water quality passes a level 3 trigger, more detailed analysis of the reservoir water quality should be undertaken including:

- data collected at various depths at DW01 (i.e., at the vertical profiler),
- data collected at various depths at Woronora Reservoir at DWO\_THMD (Honeysuckle Creek Junction),
- once installed, data collected at various depths at WDFS1 (Figure 3) (or similar site representing the confluence of the Eastern Tributary and Waratah Rivulet arms of the reservoir),
- iron and manganese concentrations in reservoir sediments.

Irrespective of these recommendations for further analysis in response to triggers, the Panel recommends that a more detailed analysis be undertaken of historical reservoir water quality and sediment cores in order to analyse potential trends and relations with mining development. This should be included in the 2023 Annual Review and updated in subsequent annual reviews.

Following IEPMC (2019), it is recommended that a broader study of potential long-term cumulative impacts of mining on water quality in the Special Areas is needed.

# **REFERENCES**

- Advisian (2016). Literature Review of Underground Mining Beneath Catchments and Water Bodies. Project No: A26324. Prepared for WaterNSW.
- ANZG (2018) Australian and New Zealand Guidelines for fresh and marine water quality. https://www.waterquality.gov.au/guidelines/anz-fresh-marine
- Dupen, P. (2023). Metropolitan Coal Mine independent review of environmental performance to 2022. Prepared for Nature Conservation Council of NSW.
- HEC (2022). DRAFT REPORT Metropolitan Coal Surface Water Review 1 January to 31 December 2022. Appendix B2 of the Peabody 2022 Annual Report.
- IEAPM (2023). IEAPM Advice Re Report Titled Independent review of environmental performance to 2022. Independent Expert Advisory Panel for Mining. Report No. IEAPM 202309-2.
- IEPMC (2018). Independent Expert Panel for Mining in the Catchment Report: Part 2. Review of Specific Mining Activities at the Metropolitan and Dendrobium Coal Mines. Galvin, J.M., McIntyre, N., Young, A., Williams, R.M., Armstrong, C., Canbulat, I.
- IEPMC (2019). Independent Expert Panel for Mining in the Catchment Report: Part 2. Coal Mining Impacts in the Special Areas of the Greater Sydney Water Catchment. Galvin, J.M., McIntyre, N., Young, A., Williams, R.M., Armstrong, C., Canbulat, I. Sydney: NSW Office of NSW Chief Scientist and Engineer.
- IAPUM (2021). Independent Advisory Panel for Underground Mining Advice Re: Dendrobium Longwall 18 Subsidence Management Plan Condition 16, Schedule 4, November 2021.
- Jankowski J, Knights P. (2010). Surface water-groundwater interaction in the fractured sandstone impacted by mining induced subsidence: 1. Hydrology and hydrogeology. Proceedings of The International Association of Hydrogeologists, Krakow 2010.
- Jankowski J. (2010). Surface water-groundwater interaction in the fractured sandstone impacted by mining induced subsidence: 2. Hydrogeochemistry. Proceedings of The International Association of Hydrogeologists, Krakow 2010.
- NHMRC and NRMMC (2011). Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. (Updated in Sept 2022) https://www.nhmrc.gov.au/about-us/publications/australian-drinking-water-guidelines.
- The University of Queensland (2018). Assessment against Water Quality Performance Measure September 2018. Letter from Associate Professor to Stephen Love, 20 November 2018.
- The University of Queensland (2022). Assessment against Water Quality Performance Measure June 2022. Letter from Associate Professor Barry Noller to Stephen Love, 22 December 2022.
- Parsons Brinckerhoff (2010). Collaborative Research Project Impacts of Longwall Mining on Groundwater and Surface Water Resources in the Waratah Rivulet June 2010. Report for SCA.
- Parsons Brinckerhoff (2007). Literature Review On Longwall Mining. Collaborative Research Program: Impacts of Longwall Mining in the Waratah Rivulet. Report for Sydney Catchment Authority, May 2007.
- Peabody (2016). Metropolitan Coal 2015 Annual Review.
- Peabody (2022). Metropolitan Coal Water Management Plan LW 308-310.
- Peabody (2023). Metropolitan Coal Annual Review 2022.

- Rumman, R., Martin, J., van der Sterren, M., Chen, C., Abdollahian, M.A. and Hughes, D. (2023). Data-driven risk mitigation: Water quality forecasting during extreme events. Proceedings of the 25th International Congress on Modelling and Simulation, Darwin July 2023.
- WaterNSW (2021a). Water Quality Incident Response Protocol June 2021.
- WaterNSW (2021b). Annual Water Quality Monitoring Report 2020-2021.
- WaterNSW (2022a). Annual Water Quality Monitoring Report 2021-2022.
- WaterNSW (2022b) Letter of 26 Sept 2022 from Girja Sharma to Jon Degotardi: Assessment against Water Quality Performance Measure April 2022.
- WaterNSW (2022c). Letter of 31 Aug 2022 from Girja Sharma to Jon Degotardi: Metropolitan Coal 2021 Annual Review Report.
- WaterNSW (2023). Letter of 15 Feb 2023 from Girja Sharma to Jon Degotardi: Assessment against Water Quality Performance Measure April, May and June 2022.
- WRIS (2017). Woronora Reservoir Strategy Report Stage 1 Metropolitan Coal Longwall Mining near and beneath Woronora Reservoir. Hebblewhite, B.K., Kalf, F., McMahon, T.
- WRIS (2019). Woronora Reservoir Impact Strategy Stage 2 Report Metropolitan Coal Longwall Mining near and beneath Woronora Reservoir. Hebblewhite, B.K., Kalf, F., McMahon, T.





# **Large Swamp Assessment**

**Briefing Paper** 

# Metropolitan Coal Longwalls 311-316 Extraction Plan

- Metropolitan Coal has commenced preparation of a new Extraction Plan for Longwalls 311-316.
- The primary assessment consideration for Longwalls 311-316 is expected to be impacts to the three large swamps (S76, S77 and S92) given the panels either directly undermine the swamps or are in close proximity.
- Therefore, approval for Longwalls 311-316 to be sought under a single extraction plan.

# **Large Swamps Background**

- Metropolitan Coal Project Environment Assessment (EA) was lodged in July 2008. The EA did not consider the findings of the Southern Coalfield Inquiry Report released in the same month.
- Large Swamps S76, S77 and S92 were identified as being of "special concern" by the Planning Assessment Commission (PAC) in its 2009 Review Report.
- The PAC concluded these swamps should be subject to further attention primarily due to:
  - having their lower ends in valleys with moderate longitudinal slopes;
  - the EA describing them as terminating at rock bars;
  - increased vulnerability to the effects of valley closure and upsidence; and
  - potentially being exposed to non-conventional subsidence impact.
- Section 9.4.1 of the PAC Review Report sets out the assessment process to be followed for upland swamps *Upland Swamp Risk Assessment Approach*.
- The application of this approach to Swamps S76, S77 and S92 would require consideration of several recommendations set out in section 9.4.2 of the PAC Review Report.
  - This approach is not designed to provide a higher level of protection to Swamps 576, S77 and S92 than that being afforded to other swamps in the Project Area."





#### LARGE SWAMP ASSESSMENT

**Briefing Paper** 

■ These recommendations were reflected in Condition 4, Schedule 3 of Project Approval (08 0149):

The Proponent shall not undermine Swamps 76, 77 and 92 without the written approval of the Director General. In seeking this approval, the Proponent shall submit the following information with the relevant Extraction Plan (see condition 6 below):

- a) a comprehensive environmental assessment of the:
  - potential subsidence impacts and environmental consequences of the proposed Extraction Plan;
  - potential risks of adverse environmental consequences; and
  - options for managing these risks;
- b) a description of the proposed performance measures and indicators for these swamps; and
- c) a description of the measures that would be implemented to manage the potential environmental consequences of the Extraction Plan on these swamps (to be included in the Biodiversity Management Plan see condition 6(f) below), and comply with the proposed performance measures and indicators.

Metropolitan Coal proposes to address Condition 4 as part of the Longwalls 311-316 Extraction Plan.

#### **Monitoring and Assessments Conducted to Date**

# Monitoring and impacts to date:

- Metropolitan has extracted 15 of 25 longwalls approved under the Project Approval (08\_0149), these being LW20-27 and LW301-307 (2010 to 2022).
- To date a total of 33 swamps have been directly extracted beneath, with two having been determined to have attributable mining impacts from early longwalls.
- Longwall extraction geometries at Metropolitan are deliberately conservative to minimise the probability of impacts.

#### Assessments:

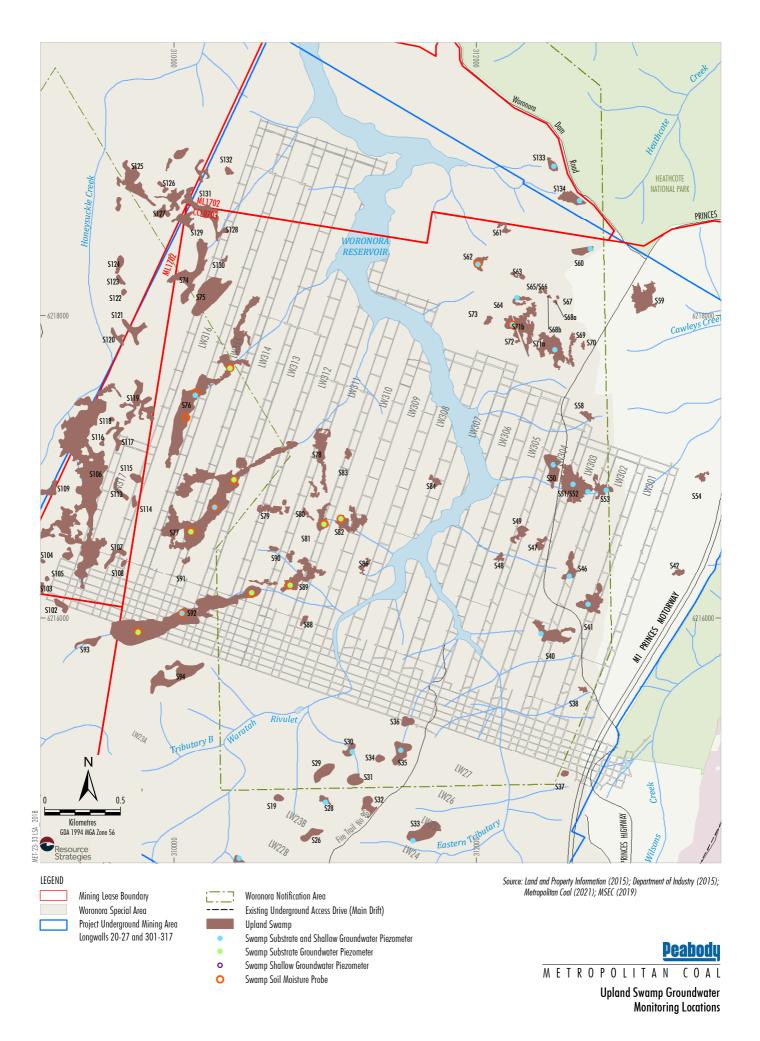
Metropolitan Extraction Plans and environmental monitoring reports since the 2009 PAC Report have generally addressed the recommendations for swamp assessments as outlined in Table 1.





#### LARGE SWAMP ASSESSMENT

**Briefing Paper** 


# Table 1: 2009 PAC Report – Summary of Swamp Assessment Recommendations

|   | Swamp Assessment Component                                                                                 |
|---|------------------------------------------------------------------------------------------------------------|
| • | Establishment of Risk Management Zones around swamps                                                       |
| • | Prediction of conventional subsidence and impacts                                                          |
| • | Prediction of non-conventional subsidence and impacts                                                      |
| • | Establishment of strategies where outcomes are not achieved or predicted impacts are exceeded              |
| • | Utilise the Upland Swamp Risk Assessment Approach for assessing swamps                                     |
| • | Follow approach for assessing the acceptability of negative environmental consequences                     |
| • | Monitoring of sample swamps previously undermined                                                          |
| • | Monitoring of upsidence and valley-closure impacts                                                         |
| • | Provision of net subsidence effects at significant features                                                |
| • | Implement groundwater monitoring regimes proposed by the Southern Coalfield Inquiry into Impacts on Swamps |
| • | Vegetation mapping for classifying swamps                                                                  |
| • | Collection of baseline data necessary for assessing swamps                                                 |

- Some recommendations of the PAC continue to be addressed through the ongoing fieldwork, monitoring, analysis and reporting implemented under the existing extraction plans:
  - Quarterly observation of previously undermined swamps for subsidence impacts (including upsidence and valley closure) as a part of Subsidence Monitoring Programs.
  - Groundwater and surface water monitoring programs (see below) implemented in accordance with Southern Coalfields Inquiry recommendations.
  - Ongoing vegetation monitoring and vegetation mapping for collection of baseline data – completed for swamps in 2016 and 2019.
- Other PAC recommendations outlined in **Table 1** have been incorporated into Extraction Plans since project approval.

# **Monitoring Programs:**

- Swamp piezometers and moisture probes installed in Swamps S76, S77 and S92 in November 2020 including (Figure 1 and Table 2):
  - substrate groundwater piezometers installed approximately 10 m depth,
  - shallow groundwater piezometers installed at approximately 1 m depth, and
  - soil moisture probes.







#### LARGE SWAMP ASSESSMENT

**Briefing Paper** 

**Table 2. Groundwater Monitoring in Large Swamps** 

| Swamp | Groundwater Monitoring Distribution            |  |  |  |  |  |
|-------|------------------------------------------------|--|--|--|--|--|
| S76   | 1 substrate and shallow groundwater piezometer |  |  |  |  |  |
|       | 2 substrate piezometers                        |  |  |  |  |  |
|       | 3 soil moisture probes                         |  |  |  |  |  |
| S77   | 1 substrate and shallow groundwater piezometer |  |  |  |  |  |
|       | 2 substrate piezometers                        |  |  |  |  |  |
|       | 3 soil moisture probes                         |  |  |  |  |  |
| S92   | 1 substrate and shallow groundwater piezometer |  |  |  |  |  |
|       | 2 substrate piezometers                        |  |  |  |  |  |
|       | 3 soil moisture probes                         |  |  |  |  |  |

- Flow measuring flumes installed downstream of Swamps S76 and S92.
- Additional Groundwater Monitoring shallow piezometers to be installed at the locations of substrate piezometers.

#### **Swamp Remediation Measures**

- Proposed swamp remediation measures are outlined in the approved Biodiversity Management Plan, including:
  - installation of coir log dams at knick points;
  - water spreading techniques using coir log and hessian 'sausages' such that water flow builds up behind them and slowly seeps through to maintain swamp moisture; and
  - injection grouting of rock substrate where fracturing has occurred.

#### **Proposed Actions**

#### **Environmental Assessments**

- Summary of swamp monitoring and impacts detected by the Project to date.
- Endorsement of suitably qualified experts to be sought.
- Field surveys to further characterise the large swamps.
- Ongoing collection of large swamp monitoring data necessary for establishing baseline conditions and assessing potential impacts on large swamps.





#### **LARGE SWAMP ASSESSMENT**

**Briefing Paper** 

- Large Swamp Risk Assessment to be undertaken to resolve any outstanding uncertainty regarding impacts.
- Specialist studies to be completed as per **Table 3**.

**Table 3: Proposed Assessment Scopes for Large Swamps** 

| Assessment        | Specialist                                | Scope                                                                                                                                                                                                         |
|-------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subsidence        | Mine Subsidence<br>Engineering Consultant | Site inspection of large swamps and recording of key features.                                                                                                                                                |
|                   |                                           | Subsidence predictions including non-conventional subsidence<br>(closure and upsidence) and long-section profiles along each swamp.                                                                           |
|                   |                                           | Pre and predicted post mining topography.                                                                                                                                                                     |
|                   |                                           | <ul> <li>Recommendation on high precision Global navigation satellite<br/>system monitoring sites specifically at key swamp rock bars along<br/>with subsidence predictions.</li> </ul>                       |
| Groundwater       | SLR Consulting                            | Holistic review of monitoring data for previously undermined swamps.                                                                                                                                          |
|                   |                                           | Review of monitoring data for large swamps continue to validate data and assist with characterisation of the swamps.                                                                                          |
|                   |                                           | Determine baseline groundwater conditions.                                                                                                                                                                    |
|                   |                                           | Conclude on the adequacy of the groundwater monitoring system as installed to identify any gaps.                                                                                                              |
| Surface Water     | ATC Williams                              | Review of pre and predicted post-mining topography to aid assessment of potential for surface water impacts.                                                                                                  |
|                   |                                           | Produce updated flow path figures for large swamps.                                                                                                                                                           |
| Flora Survey      | Ecoplanning /<br>Eco Logical              | Baseline vegetation monitoring of large swamps.                                                                                                                                                               |
|                   |                                           | Summary of impacts detected by Project to date                                                                                                                                                                |
|                   |                                           | Produce updated flora mapping by species.                                                                                                                                                                     |
|                   |                                           | <ul> <li>Review performance of undermined swamps east of the reservoir<br/>that were the subject of controlled burns to determine if changes<br/>evident may indicate less resilience to bushfire.</li> </ul> |
| Fauna Survey      | TBC                                       | Baseline surveys in large swamps.                                                                                                                                                                             |
|                   |                                           | Giant dragonfly surveys.                                                                                                                                                                                      |
|                   |                                           | Amphibian species richness survey.                                                                                                                                                                            |
| Upland Swamp Risk | All specialists                           | Combine the relevant information from various specialists.                                                                                                                                                    |
| Assessment        |                                           | Assess the potential subsidence impacts and environmental consequences of the proposed extraction plan.                                                                                                       |
|                   |                                           | Consider potential risks of adverse environmental consequences.                                                                                                                                               |
|                   |                                           | <ul> <li>Analyse options for managing these risks including analysis and<br/>costing of alternate mine plans (e.g. costs and benefits of<br/>avoidance).</li> </ul>                                           |

# INDEPENDENT EXPERT ADVISORY PANEL FOR MINING

## **ADVICE RE:**

## **REPORT TITLED:**

Metropolitan Coal Mine:

High Level Review - Large swamp environmental assessment requirements for the Extraction Plan for Longwalls 311 to 316

November 2023

Report No: IEAPM 202311-1

#### **EXECUTIVE SUMMARY**

On 23 August 2023, the NSW Department of Planning and Environment (DPE) requested advice from the Independent Expert Advisory Panel for Mining (IEAPM – the 'Panel') in relation to a Briefing Paper titled *Large Swamp Assessment – Metropolitan Coal Longwalls 311-316 Extraction Plan* (undated). The briefing paper was prepared by Resource Strategies, a consultant to Peabody Metropolitan Coal (Metropolitan Coal), in advance of preparing the Extraction Plan for LWs 311-316. It focuses on swamps S76, S77 and S92 that overlie longwalls (LW) 311-316 and which were identified by the Planning Assessment Commission (PAC) as being of 'special concern' in its 2008 assessment of the Metropolitan Coal Project.

The Scope of Advice stated that:

The Department is seeking high-level advice from the Panel on Metropolitan Coal's proposed Large Swamp Assessment for swamps 76, 77, and 92, including whether it demonstrates that:

- an appropriate array of environmental assessment is proposed;
- there is an adequate network of monitors in representative locations; and
- there is sufficient and adequate baseline data.

The Department would also welcome any other relevant advice from the Panel, especially identification of any further investigations or assessments Metropolitan Coal should be undertaking in regards to these large swamps while preparing the Extraction Plan.

The Briefing Paper is an outcome of Condition 4 of Schedule 3 of the Metropolitan Coal Project Approval (MP 08\_0149), which states:

The Proponent shall not undermine Swamps 76, 77 and 92 without the written approval of the Director General. In seeking this approval, the Proponent shall submit the following information with the relevant Extraction Plan (see condition 6 below):

- a) a comprehensive environmental assessment of the:
  - potential subsidence impacts and environmental consequences of the proposed Extraction Plan;
  - potential risks of adverse environmental consequences; and
  - options for managing these risks;
- b) a description of the proposed performance measures and indicators for these swamps; and
- c) a description of the measures that would be implemented to manage the potential environmental consequences of the Extraction Plan on these swamps (to be included in the Biodiversity Management Plan see condition 6(f) below) and comply with the proposed performance measures and indicators.

The PAC Assessment Report gives context to these approval conditions. It noted under the heading of *Swamps* that:

There were significant deficiencies in the EA (Environmental Assessment) and the PPR (Preferred Project Report) in relation to prediction of non-conventional subsidence impacts at swamps. This led to concerns that a small number of swamps might be at risk from this source, and it was considered desirable that further work be undertaken to establish the nature and extent of any such risk before undermining of these swamps could proceed.

The PAC specifically identified swamps S76, S77 and S92 as being three swamps of concern. The Briefing Paper acknowledges the assessment process for upland swamps suggested by the PAC for the Metropolitan Coal Project and outlines an approach for meeting the requirements of the above-mentioned Approval Condition 4. The Briefing Paper is high level and consequently does not go into detail on some aspects at this stage.

The setting of performance measures is a fundamental pre-requisite to finalising detailed advice on monitoring, identifying impacts, and addressing management responses. The Panel is particularly concerned that the development of LW311 is already well advanced even though the performance measures to be achieved by this mine layout are yet to be quantified and a full subsidence assessment is still a work in progress. The mining dimensions as determined by the location of development roadways is not only the primary control available for managing subsidence impacts and achieving environmental performance measures but virtually the only control available.

Against this background and conscious of time constraints (albeit that the need to specifically address mining in the vicinity of swamps S76, S77 and S92 was recognised over 13 years ago), the Panel has offered extended advice in some instances to facilitate the preparation of the Extraction Plan for LWs311 to LW312.

Based on the Briefing Paper and supplementary information supplied by Metropolitan Coal, the Panel has concluded that:

#### Proposed environmental assessment

- The subsidence information available to the Panel is not adequate to enable it to form a view on whether the current layout for LWs 311-316 could give rise to subsidence impacts affecting the primary swamps that overlie these panels.
- More detailed subsidence information is required before the Panel can more fully advise on the potential environmental consequences and therefore on the required level of monitoring and assessment.
- The available groundwater information and monitoring network is adequate (both spatially and with sufficient baseline) subject to the installation updates to characterise the shallow groundwater conditions within and immediately beneath each of the primary valley infill swamps (i.e. swamps S76, S77 and S92).
- For the western control swamps, there is one comparable valley infill swamp (Bee Creek Swamp) with only one paired groundwater monitoring site. The length of record is adequate but additional sites both within this swamp and swamp S14 would provide a better understanding of natural variability.
- The available groundwater information is inadequate to determine the regional water table depth in the Hawkesbury Sandstone and the connectivity (if any) with shallow perched groundwater across the ridgeline and near the primary swamps.
- The deep groundwater monitoring information is barely adequate to monitor regional depressurisation and the monitoring network would benefit from additional VWPs in both ridgeline areas and near swamps S77 and S92.
- The available surface water information is adequate subject to the concerns raised regarding potential subsidence impacts on the S92-GS flow gauge, recommendations for a detailed conceptualisation of the hydrology/hydrogeology, and the lack of information about surface water features within the swamps.
- The environmental assessment of the three valley infill swamps S76, S77 and S92 should be expanded to include swamp S106.

- The assessment scope for flora and fauna lacks key details in several areas (e.g. conceptualisation and reliance on groundwater and surface water, baseline mapping of flora and fauna).
- A comprehensive risk assessment is required that includes:
  - An integrated assessment of the risks arising from enhanced vertical drainage of groundwater, surface water losses and the potential changes to the biodiversity of the primary upland swamps.
  - Consideration of additional measures to potentially avoid or mitigate impacts to the threatened species and ecological communities within these swamps, particularly swamp S92.

#### Adequacy of monitoring network

- The shallow groundwater monitoring network for swamps S76, S77 and S92 is adequate subject to the proposed installation updates.
- The shallow groundwater monitoring network for the only valley infill control swamp to the west (Bee Creek Swamp) is inadequate.
- The regional water table monitoring network in the deep Hawkesbury Sandstone is inadequate and would benefit from additional monitoring locations near swamps.
- The deep groundwater monitoring information is barely adequate and would benefit from additional VWPs near swamps and early longwalls.
- The stream gauges located at the downstream locations within swamps S76 and S92 should be adequate to characterise the low flow discharges from these swamps, although no data from these gauges has been sighted by the Panel.
- The Briefing Paper provides little detail on the proposed flora and fauna monitoring surveys for these new longwalls, and the Panel is unable to form a view on whether a rigorous assessment is proposed, is in progress or is complete.

The Panel has provided recommendations to improve the information and assessment to be included in the preparation of the Extraction Plan for LWs 311-316. It has also listed recommendations for additional monitoring in advance of the commencement of mining LWs 311-316. These are quite detailed and are provided in Section 5 of this Advice. However, the following are of particular importance because of time considerations and potential consequences:

- 1. Given that the gateroads (which determine the dimensions of LW311) are already being driven:
  - a. performance measures for swamp S92 need to be specified as a matter of priority
  - b. the assessment of mining-induced impacts and consequences for swamps overlying LW311 should be undertaken as a priority to provide timely warning of any need to change the width and/or the totally extracted length of LW311.
- 2. Drivage of MG312 should be delayed until the large swamp impact assessment has been completed and the Extraction Plan for LW311 and LW312 has been endorsed by the Department.

#### TABLE OF CONTENTS

| 1.0   | Intro             | roduction                           |    |  |
|-------|-------------------|-------------------------------------|----|--|
| 2.0   | Meth              | nod of Operation                    | 2  |  |
| 2.1   | . Si              | te Visit                            | 2  |  |
| 2.2   | 2. M              | eetings                             | 2  |  |
| 3.0   | Back              | ground Considerations               | 4  |  |
| 3.1   | . 20              | 009 PAC Review Report               | 5  |  |
| 3.2   | 2. M              | etropolitan Coal Project Approval   | 5  |  |
| 3.3   | 3. 20             | )22 IAPUM Advice                    | 6  |  |
| 4.0   | Adea              | quacy Review                        | 8  |  |
| 4.1   | . Cı              | urrent Status                       | 8  |  |
| 4.2   | . Su              | ubsidence                           | 8  |  |
| 4     | 4.2.1.            | Summary                             | 9  |  |
| 4.3   | 6. G1             | roundwater                          | 10 |  |
| 2     | 4.3.1.            | Proposed environmental assessment   | 10 |  |
| 2     | 4.3.2.            | Adequacy of monitoring network      | 12 |  |
| 2     | 4.3.3.            | Summary                             | 15 |  |
| 4.4   | . Su              | ırface Water                        | 16 |  |
| 4     | 4.4.1.            | Proposed environmental assessment   | 16 |  |
| 2     | 4.4.2.            | Adequacy of monitoring network      | 16 |  |
| 4     | 4.4.3.            | Summary                             | 17 |  |
| 4.5   | 5. U <sub>l</sub> | pland Swamp Biodiversity            | 18 |  |
| 2     | 4.5.1.            | Upland swamps                       | 18 |  |
| 2     | 4.5.2.            | Flora and Fauna                     | 20 |  |
| 4     | 4.5.3.            | Summary                             | 21 |  |
| 4.6   | 5. Ot             | ther Issues                         | 22 |  |
| 2     | 4.6.1.            | Performance measures and indicators | 22 |  |
| 2     | 4.6.2.            | Integrated risk assessment          | 22 |  |
| 5.0   | Reco              | ommendations                        | 24 |  |
| Refer | ences             |                                     | 27 |  |

#### 1.0 INTRODUCTION

On 23 August 2023, the NSW Department of Planning and Environment (DPE) requested advice from the Independent Expert Advisory Panel for Mining (IEAPM – the 'Panel') in relation to a briefing paper titled *Large Swamp Assessment – Metropolitan Coal Longwalls 311-316 Extraction Plan* (undated). The briefing paper was prepared by Resource Strategies, a consultant to Peabody Metropolitan Coal (Metropolitan Coal), in advance of preparing the Extraction Plan for LWs 311-316. It focuses on swamps S76, S77 and S92 that overlie longwalls (LW) 311-316 and which were identified by the Planning Assessment Commission (PAC) as being of 'special concern' in its 2008 assessment of the Metropolitan Coal Project.

The required Scope of Advice stated that:

The Department is seeking high-level advice from the Panel on Metropolitan Coal's proposed Large Swamp Assessment for swamps 76, 77, and 92, including whether it demonstrates that:

- an appropriate array of environmental assessment is proposed;
- there is an adequate network of monitors in representative locations; and
- there is sufficient and adequate baseline data.

The Department would also welcome any other relevant advice from the Panel, especially identification of any further investigations or assessments Metropolitan Coal should be undertaking in regard to these large swamps while preparing the Extraction Plan.

The Chair of the IEAPM (Em. Professor Jim Galvin) nominated the following Panel members to prepare the advice. Mr John Ross chaired the Panel:

- Em. Professor Jim Galvin Subsidence and Mining
- Mr John Ross Groundwater
- Professor Neil McIntyre Surface Water
- Mr Nathan Garvey Biodiversity
- Dr Ann Young Swamps and Ecology

All five Panel members have experience in the Southern Coalfield that is relevant to addressing DPE's brief.

#### 2.0 METHOD OF OPERATION

The Panel convened by videoconference during the preparation of its advice and was administratively supported by secretariat staff provided by the DPE's Major Projects and Resource Assessments teams.

Numerous key documents were provided through DPE to support the Panel in preparing this Advice. These documents are listed in Table 1. A range of documents that the Panel has had regard to in compiling this Advice are also recorded under References.

**Table 1:** Key documents provided to the Panel

| Document                                                 | Document Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Reference                                                | Document Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Documents provided<br>by DPE                             | <ul> <li>Large Swamp Assessment – Briefing Paper (Resource Strategies)</li> <li>Current Extraction Plan for LWs 308 to 310, Appendices and Attachments: <ul> <li>1. Extraction Plan: Main Document</li> <li>2. Appendix A Water Management Plan</li> <li>3. Appendix B Land Management Plan</li> <li>4. Appendix C Biodiversity Management Plan</li> <li>5. Appendix D Heritage Management Plan</li> <li>6. Appendix E Built Features Management Plan</li> <li>7. Appendix F Public Safety Management Plan</li> <li>8. Appendix G Subsidence Monitoring Program</li> <li>9. Appendix H Coal Resource Recovery Plan</li> <li>10. Appendix I Subsidence Report</li> </ul> </li> <li>Project (MP 08-0149) Documentation</li> <li>Agency Advice: <ul> <li>Letter from WaterNSW, dated 24 June 2022</li> <li>Letters from BCD, dated 17 March 2022, and 7 July 2022</li> </ul> </li> </ul> |  |  |  |
| Additional<br>documents provided<br>by Metropolitan Coal | <ul> <li>Draft swamps gradients and sections</li> <li>Longwalls 311-317 Upland Swamp Vegetation Mapping and Characterisation (EcoPlanning 2019)</li> <li>Maximum Predicted Subsidence Parameters for the Swamp Monitoring Sites</li> <li>Groundwater monitoring network in the vicinity of swamps 76, 77 and 92</li> <li>Metropolitan Panel Visit Presentation - October 2023</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |

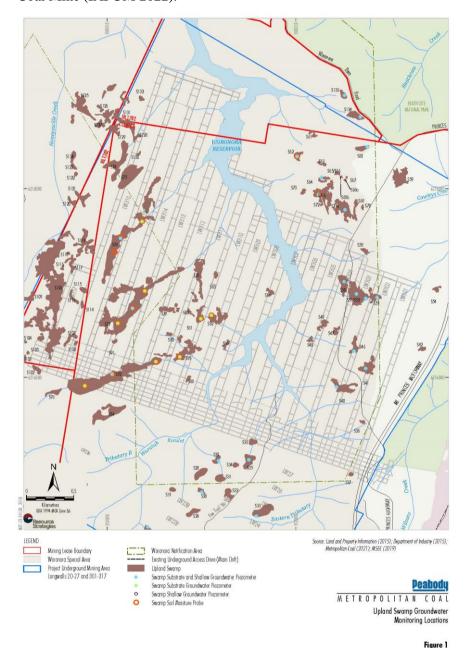
#### 2.1. SITE VISIT

On 23 October 2023, the Panel undertook a site inspection in the Woronora Catchment under the guidance of Peabody staff and in the company of DPE officers and staff from WaterNSW. The Panel inspected gauging stations and monitoring locations within swamps S76, S77 and S92.

#### 2.2. MEETINGS

The Panel convened several times over the course of preparing its advice. The Department's Resource Assessments team was invited to several of these meetings on an as-needed basis. to provide technical briefings and updates to the Panel. Table 2 summarises in chronological

order the schedule of formal meetings that involved the Panel. A number of meetings restricted to Panel members also took place.


 Table 2: Schedule of formal meetings involving the Panel.

| Meeting Date     | Meeting Information                                                                         |  |  |
|------------------|---------------------------------------------------------------------------------------------|--|--|
| 6 September 2023 | Panel - DPE Briefing                                                                        |  |  |
| 20 October 2023  | Panel catchup in advance of the site visit                                                  |  |  |
| 23 October 2023  | Presentation by Metropolitan Coal and its consultants on site followed by swamp inspections |  |  |
| 2 November 2023  | Panel meeting discussion                                                                    |  |  |
| 17 November 2023 | Panel meeting discussion on final draft report                                              |  |  |

#### 3.0 BACKGROUND CONSIDERATIONS

The Scope of Advice is focused on swamps S76, S77 and S92, the locations of which are shown in Figure 1Error! Reference source not found. This section of the Panel's Advice R eport notes three earlier documents that have particular relevance to the Panel's advice, these being:

- 1. The PAC 2009 Review Report for the Metropolitan Coal Project (NSW Planning Assessment Commission 2009);
- 2. The Metropolitan Coal Project Approval (DoP 2009); and
- 3. The 2022 Advice Report of the Independent Advisory Panel for Underground Mining (IAPUM) in relation to the Extraction Plan for LWs 308-310 at Metropolitan Coal Mine (IAPUM 2022).



**Figure 1:** Location of swamps, proposed mine layout and established swamp groundwater monitoring locations in the vicinity of LWs 311 to 316.

#### 3.1. 2009 PAC REVIEW REPORT

The Terms of Reference for the PAC's review of the Metropolitan Coal Project required it to have regard to the findings of a government commissioned review completed in 2008 titled *Impacts of Underground Coal Mining on Natural Features in the Southern Coalfield - Strategic Review* (DoP, 2008). That review, generally referred to the *Southern Coalfield Inquiry* (SCI), classified the upland swamps of the Southern Coalfield as falling into two categories, namely, *headwater* swamps and *valley infill* swamps. The SCI concluded that:

most known impacted swamps were valley infill swamps;

and

available evidence suggests a significant possibility that undermining of valley infill swamps could cause drainage, water table drop and consequent degradation to swamp water quality and associated vegetation. Further research was required before a definitive conclusion could be reached.<sup>1</sup>

In its assessment of the Metropolitan Coal Project, the Planning Assessment Commission (PAC) questioned the validity of the Environmental Assessment (EA) in classifying all upland swamps as headwater swamps, thereby effectively quarantining them from the threat of non-conventional subsidence (valley closure and upsidence).

#### The PAC advised that:

if some swamps in the Project Area described as headwater swamps have predominantly valley infill characteristics at their lower ends and are thus potentially vulnerable to the effects of non-conventional subsidence, then a significantly greater level of assessment should have been applied to these swamps.<sup>2</sup>

#### The PAC went on to conclude that:

at least three of the swamps identified as being exposed to non-conventional subsidence impacts should be the focus of further attention before undermining is allowed to proceed. These are swamps S76, S77 and S92.<sup>3</sup>

#### 3.2. METROPOLITAN COAL PROJECT APPROVAL

The PAC's recommendation for further assessment relating to swamps S76, S77 and S92 is reflected in Condition 4 of Schedule 3 of the Metropolitan Coal Project Approval (MP 08\_0149), which states:

The Proponent shall not undermine Swamps 76, 77 and 92 without the written approval of the Director General. In seeking this approval, the Proponent shall submit the following information with the relevant Extraction Plan (see condition 6 below):

<sup>&</sup>lt;sup>1</sup> SCI Inquiry Report, p. 2

<sup>&</sup>lt;sup>2</sup> PAC Review Report, p.85

<sup>&</sup>lt;sup>3</sup> PAC Review Report, p. 87

- a) a comprehensive environmental assessment of the:
  - potential subsidence impacts and environmental consequences of the proposed Extraction Plan;
  - potential risks of adverse environmental consequences; and
  - options for managing these risks;
- b) a description of the proposed performance measures and indicators for these swamps; and
- c) a description of the measures that would be implemented to manage the potential environmental consequences of the Extraction Plan on these swamps (to be included in the Biodiversity Management Plan see condition 6(f) below), and comply with the proposed performance measures and indicators.

The PAC for the Metropolitan Coal Project did not recommend performance measures explicitly for swamps, while the Metropolitan Coal Project Approval only refers generically to *proposed performance measures* and then only in relation to swamps S76, S77 and S92. Rather, both documents refer more generally to *threatened species and endangered ecological communities* (PAC) and to *threatened species, populations and ecological communities* (Project Approval). The Panel notes that at the time of the Project Approval, Temperate Highland Peat Swamps on Sandstone (THPSS) had not been listed as threatened under State or Federal legislation.

#### **3.3. 2022 IAPUM ADVICE**

In 2002, the IAPUM (the forerunner to the IEAPM) provided advice to the Department on the Extraction Plan for LW308-310 at Metropolitan Coal Mine in which it recommended the following for future Extraction Plans:

#### Swamps S76, S77 and S78

- 1. For all future approvals, Performance Measures (not only Performance Indicators) set for Swamps 76, 77 and 92 should include measures based on changes to groundwater in the swamp sediments and the underlying sandstone.
- 2. The Department should give clear guidance to the Applicant on its requirements for the Environmental Assessment prior to any mining activities that may cause more than negligible subsidence impacts on Swamps 76, 77 and 92. Requirements should include:
  - (a). analysis and presentation of all available groundwater data for 300 series longwalls with a focus on likely impacts and effects on Swamps 76, 77 and 92;
  - (b). analysis of the subsidence and groundwater implications for the large swamps of extending the mine layout for LWs 308-310 to LWs 311-316;
  - (c). assessment of potential changes in stream flow and stream water quality; and
  - (d). assessment of potential erosion and long-term vegetation changes particularly in relation to the risks posed by fire.

#### And that:

future Extraction Plans include tables of all parameters (such as period of record, depth to baseline, adjacent vegetation, graphical piezometric and soil moisture records for each site) relevant to all swamp monitoring sites within the project area.

#### Groundwater

- 1. Groundwater monitoring should be increased by adding two, and possibly three, additional multi-level VWP bores in the vicinity of Swamps 77 and 92 to monitor the deep groundwater behaviour above the predicted constrained zone.
- 2. 10 metre (m) deep bores should be added to each of the swamp monitoring points where this measurement depth is currently missing for swamps 76, 77 and 92.
- 3. The TARPs for Upland Swamp Groundwater monitoring should be redeveloped to employ consistent, time-independent parameter values for the triggers; adopt consistent TARPs across all longwalls; address the inadequacy of the triggers if historical substrate minimum groundwater levels are at the base of the substrate; review how lowering of trigger levels can occur and relate a lowering of a trigger level to assessment of impacts rather than climate variation; and increase the focus of the responses on assessing impacts of mining on the Swamps.

#### <u>Upland Swamp Vegetation Mapping TARP</u>

- 1. All sites within the large swamps 76, 77 and 92 should be added to monitoring sites in this TARP. The aim is to provide early warning of any changes in these swamps.
- 2. The Significance levels/Triggers should be re-drafted to specify quantitative values to the observed declines, the time periods over which they have occurred and the statistical difference to control swamps.

#### **Upland Swamp Groundwater Monitoring TARP**

- 1. The performance indicator should be re-worded as it implies that visible surface cracking must be the cause of changes in groundwater position within a swamp. It needs to recognise that cracking below swamp sediments is usually not discernible and that 'cracking' may include dilation of joints, rather than fracturing of intact sandstone.
- 2. 'Surface cracking within upland swamps resulting from mine subsidence is..' should be replaced with 'Subsidence impacts are..'.
- 3. The large swamps 76, 77 and 92 should be added to this TARP.

The DPE approved the LW308-310 Extraction Plan on the 12 December 2022 (DPE 2022). In the reasons for the approval of LW308-310 it is stated that "... prior to undermining of Swamps 76, 77 and 92, the Department considers that the Panel recommendations provide additional guidance and targeted advice for development of future extraction plans".

#### 4.0 ADEQUACY REVIEW

#### **4.1.** CURRENT STATUS

The Briefing Paper acknowledges the assessment process for upland swamps suggested by the PAC for the Metropolitan Coal Project and outlines an approach for meeting the requirements of the above Approval Condition. The Briefing Paper is high level and consequently does not go into detail on some aspects at this stage.

The setting of performance measures is a fundamental pre-requisite to finalising detailed advice on monitoring, identifying impacts and addressing management responses. The Panel is particularly concerned that the development of LW311 is already well advanced even though the performance measures to be achieved by this mine layout are yet to be quantified and a full subsidence assessment is still a work in progress. The mining dimensions as determined by the location of development roadways is not only the primary control available for managing subsidence impacts and achieving environmental performance measures but virtually the only control.

Against this background and conscious of time constraints (albeit that the need to specifically address mining in the vicinity of swamps S76, S77 and S92 was recognised over 13 years ago), the Panel has offered extended advice in some instances to facilitate the preparation of the Extraction Plan for LWs311 to LW316.

#### 4.2. SUBSIDENCE

The Panel has been advised that the assessment of mining-induced subsidence effects, impacts and consequences associated with the extraction of LWs 311-316 is still a work in progress. However, in response to its queries, on 3 November 2023 Metropolitan Coal provided the Panel with a summary tabulation of predicted maximum values for a range of subsidence parameters at specific monitoring locations in swamps S76, S77 and S92. This was followed up with advice on 6 November 2023 that:

- The maingate for LW310 (MG310) is nearing completion at 16c/t, with 4 pillars to go, plus development of the install and bleeder roadway for LW310.
- The maingate LW311 (MG311) is already at 7c/t, with completion of drivage at 21 c/t scheduled for around September 2024

The only information currently available to the Panel in relation to predicted maximum subsidence effects on swamps in the area of influence of LW311 is restricted to cumulative effects on swamp S92 after the completion of LW316, summarised in **Table** from the data provided on 6 November 2023.

**Table 3**: Summary information currently available in relation to predicted maximum subsidence effects on Swamp S92.

| Site  | Max<br>Predicted<br>Subsidence<br>(mm) | Max<br>Predicted<br>Tilt<br>(mm/m) | Predicted<br>Conventional<br>Tensile Strain<br>after LW316<br>(mm/m) | Predicted<br>Conventional<br>Compressive<br>Strain after<br>LW316<br>(mm/m) | Max<br>Predicted<br>Upsidence<br>after<br>LW316<br>(mm) | Max<br>Predicted<br>Closure<br>after<br>LW316<br>(mm) |
|-------|----------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|
| S92-1 | 700                                    | 6.5                                | 1                                                                    | <0.5                                                                        | 225                                                     | 80                                                    |
| S92-2 | 70                                     | 0.5                                | <0.5                                                                 | <0.5                                                                        | 30                                                      | <20                                                   |
| S92-3 | <20                                    | <0.5                               | <0.5                                                                 | <0.5                                                                        | <20                                                     | <20                                                   |

In general, ground deformation towards the downstream end of a swamp has a higher potential to impact a swamp than ground deformation in the upstream portions. In the case of swamp S92, monitoring site S92-1 is both at the downstream end of the swamp and is predicted to experience higher subsidence effects than the upstream portions of the swamp.

Vertical displacement (subsidence) at S92-1 gives rise to the potential for ponding; the change in tilt (of 6.5 mm/m) is not insignificant, giving rise to the potential to change the drainage channel location and cause erosion; tensile strain may not be insignificant when it is appreciated that a tensile strain greater than 0.5 mm/m is sufficient to cause cracking of rock and that the prediction of 1 mm/m has been averaged over a 20 m distance (bay length) and so could correspond, for example, to one 20 mm wide crack every 20 m; and upsidence (differential subsidence) of 225 mm needs to also be factored into tilt predictions and subsurface flow considerations.

#### **4.2.1.Summary**

The Panel concludes that:

- The subsidence information available to the Panel is not adequate to enable it to form a view on whether the current layout for LWs 311-316 could give rise to unacceptable environmental consequences for the swamps that overlie these panels. This is because a full subsidence assessment is still a work in progress.
- More detailed subsidence information is required before the Panel can more fully advise on the potential environmental consequences and, therefore, on the required level of monitoring and assessment.
- Unforeseen environmental impacts are a concern since the development of gateroads that define the width of LW311 is already well advanced.

The Panel recommends that:

1. Given that the gateroads (which determine the dimensions of LW311) are already being driven:

- a. performance measures for swamp S92 need to be specified as a matter of priority
- b. the assessment of mining-induced impacts and consequences for swamps overlying LW311 should be undertaken as a priority to provide timely warning of any need to change the width and/or the totally extracted length of LW311.
- 2. Drivage of MG312 should be delayed until the large swamp impact assessment has been completed and the Extraction Plan for LW311 and LW312 has been endorsed by the Department.

#### 4.3. GROUNDWATER

It is important to understand the natural (pre-mining) connectivity between perched and shallow groundwater systems in colluvium and the uppermost Hawkesbury Sandstone and deeper groundwater systems to manage any environmental consequences affecting swamps. Enhanced vertical fracturing, bedding dilation and horizontal shears caused by mining and the associated depressurisation of deeper strata creates the potential for accelerated drainage of shallow water tables. Loss of this shallow perched groundwater threatens the upland swamps that are dependent on this groundwater.

A broad coverage of shallow and deep groundwater monitoring sites is required to provide:

- Baseline data to understand the natural spatial and climatic variability of these systems.
- Early indications of impacts associated with subsidence and aquifer depressurisation and drainage.
- Appropriate triggers and management responses if impacts do occur.

#### 4.3.1.Proposed environmental assessment

The groundwater systems overlying LWs 311 to 316 are similar to those overlying LWs 301 to 310 immediately to the east in the Waratah Rivulet and Eastern Tributary catchments. The key stratigraphic units that host the important groundwater systems are:

- Colluvium (silty and clayey sand) associated with the upland swamps, and regolith/weathered Hawkesbury Sandstone
- Hawkesbury Sandstone
- Narrabeen Group
  - o sandstone and claystone
- Illawarra Coal Measures
  - o shale, mudstone, claystone, minor sandstone and coal seams

The groundwater impact assessment that supports the Extraction Plan should contain a detailed conceptual model of the groundwater systems in these units including the natural connectivity between these systems, and their recharge, discharge and flow processes. For the shallower systems, it is important to describe the expected mining-induced changes to water levels arising from deep groundwater depressurisation, subsidence and enhanced fracturing that may extend into the Hawkesbury Sandstone. Descriptive text and informative conceptual cross-sections and/or long-sections are recommended.

The important groundwater systems that support the environmental assets across the catchment are:

- Localised perched groundwater associated with swamp colluvium and shallow sandstone (predominantly in the weathered zone) that contributes to the hydrology of swamps, springs and creeks in upper catchment areas.
- Regional shallow groundwater comprising saturated porous and fractured Hawkesbury Sandstone below the regional water table that sustains baseflows to permanent streams in lower catchment areas.

These systems should be the primary focus of the impact assessment and risk analysis.

The field visit on 23 October 2023 suggested that swamps S76 and S77 are probably largely dependent on rainfall and surface water run-on. Perched groundwater provides a lesser but important contribution to swamp hydrology because of the limited water storage in the thin colluvium and a spatially variable contribution from groundwater in the uppermost Hawkesbury Sandstone. Within these two swamps minimal surface water was evident; however, soil remained moist at depth and there was standing water over several metres above the gauging station at site S76. Perched groundwater in both the colluvium and weathered sandstone at these sites is recharged by rainfall. Saturated conditions are likely to prevail at lower elevations for long periods with less saturation and periodic drying at higher elevations and around the swamp edges.

At swamp S92, wetter conditions prevail across the whole swamp with surface water present in pools and drainage lines in the lower swamp area. At this site, there is likely to be greater dependence on perched groundwater for longer periods of time because the swamp is more extensive and is likely to have a larger water storage volume compared to the other two swamps.

The proposed groundwater assessment scope for large swamps (from Table 3 in Resource Strategies 2023), is quite generic and lacks explicit detail. For groundwater the scope is described as:

- Holistic review of monitoring data for previously undermined swamps.
- Review of monitoring data for large swamps continue to validate data and assist with characterisation of the swamps.
- Determine baseline groundwater conditions.
- Conclude on the adequacy of the groundwater monitoring system as installed to identify any gaps.

That part of the groundwater impact assessment that is devoted to upland swamps should be expanded to include:

- A detailed conceptualisation of the hydrology/hydrogeology of each of the listed swamps.
- Any updated groundwater model predictions that describe the impacts to these shallow groundwater systems, and their dependent environmental assets (i.e. stream baseflows and swamps).
- An integrated assessment of the risks arising from enhanced vertical drainage of groundwater, potential surface water losses and changes in the biodiversity of these upland swamps.

#### 4.3.2. Adequacy of monitoring network

Metropolitan Coal has either already established or has committed to establishing the following groundwater monitoring network:

#### Localised perched groundwater

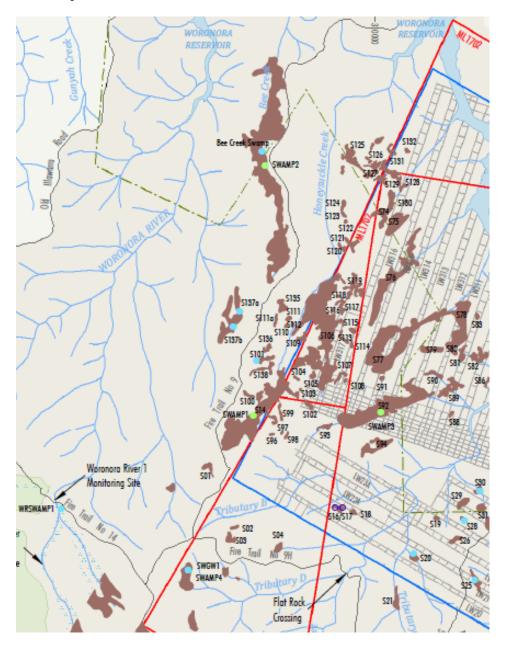
- Swamp piezometers and moisture probes installed in valley infill swamps S76, S77 and S92 including:
  - o shallow groundwater piezometers installed to approximately 10 m depth (one existing and an additional two proposed in each of the three swamps),
  - o swamp substrate groundwater piezometers installed to approximately 1 m depth (three existing within each of the three swamps), and
  - soil moisture probes (three existing with multiple sensors within each of the three swamps).

In addition to these three listed swamps, there are swamp substrate groundwater piezometers and soil moisture probes installed in swamps S81, S82 and S89 (one existing site within each of these three swamps), and

• Flow measuring flumes installed in the downstream drainage lines of swamps S76 and S92.

The Panel considers that the network and frequency of groundwater monitoring is adequate for swamps S76, S77 and S92. The Panel supports the updates to the monitoring network to include new 10 m shallow groundwater piezometers at two new sites in each of swamps S76, S77 and S92, noting that there is a risk that adequate baseline data will not be available at the S92-1 site prior to the proposed undermining of the northern portion of swamp S92 by LW312 in May 2025. For the other swamps there is likely to be a sufficient baseline database covering a range of seasonal conditions prior to the commencement of later longwall panels.

Swamp S106 is another large valley infill swamp located just to the west of LWs 316 and 317 that would benefit from a network of paired swamp substrate and shallow groundwater piezometers, and soil moisture probes. The Panel recommends a minimum of three sites be installed within this swamp as soon as practicable.


It is important that Metropolitan Coal nominate in the Extraction Plan appropriate control swamp/s in the unmined western Woronora River catchment against which water level trends pre and post mining can be compared. It is noted that western swamps S101, S137, and Bee Creek Swamp are currently tagged as control swamps and have established perched groundwater monitoring sites in both the swamp substrate and weathered/shallow sandstone. There is an additional swamp substrate piezometer in swamp S14. Bee Creek Swamp is the only comparable valley infill swamp to swamps S76, S77 and S92. The control swamps are shown in Figure 2.

The control swamps would benefit from:

- Additional paired piezometers upstream and downstream of the existing monitoring site in Bee Creek Swamp.
- Two paired piezometers site in swamp S14 at upstream and downstream locations.
- Soil moisture probes at all swamp substrate piezometer sites.

There is more than a decade of baseline data for the Bee Creek swamp site which is useful for comparison with similar data trends for swamps S92, S77 and S76, however additional

sites are recommended to understand the natural variability of perched groundwater levels at different swamp elevations.



**Figure 2:** Location of control swamps and established swamp groundwater monitoring locations west of LW316-317.

#### Regional shallow groundwater in the Hawkesbury Sandstone

There is less extensive monitoring of the regional water table in the Hawkesbury Sandstone and very limited coverage near swamps. One standpipe and 14 sensors at five VWP sites have been installed across or adjacent to the proposed LW311-316 area. The VWP sites have been operational for more than a decade, although the status of each of the sensors is not known.

There are no sites overlying the early longwalls (LW311-313) and there is only one VWP site located near any of the listed swamps. This site is PM01 overlying LW316 located ~50m west of swamp S76 and swamp monitoring location S76-3. Data for the shallow sensor at

52m in Hawkesbury Sandstone at this site has been 'missing' since 2019 (Peabody 2022b, SLR 2023). The cause of this data loss should be investigated, and the sensor replaced with a standpipe if necessary.

The regional shallow groundwater monitoring network comprises:

- Standpipe
  - o T6 (between LW309 and 310) unknown monitoring depth interval
- VWP sites
  - o PM01 (overlying LW316) three sensors in Hawkesbury Sandstone
  - o PM02 (overlying LW315) two sensors in Hawkesbury Sandstone
  - PM03 (~600m north of LW312/313 on the northern side of the reservoir) three sensors in Hawkesbury Sandstone
  - 9EGW1B (overlying roadways south of LW316/317) three sensors in Hawkesbury Sandstone
  - o 9EGW2A (overlying LW310) three sensors in Hawkesbury Sandstone

There are no sites adjacent to swamps that confirm the lateral and vertical extent of localised perched groundwater and the connectivity with the regional water table at depth in the Hawkesbury Sandstone.

This network is inadequate for environmental assessment purposes and obtaining sufficient baseline data over a range of seasonal conditions prior to the commencement of LW311. At a minimum, the Panel recommends standpipes into the Hawkesbury Sandstone at the following locations near the primary LW311-316 swamps and adjacent to control swamps located to the west. Nested standpipes may be required if there is shallow perched groundwater and multiple aquifers in the Hawkesbury Sandstone at depth:

- A suitable location along the S92 access road, close to the entry to S92-2.
- A suitable location along Firetrail 9E overlying either LW311 or 312.
- Locations adjacent to at least two control swamps to the west (S137 and Bee Creek Swamp preferred).

These sites are in addition to the Panel's previous advice (see Section 3). It appears that these previously recommended sites have not yet been constructed:

- Additional multi-level VWP bores (at two or three sites) in the vicinity of swamps S77 and S92 to monitor (*shallow and*)<sup>4</sup> deep groundwater behaviour above the predicted constrained zone, and
- Additional bores (standpipes) at the T6 monitoring location and at other accessible locations<sup>5</sup> overlying the proposed LW311-316 panels as soon as practicable to monitor the natural vertical piezometry in the Hawkesbury Sandstone.

\_

<sup>&</sup>lt;sup>4</sup> Additional clarification in this Panel advice.

<sup>&</sup>lt;sup>5</sup> Two accessible locations are recommended in the dot points above.

#### Deep groundwater in the Narrabeen Group and Illawarra Coal Measures

Each of the five VWP sites listed above has sensors monitoring deep groundwater in the underlying Narrabeen Group sandstone aquifers. At least one additional VWP site (in addition to the two or three recommended above near swamps) located along Firetrail 9E at a suitable site overlying either LW311, 312 or 313 would assist in monitoring deep groundwater depressurisation and mining induced drawdown to shallow aquifers in the Hawkesbury Sandstone in this ridgeline area.

A slightly expanded deep groundwater monitoring network is recommended to monitor the lateral and vertical extent of depressurisation. These VWPs would be installed too late to obtain any worthwhile baseline data for the Extraction Plan but would be useful to understand future depressurisation and the potential for drainage of shallow groundwater in both upland swamp and ridgeline areas.

#### **4.3.3.Summary**

The Panel concludes that:

- The available information is adequate (both spatially and with sufficient baseline) subject to the installation updates to characterise the shallow groundwater conditions within and immediately beneath each of the primary swamps (i.e. swamps S76, S77 and S92).
- For the western control swamps, there is one comparable valley infill swamp (Bee Creek Swamp) with only one paired monitoring site. The length of record is adequate but additional sites both within this swamp and swamp S14 would provide a better understanding of natural variability.
- The available information is inadequate to determine the regional water table depth in the Hawkesbury Sandstone and the connectivity (if any) with shallow perched groundwater across the ridgeline and near the primary swamps.
- The deep groundwater monitoring information is barely adequate and the monitoring network would benefit from additional VWPs in both ridgeline areas and near swamps S77 and S92.

The Panel recommends that the assessment needs to include:

- 1. A detailed conceptualisation of the hydrology/hydrogeology of each of the listed swamps including groundwater-surface water interactions, and a holistic assessment of connectivity with regional groundwater and groundwater dependent assets.
- 2. Any updated groundwater model predictions that describe the impacts to these shallow groundwater systems, and their dependent environmental assets (i.e. stream baseflows and swamps).
- 3. An assessment of risk of subsidence impacts to upland swamps, including the risk of changes in groundwater levels and storage in swamp substrates and underlying weathered sandstone.
- 4. Detailed analysis of groundwater levels and soil moisture, using the existing monitoring network, and how this relates to swamp sub-communities.
- 5. A commitment that prior to the commencement of extraction of LW311, additional groundwater monitoring sites will be installed near the primary swamps, in Swamp S106 and within the western control swamps as recommended in Section 4.3.2.

6. Revised TARPs that encompass the recommendations made by the Panel in its advice on LW308-310 extraction plan, particularly improved time-independent water level parameters for the paired swamp groundwater monitoring locations.

#### 4.4. SURFACE WATER

Overall the Briefing Paper proposes, at a high level, a satisfactory assessment of surface water subject to the recommendations made below and subject to the concerns raised earlier in this document regarding potential environmental consequences on swamp S92 surface water and recommendations for a detailed conceptualisation of the hydrology/hydrogeology.

Swamps S76, S77 and S92 are shown on the various available maps (e.g. Peabody 2022a, Figure 5) to have watercourses running within or closely alongside much or all of the swamp lengths. During the field visit on 23 October 2023, the swamp S92 watercourse was observed as flowing at the outlet flow gauge, with visible surface water within the swamp; while in swamps S76 and S77 there was evidence of surface water only near the S76 gauge site (noting that the preceding 5 months had been relatively dry, preceded by a wet year). A trickle of flow (<0.1 L/s) was observed during the field visit at the flume downstream of swamp S76. No flow was observed at the S92 gauge site in April 2018 (Appendix A of Peabody 2022b). The Panel was not able to observe distinct continuous stream channels in any of the swamps except for a few metres immediately upstream of the swamp S76 flow gauge and for some tens of metres upstream of the swamp S92 flow gauge. Drainage line and pool mapping using drones with selected ground-truthing would be useful to confirm the status of the surface hydrology in all three primary swamps.

From the Water Management Plan (Peabody 2022b) it is understood that the three tributaries of the Woronora Reservoir for which the swamps are headwaters, are named P, Q and R for swamps S92, S76 and S77 respectively. It would be beneficial for these tributaries to be named on relevant map(s) in the Extraction Plan.

#### 4.4.1.Proposed environmental assessment

The assessment scope (as listed in Table 3 of the Briefing Paper) for surface water is:

- Review of pre and predicted post-mining topography to aid assessment of potential for surface water impacts.
- Produce updated flow path figures for large swamps

Additionally, Table 3 includes subsidence assessment including valley closure, which will inform surface water risk assessment. Furthermore, assessment of risks to surface waters and surface water-groundwater interactions may be assumed implicit to the Groundwater and Upland Swamp Risk parts of Table 3.

#### 4.4.2. Adequacy of monitoring network

The surface water monitoring consists of two flow gauges: at the rock-bar downstream of swamp S76; and at the rock-bar at the outlet of swamp S92. Swamp S77 has no flow gauge because "Stream specialist investigated and found not feasible to install a flow measuring flume downstream of Swamp 77" (quoted from Peabody's presentation to the Panel prior to the field visit of 23 October 2023). The Panel agrees that the cost and environmental impacts of installing a flow gauge at Swamp S77 are unlikely to be justified.

The Panel notes that the swamp S76-GS and S92-GS flow gauges are designed to accurately measure low to medium flow rates, which is appropriate for assessing hydrological impacts of subsidence. The Panel notes the high potential for debris to accumulate in or upstream of the flumes and the need for regular maintenance; further, the likelihood of subsidence impacts at the flow gauge sites means that re-calibration and potentially repair to the flume/rockbar may be required. A camera that captures images every half-hour (or less) of flow and debris conditions at the S92-GS flow gauge would support data quality control, maintenance scheduling (if telemetry is possible), and record flow conditions during failures of the gauge.

There are no water quality gauges representing the swamps. There is a water quality site monitoring downstream of S92-GS (SP1 on Figure 7 of Peabody 2022b). Additional water quality data at the S92-GS flow gauge will allow any impacts within the swamp to be isolated from downstream impacts.

The period of baseline flow data at these two flow gauges is sufficient. These data should be presented alongside the piezometer and climate data in the Extraction Plan, and characterisation of flow rates and dynamics conducted.

There are no nominated control flow gauges and the Panel is not aware of established flow gauges that would make suitable controls, although the Honeysuckle Creek gauge might be useful for comparison with S92-GS. Swamp hydrology performance indicators should be designed taking the limited availability of controls into account.

#### **4.4.3.Summary**

The Panel concludes that:

• The available information and proposed approach are adequate subject to the recommendations made below and subject to the concerns raised earlier regarding potential subsidence impacts on S92 surface water and recommendations for a detailed conceptualisation of the hydrology/hydrogeology.

The Panel's recommendations for additional surface water assessment are:

- 1. Characterisation of baseline surface flow dynamics.
- 2. Characterisation of baseline water quality at the outlet of swamp S92.
- 3. Characterisation of the presence of drainage lines and major pools in swamp S92 to inform flora and fauna surveys, and as a baseline record of surface water storage features.

The Panel's recommendations for additional surface water monitoring are:

- 4. A camera that captures images every half-hour (or less) of flow and debris conditions at the swamp S92-GS flow gauge. This is common practice to support data quality control, maintenance (where telemetry is possible), and record flow conditions during failures of the gauge.
- 5. A baseline survey (potentially by drone) of major pools within swamps S76, S77 and S92.
- 6. Water quality monitoring at the swamp S92-GS site including a baseline period as far as practicable. The Panel acknowledges that there is a water quality site monitoring further downstream on this watercourse (SP1 on Figure 7 of Peabody 2022b). Additional water quality data at the flow gauge will allow any impacts within the swamp to be isolated from downstream impacts.

#### 4.5. UPLAND SWAMP BIODIVERSITY

The information provided to the Panel to date lacks key details in several areas related to environmental assessment. This may impact the ability of the Panel and DPE to adequately assess the potential subsidence impacts and environmental consequences for upland swamps S76, S77 and S92. It is noted that a number of additional upland swamps are located within the angle of draw for LWs 311-316, including large valley infill swamp S106.

The site visit indicated that swamp S76 consisted of predominantly Banksia Thicket. Swamp S77 was slightly more diverse, consisting of predominantly Banksia Thicket with some areas of Tea-tree Thicket and Sedgeland-heath Complex. No evidence of water at the surface was observed in swamps S76 and S77, although swamp sediment was moist, sticky and darkened by organic matter to at least 0.5m depth. This aligns with swamp substrate piezometers which show the presence of a perched water table.

Swamp S92 was wet, with surface water present and the swamp supporting a diverse and complex range of vegetation communities including Tea-tree Thicket, Sedgeland-heath Complex and Banksia Thicket (Photo 4.1). This swamp is significant, showing a high degree of wetness and diversity, with potential to support a population of the Giant Dragonfly (*Petalura gigantea*).



**Photo 4.1** – Upstream section of Swamp S92

Discussions with the Metropolitan Coal and their consultants indicated that environmental assessments, including surveys for frogs, the Giant Dragonfly and threatened flora were ongoing or about to be commenced at the time of the site visit.

#### 4.5.1. Upland swamps

#### 4.5.1.1. Proposed environmental assessment

The scope of the technical assessments for upland swamps is outlined in Table 3 of the Briefing Paper. Included is a swamp risk assessment scope which needs to be integrated and comprehensive. The Panel's comments on the proposed risk assessment are provided in Section 4.6.2.

The Panel recommends inclusion of the following in the environmental assessment for swamps S76, S77 and S92:

- 1. Development of a conceptual model (schematics) showing vegetation type, swamp gradients (including soil depths) and perched groundwater that sustains the primary swamps.
- 2. Revised baseline mapping of swamp sub-communities, using a replicable technique that will allow monitoring of changes in response to changes in hydrology. Comparison with previous mapping would be desirable.
- 3. If suitable access is possible, install a cross section of swamp substrate piezometers in the upper reaches of swamp S92. Piezometers should be representative of the vegetation communities, especially cyperoid heath/tea tree thicket v banksia heath v restioid sedgeland in S92.

Detailed assessment of the potential subsidence effects and associated impacts to swamp S92 are required given the significance of this swamp.

The Panel also flags the potential for impacts to swamp S106 from extraction of LWs 316 and 317. Similar to swamp S92, this swamp is large and is likely to support a diverse range of swamp sub-communities. The Panel recommends that Metropolitan Coal include an assessment of the potential impacts to swamp S106 in the impact assessment, and that monitoring of swamp S106 be included in the updated Biodiversity Management Plan that is included with the Extraction Plan.

Further west, large swamps S14 and Bee Creek Swamp appear similarly significant. Although not a part of this application, the Panel flags the need for the company to consider ongoing and expanded baseline monitoring of these swamps if future mining is planned for this area, particularly in light of the current use of these swamps as control sites.

#### 4.5.1.2. Adequacy of monitoring network

There is a risk that extraction of LWs 316 and 317 will impact on swamp S106. The Panel recommends that a vegetation and flora monitoring transects be established in swamp S106, that complement the recommended shallow groundwater monitoring locations (see Section 4.3.2).

In line with the Panel's review of the LWs 308-310 Extraction Plan, it is recommended that the Extraction Plan include tables of all parameters (such as period of record, depth to baseline, adjacent vegetation, graphical piezometric and soil moisture records for each site) relevant to all swamp monitoring sites within the LWs 311-316 extraction area.

The Briefing Paper provides little detail on other monitoring proposed, including vegetation and flora monitoring. Current monitoring, outlined in the Biodiversity Management Plan (Peabody 2022c), includes transect/quadrat monitoring and indicator species monitoring (in addition to groundwater monitoring). The Panel anticipates that this is being expanded to include swamps S76, S77 and S92, and suitable additional control swamps. It is also recommended that ongoing mapping of swamp sub-communities, using a replicable technique that will allow monitoring of changes in response to changes in hydrology, be incorporated into the monitoring program.

Swamps S76, S77 and S92 are valley infill swamps and thus are different to the swamps previously undermined at the Metropolitan Coal Mine. In the area mined to date, only one valley infill swamp (S21) was identified in the 2008 Environmental Assessment and this was small and had already been undermined by LWs 7 and 8 (Florasearch and Western Research Institute (2008)). The Panel recommends that the company review its monitoring program and ensure comparable control sites are established, including piezometers, vegetation

monitoring and threatened species monitoring. The expansion of these monitoring programs to include additional sites in Bee Creek Swamp and swamps S14 and S137 is recommended.

#### 4.5.2.Flora and Fauna

#### 4.5.2.1. Proposed environmental assessment

The scope of the assessment of flora and fauna is outlined in Table 3 of the Briefing Paper and includes:

- Summary of impacts detected by Project to date
- Produce updated flora mapping by species.
- Review performance of undermined swamps east of the reservoir that were the subject of controlled burns to determine if changes evident may indicate less resilience to bushfire.
- Baseline surveys in large swamps.
- Giant dragonfly surveys.
- Amphibian species richness survey.

Additionally, Table 3 includes subsidence assessment including closure, which will inform the risk assessment for habitat for flora and fauna species.

The Panel recommends inclusion of the following in the environmental assessment for LWs 311 to 316:

- Pool mapping within each primary swamp and their associated drainage lines to be undermined by LWs 311-316. Consideration could be given to remote fly-over investigation which could also provide useful data on vegetation distribution.
- Baseline surveys for fish species in defined drainage lines and pools downstream of the primary swamps using techniques such as trapping and backpack electrofishing.
- Baseline surveys for obligate swamp species, particularly the Giant Dragonfly (*Petalura gigantea*), with larval surveys recommended for this species, and for threatened flora species.
- Baseline surveys for Littlejohn's Tree Frog (*Litoria littlejohni*), Giant Burrowing (*Heleioporus australiacus*) and aquatic ecology, including upland swamps and also in large pools identified in the streams below the swamps.
- Baseline surveys for the Eastern Ground Parrot (*Pezoporus wallicus*). While not identified in this area since 2007, to the Panel's knowledge there has not been substantive survey undertaken and the possible presence of this species needs to be investigated.

#### 4.5.2.2. Adequacy of monitoring network

The Briefing Paper provides little detail on flora and fauna monitoring proposed. Current monitoring, outlined in the Biodiversity Management Plan (Peabody 2022c), includes stream monitoring, pool monitoring and amphibian monitoring.

It is recommended that this monitoring program be reviewed subject to the findings of the current baseline surveys, with incorporation of the following elements considered:

- Incorporation of macroinvertebrate monitoring in pools into the ongoing program to document changes in macroinvertebrate assemblages as an indicator of water quality.
- Standardised monitoring of fish species in defined drainage lines and pools downstream of the primary swamps using techniques such as trapping and backpack electrofishing, if populations are identified during baseline assessment.
- Nocturnal surveys for threatened frog species using standardised transects, including comparison of abundance.
- Ongoing monitoring of the Ground Parrot if the species is detected during baseline surveys.

#### **4.5.3.Summary**

To summarise, the Panel's biodiversity recommendations for this Extraction Plan and subsequent primary swamps monitoring programs are:

- 1. Development of a conceptual model (schematics) showing vegetation type, swamp gradients (including soil depths) and perched groundwater that sustains the primary swamps.
- 2. Revised baseline mapping of swamp sub-communities, using a replicable technique that will allow monitoring of changes in response to changes in hydrology. Comparison with previous mapping would be desirable.
- 3. If suitable access is possible, install a cross section of swamp substrate piezometers in the upper reaches of swamp S92. Piezometers should be representative of the vegetation communities, especially cyperoid heath/tea tree thicket v banksia heath v restioid sedgeland in S92.
- 4. Include an assessment of the potential impacts to swamp S106 and include this swamp in other assessment and monitoring programs for biodiversity.
- 5. Baseline surveys for swamp related species, such as the Giant Dragonfly (*Petalura gigantea*), with larval surveys recommended for this species, and threatened flora species.
- 6. Baseline surveys for Littlejohn's Tree Frog (*Litoria littlejohni*), Giant Burrowing (*Heleioporus australiacus*) and aquatic ecology, including upland swamps and also in large pools identified in the streams below the swamps.
- 7. Baseline surveys for the Eastern Ground Parrot (*Pezoporus wallicus*).
- 8. Depending on the finding of the baseline surveys:
  - Incorporation of macroinvertebrate monitoring in pools into the program to document changes in macroinvertebrate assemblages as an indicator of water quality.
  - Nocturnal surveys for threatened frog species using standardised transects, including comparison of abundance.
  - Ongoing monitoring of the Ground Parrot if this species is detected.

#### 4.6. OTHER ISSUES

#### 4.6.1.Performance measures and indicators

The Briefing Paper does not mention the development of suitable performance measures and performance indicators as required under Condition 4 of Schedule 3 of the Metropolitan Coal Project Approval (MP 08\_0149).

The development of new targeted, measurable and enforceable performance measures, performance indicators and triggers are required to account for new knowledge of potential environmental consequences since the original consent.

The Panel recommends that Metropolitan Coal draft new TARPs for inclusion in new Water Management and Biodiversity Management Plans that accompany the Extraction Plan to reflect the required performance measures and performance indicators to protect these swamps.

Previous advice provided by the Panel on the Extraction Plan for LWs 308-310 (IAPUM 2022) recommended revisions to the TARP for upland swamps; specifically:

- Rewording of the TARP to remove reference to the implication that surface cracking must be visible as the cause for changes in groundwater; and
- Due to the lag time between changes in groundwater and vegetation within upland swamps, Performance Measures (not only Performance Indicators) set for upland swamps must include measures based on changes to perched groundwater in the swamp sediments and the underlying weathered sandstone.

It is recommended that these changes are incorporated into the Extraction Plan and Biodiversity Management Plan.

The Panel's recommendations for improved performance measures and indicators are:

- 1. Reword the TARP to remove reference to the implication that surface cracking must be visible as the cause for changes in groundwater.
- 2. Revise the Performance Measures (not only Performance Indicators) set for upland swamps, and TARPS that include triggers based on temporal changes to perched groundwater in the swamp sediments and the underlying weathered sandstone.

#### 4.6.2.Integrated risk assessment

The Briefing Paper outlines the proposed scope of a basic risk assessment that would:

- Combine the relevant information from various specialists.
- Assess the potential subsidence impacts and environmental consequences of the proposed extraction plan.
- Consider potential risks of adverse environmental consequences.
- Analyse options for managing these risks including analysis and costing of alternate mine plans (e.g. costs and benefits of avoidance).

The Panel advises that a detailed risk assessment is required and recommends that it includes:

- An integrated assessment of the risks arising from enhanced vertical drainage of groundwater, surface water losses and the potential changes to the biodiversity of the primary upland swamps.
- Consideration of additional measures to potentially avoid or mitigate impacts to the threatened species and ecological communities within these swamps, particularly swamp S92.

#### The Panel's recommendations are:

- 1. Prepare a comprehensive risk assessment that clearly articulates all the mining-induced risks to swamps S76, S77 and S92 including:
  - the risk of subsurface cracking and other bedrock structural changes likely to enhance vertical drainage extending beneath the swamps
  - the risk of accelerated drainage of shallow groundwater systems
  - the consequential impact to surface water and dependent ecosystems.
- 2. Identify appropriate actions to avoid, mitigate or manage the environmental risks.

#### 5.0 RECOMMENDATIONS

Based on the content of the Briefing Paper and the additional information supplied by Metropolitan Coal for the technical scopes for the large swamp assessment, the Panel provides the following recommendations to improve the content in the Extraction Plan and recommendations for additional monitoring in advance of the commencement of extraction LWs 311-316. These recommendations have been aggregated from the main body of this Panel advice.

#### The Panel recommends:

#### Subsidence

- 1. Given that the gateroads (which determine the dimensions of LW311) are already being driven:
  - a. performance measures for swamp S92 need to be specified as a matter of priority
  - b. the assessment of mining-induced impacts and consequences for swamps overlying LW311 should be undertaken as a priority to provide timely warning of any need to change the width and/or the totally extracted length of LW311.
- 2. Drivage of MG312 should be delayed until the large swamp impact assessment has been completed and the Extraction Plan for LW311 and LW312 has been endorsed by the Department.

#### Groundwater

- 1. A detailed conceptualisation of the hydrology/hydrogeology of each of the listed swamps including groundwater-surface water interactions, and a holistic assessment of connectivity with regional groundwater and groundwater dependent assets.
- 2. Any updated groundwater model predictions that describe the impacts to these shallow groundwater systems, and their dependent environmental assets (i.e. stream baseflows and swamps).
- 3. An assessment of risk of subsidence impacts to upland swamps, including the risk of changes in groundwater levels and storage in swamp substrates and underlying weathered sandstone.
- 4. Detailed analysis of groundwater levels and soil moisture, using the existing monitoring network, and how this relates to swamp sub-communities.
- 5. A commitment that prior to the commencement of extraction of LW311, additional groundwater monitoring sites will be installed near the primary swamps, in Swamp S106 and within the western control swamps as recommended in Section 4.3.2.
- 6. Revised TARPs that encompass the recommendations made by the Panel in its advice on LW308-310 Extraction Plan, particularly improved time-independent water level parameters for the paired swamp groundwater monitoring locations.

#### **Surface Water**

- 1. Characterisation of baseline surface flow dynamics.
- 2. Characterisation of baseline water quality at the outlet of swamp S92.

- 3. Characterisation of the presence of drainage lines and major pools in swamp S92 to inform flora and fauna surveys, and as a baseline record of surface water storage features.
- 4. A camera that captures images every half-hour (or less) of flow and debris conditions at the swamp S92-GS flow gauge.
- 5. A baseline survey (potentially by drone) of major pools within swamps S76, S77 and S92.
- 6. Water quality monitoring at the swamp S92-GS site including a baseline period as far as practicable.

#### **Upland Swamps and Biodiversity**

- 1. Development of a conceptual model (schematics) showing vegetation type, swamp gradients (including soil depths) and perched groundwater that sustains the primary swamps.
- 2. Revised baseline mapping of swamp sub-communities, using a replicable technique that will allow monitoring of changes in response to changes in hydrology. Comparison with previous mapping would be desirable.
- 3. If suitable access is possible, install a cross section of swamp substrate piezometers in the upper reaches of swamp S92. Piezometers should be representative of the vegetation communities, especially cyperoid heath/tea tree thicket v banksia heath v restioid sedgeland in S92.
- 4. Include an assessment of the potential impacts to swamp S106 and include this swamp in other assessment and monitoring programs for biodiversity.
- 5. Baseline surveys for swamp related species, such as the Giant Dragonfly (*Petalura gigantea*), with larval surveys recommended for this species, and threatened flora species.
- 6. Baseline surveys for Littlejohn's Tree Frog (*Litoria littlejohni*), Giant Burrowing (*Heleioporus australiacus*) and aquatic ecology, including upland swamps and also in large pools identified in the streams below the swamps.
- 7. Baseline surveys for the Eastern Ground Parrot (*Pezoporus wallicus*).
- 8. Depending on the finding of the baseline surveys:
  - Incorporation of macroinvertebrate monitoring in pools into the program to document changes in macroinvertebrate assemblages as an indicator of water quality.
  - Nocturnal surveys for threatened frog species using standardised transects, including comparison of abundance.
  - Ongoing monitoring of the Ground Parrot if this species is detected.

#### Other issues

- 1. Reword the TARP to remove reference to the implication that surface cracking must be visible as the cause for changes in groundwater.
- 2. Revise the Performance Measures (not only Performance Indicators) set for upland swamps, and TARPS that include triggers based on temporal changes to perched groundwater in the swamp sediments and the underlying weathered sandstone.
- 3. Prepare a comprehensive risk assessment that clearly articulates all the mining-induced risks to swamps S76, S77 and S92 including:

- the risk of subsurface cracking and other bedrock structural changes likely to enhance vertical drainage extending beneath the swamps
- the risk of accelerated drainage of shallow groundwater systems
- the consequential impact to surface water and dependent ecosystems.
- 4. Identify appropriate actions to avoid, mitigate or manage the environmental risks.

#### REFERENCES

- DoP. (2008). Impacts of Underground Coal Mining on Natural Features in the Southern Coalfield Strategic Review. Hebblewhite, B.K., Galvin, J.M., Mackie, C.D., West, R. & Collins, D., ISBN 978 0 7347 5901 6, pp. 168. Sydney: NSW Government, Department of Planning.
- DoP. (2009). Project Approval Metropolitan Coal Project. pp. 28. Sydney: Department of Planning, NSW Government.
- DPE (2022). Memo Approval: Metropolitan Coal Mine Longwalls 308-310 Extraction Plan. dated 12 December 2022.
- Florasearch and Western Research Institute (2008). Metropolitan Coal Project Terrestrial Flora and Fauna Impact Report. Metropolitan Coal Project Appendix G.
- IAPUM (2022). Advice Re: Metropolitan Mine Longwalls 308-310 Extraction Plan. dated September 2022.
- IEAPM (2023). Advice Re: Metropolitan Coal Mine: Independent review of environmental performance to 2022 (Dupen, 2023). Report IEAPM 202309-2 dated September 2023.
- IESC (2015). Advice to decision maker on coal mining IESC 2015-068: Further advice on impacts to swamps dated 25 July 2015.
- NSW Planning Assessment Commission (2009). The Metropolitan Coal Project Review Report, NSW Planning Assessment Commission, Sydney.
- Peabody (2022a), Metropolitan Coal Longwalls 308-310 Extraction Plan dated November 2022.
- Peabody (2022b), Metropolitan Coal, Longwalls 308-310, Water Management Plan, Appendix A of the Extraction Plan for Longwalls 308-310. Report WMP-R01-C dated November 2022.
- Peabody (2022c), Metropolitan Coal Longwalls 308-310 Biodiversity Management Plan, Appendix C of the Extraction Plan for Longwalls 308-310. Report BMP-R01-A dated May 2022.
- Resource Strategies (2023). Large Swamp Assessment Briefing Paper. Undated.
- SLR (2023). Metropolitan Coal Groundwater Six-Monthly Report (1 Jul-31 Dec 2022) dated 29 March 2023.

# INDEPENDENT EXPERT ADVISORY PANEL FOR MINING

## **ADVICE RE:**

# **METROPOLITAN COAL MINE**

Stage 2: LONGWALLS 312-316

**Date: 31 March 2025** 

**Report No: IEAPM 202503-02** 

# **EXECUTIVE SUMMARY**

On 4 July 2024, the Director Resource Assessments, NSW Department of Planning, Housing and Infrastructure (DPHI) requested the Independent Expert Advisory Panel for Mining (IEAPM – 'the Panel') to provide advice in relation to the proposed Extraction Plan (EP) for secondary coal extraction from Longwalls (LWs) 311-316 at the Metropolitan Coal Mine. Metropolitan Mine (MM) is operated by Metropolitan Collieries Pty Ltd (MC), a wholly owned subsidiary of Peabody Energy Australia Pty Ltd (Peabody). The EP is for longwalls in the mining area approved in 2009 for the Metropolitan Coal Project (MCP).

The scope of the Advice sought from the Panel was as follows:

- Whether the Panel's previous recommendations in the documents above have been adequately addressed, in particular in relation to large swamps and water quality modelling and monitoring;
- The adequacy of large swamp impact predictions presented in the Large Swamp Assessment (Appendix H of the EP) and associated appendices;
- The adequacy of the proposed performance measures and indicators for large swamps required by condition 4(b) Schedule 3 of the consent and included in the Large Swamp Assessment (Section 7.2), and the need or otherwise to set more defined performance measures for large swamps beyond those related to threatened species, populations, or ecological communities;
- The need or otherwise to modify the mine plan to minimise/avoid impacts, particularly on large swamps, and ensure compliance with existing and proposed performance measures;
- The adequacy of the water and swamp monitoring programs;
- The water and swamp TARPs and whether they;
  - Enable measurement of compliance with existing and proposed performance measures established under the consent and proposed in the EP for large swamps; and
  - Have triggers (and associated performance indictors) that adequately reflect the existing and proposed performance measures.

The Panel should feel free to provide any other advice it considers would assist the Department in reviewing the EP.

After the initial briefing by DPHI Assessments, preliminary review of information and Panel meetings; the IEAPM determined that due to a range of complexities, some unresolved at the time, a two-stage approach was the most suitable for this project. It was envisaged that Stage 1 would conclude advice on LWs 311 and 312 and Stage 2 would deal with LWs 313-316.

### Stage 1

Two IEAPM advice reports were submitted to DPHI in Stage 1, being:

#### 05/09/2024

This advice drew a range of conclusions and recommendations relevant to progressing the Panel's consideration of its scope of advice before the Panel could conclude its advice on LW 311 and LW 312.

# 16/10/2024

This advice was in the form of a letter report which documented some of the complexities associated with distilling the performance measures (PMs) that apply to Swamps 76, 77 and 92, portions of which overlay the proposed LWs 312-316. Consequently, the Panel's advice was limited to supporting the extraction of LW 311 subject to a range of matters that it recommended should be

considered when drafting approval conditions for this longwall panel. Further, consideration of LW 312 was transferred to Stage 2.

A particularly noteworthy complexity associated with providing advice on the EP for LWs 312 – 316 is the standalone and, apparently, uniquely constructed consent condition that constitutes Schedule 3 Condition 4 and that is specific to the undermining of Swamps 76, 77 and 92.

The complexities associated with providing advice on Stage 2 are, to a large degree, a legacy of the fact that the MCP was:

- the first coal project to be assessed after amendments to Part 3A of the *Environmental Protection Act 1979* in 2008 which, at the time, were considered to extinguish the opportunity to retrospectively apply PMs embedded in consent conditions to features not identified at the time of environmental assessment and project determination or to changes in the gazetted status of features from that at the time of environmental assessment and project determination.
- the first coal project to be assessed by the Planning Assessment Commission (PAC) established in 2008; and
- the first coal project assessment that was required to have regard to the 2008 findings and recommendations of the inquiry into the *Impacts of Underground Coal Mining on Natural Features in the Southern Coalfield Strategic Review*, usually referred to today as *The Southern Coalfield Inquiry* (SCI).

These three aspects resulted in a step change in the rigour of environmental assessment of coal projects, driven by the findings of the SCI and by the PAC Assessment Panel including subject experts. However, in the case of the MCP:

- 1. the bulk of the Environmental Assessment (EA) for the project had been completed prior to the findings of the SCI, and
- 2. there was a learning curve associated with framing consent conditions to reflect the objectives of the new assessment regime.

These two factors impacted on the way some consent conditions were framed for the MCP, in particular Schedule 3 Condition 4 which pertains specifically to Swamps 76, 77 and 92. The Panel concludes that this condition does not reflect the core aspects of the PAC's relevant recommendations that it was intended to address and is effectively unworkable. Further, additional complexities have been introduced by a lack of appreciation by some as to what gave rise to the consent condition, compounded by Coastal Upland Swamps subsequently being gazetted by both the State and Federal Governments as an *Endangered Ecological Community*. These and other factors have had implications for the varied interpretations and expectations of a range of stakeholders, including some aspects of advice previously provided by the Panel. These are addressed in this seminal advice for LWs 312-316.

The Panel researched the background to this situation and sought a range of input, concluding that it was not possible to satisfy the literal wording of Schedule 3 Condition 4. Notwithstanding this, subject to some refinements, the PMs for Swamps 76, 77 and 92 proposed by MC could largely satisfy the intent of the PAC's foundation recommendations.

Based on the material presented to the Panel, the supplementary information supplied by MC and the Panel's approach to resolving complexities, the Panel has made the following conclusions and recommendations in relation to the EP for LWs 312-316 (version R01-C).

#### **CONCLUSIONS**

# Complexities and their resolution

- 1. Schedule 3 Condition 4 specific to Swamps 76, 77 and 92 aims to reflect the PAC recommendations that prompted the formulation of this approval condition, but it has been drafted in a manner that appears unique as a project approval condition and, taken literally, presents difficulties in practice to the point of being illogical and unworkable.
- 2. These difficulties appear to arise out of the step change in the rigor of project assessment introduced at the time of assessment of the MCP and the associated learning curve in how environmental consent conditions were to be framed going forward.
- 3. The concept of swamps of 'special significance' was advanced by the PAC and raised in some submissions is academic going forward. The PAC reported that it found no convincing evidence to classify any swamps as such, the Panel does not consider that any of Swamps 76, 77 or 92 to be of 'special significance', there is no basis for applying the concept retrospectively, and the concept has been superseded by the subsequent gazetting of Coastal Upland Swamps as an EEC.
- 4. Swamp 92 is a significant example of a Coastal Upland Swamp that is large, complex and in pristine condition and, given that the majority of this swamp overlies only first workings, the Panel concludes that MC's revision to the mine plan to now stop LW 312 and LW 313 short so as to both avoid undermining this swamp and restrict subsidence effects to very low values, complemented with MC's designation of a Performance Measure (PM) for this swamp of negligible environmental consequences, are responsible and welcomed actions.
- 5. Based on its own review of the PAC report that informed the framing of environment-related consent conditions, the Panel does not consider that the EP comprehensively addresses the PAC's concerns regarding managing impacts on the valley infill sections of Swamps 76 and 77 and the environmental consequences of any impacts for the headwater sections of these swamps. Since the PAC's concerns were not clearly captured in Schedule 3 Condition 4, this may have to stand. However, the outcomes of subsidence assessment and environmental assessment for the valley in-fill sections of Swamps 76 and 77 suggest that the incomplete capture of the PAC's recommendations may not have serious implications for achieving the PMs that are relevant for these swamps.
- 6. In the given circumstances, and in light of the PAC's assessment report and the MCP consent conditions, the Panel concludes that both the intent of the PAC in regard to Swamps 76, 77 and 92 and the intent of Schedule 3 Condition 4 could be achieved if:
  - a. MC's proposed PM for Swamp 92 of "negligible environmental consequences" was endorsed by the Planning Secretary ('Director General').
  - b. MC's proposed PM for Swamps 76 and 77 of "negligible environmental consequences for threatened species" was to be expanded to "negligible environmental consequences for threatened species, ecological communities and populations" in order to also be consistent with Schedule 3 Condition 1, and endorsed by the Planning Secretary (noting that this is confined to species, ecological communities and populations gazetted as threatened at the time of the Project Approval).
  - c. Any approval of the EP for LWs 312-316 included a requirement that all valley closure impacts which present a risk to not achieving the approved PMs relevant to Swamps 76, 77 and/or 92 are to be remediated to the satisfaction of the Planning Secretary within 12 months of the abatement of the valley closure impacts.

7. Any approval for the EP for LWs312-316 should include a requirement for an End-of-Panel review report to be produced within 3 months of the completion of each longwall panel and to include coverage of cumulative impacts and environmental consequences for the preceding three longwall panels.

#### Groundwater

- 8. The groundwater recommendations from the Panel's advice on LWs 311-312, all of which are relevant to LWs 312-316, have been addressed satisfactorily in the proposed TARP or otherwise in the MC responses to the recommendations, with exceptions:
  - a. The shallow Hawkesbury Sandstone (HBSS) groundwater should be included in the triggers in the relevant Trigger Action Response Plan (TARPs) (Table 14A and Table 14 B of the Biodiversity Management Plan (BMP)).
  - b. Soil moisture measurements should explicitly be considered in the analysis of impacts and consequences following a level 2 or 3 swamp groundwater trigger in both Table 14A and Table 14 B of the BMP.
  - c. Further refinements to the description of the semi-quantitative analysis of groundwater recession are advisable.
- 9. The proposed piezometer in the lower end of Swamp 77 will be a useful source of information, but due to the nature of the lower end of the swamp this piezometer will not be a suitable basis for a TARP or groundwater performance indicator. The Panel concludes that the practical options for assessing the hydrological impacts at the downstream end of Swamp 77 are: monitoring of hydrology at the installed sites further upstream in the swamp since these will influence the baseflow supply to the lower end of Swamp 77; and monitoring of physical impacts to the rockbars at the downstream end of Swamp 77.

### Surface water

10. The surface water recommendations in the Panel's advice on LWs 311-312, all of which are relevant to LWs 312-316, have been addressed satisfactorily in the MC responses, with the exception of aspects raised in the Biodiversity section of this advice.

## **Biodiversity**

- 11. If valley closures along lengths of tributaries R and S are as high as predicted, this is likely to result in environmental consequences for threatened species if and where they are present, particularly the Littlejohn's Tree Frog and Giant Burrowing Frog which both rely on pools for breeding. If these impacts do occur, and result in loss of breeding habitat, the environmental consequences for these species are unlikely to be considered negligible. In the case of tributary P, the additional/incremental valley closure due to the extraction of LWs 311-316 is not high and less likely to result in environmental consequences for threatened species, if they are present.
- 12. The TARPs for amphibians, presented in the Revised BMP (November 2024) are generally supported. However, a number of amendments to these TARPs are recommended.
- 13. Baseline surveys for the Giant Dragonfly and Ground Parrot are incomplete and no TARP or monitoring program is provided for either threatened species. If the baseline surveys for the Giant Dragonfly or Ground Parrot identify these species, then amendments to the BMP will be required including additional monitoring and a new TARP(s).

- 14. The Panel's previous (Stage 1) recommendation that the assessment of the biodiversity PM for Swamps 76, 77 and 92 should be based directly on the groundwater performance indicator was premised on these swamps being regarded as EECs for the purpose of assessing the EP for LW 312-316. Given this this premise is no longer considered appropriate, the Panel concludes that PM is now interpreted as relating only to threatened species and that previous recommendation is superseded by those below.
- 15. Notwithstanding the above, the Panel is of the view that should the Giant Dragonfly be recorded in the upland swamps, exceedance of a swamp groundwater performance indicator is highly likely to lead to exceedance of the threatened species PM given the obligate dependence of this species on groundwater. A robust TARP, performance indicator and monitoring program will be required if biodiversity monitoring is relied upon to demonstrate that the PM has not been exceeded.

#### RECOMMENDATIONS

# Complexities and their resolution

The Panel recommends that:

- 1. The intent of Schedule 3 Condition 4 be given effect by approval conditions that:
  - a. Endorse the refined mine layout that now results in LW312 stopping 120 m short and LW313 stopping 80 m short of their originally planned finishing points.
  - b. Endorse MC's proposed PM for Swamp 92 of "negligible environmental consequences".
  - c. Are based on MC expanding its proposed PM for Swamps 76 and 77 to "negligible environmental consequences for threatened species, ecological communities and populations" before endorsement by the Planning Secretary.
- 2. Any approval of the EP for LWs312-316 should include a requirement that all valley closure impacts which present a risk to not achieving the approved PMs for Swamps 76, 77 and/or 92 are to be remediated to the satisfaction of the Planning Secretary within 12 months of the abatement of the valley closure impacts.
- 3. Any approval for the EP for LWs312-316 should include a requirement for an End-of-Panel review report to be produced within 3 months of the completion of each longwall panel and to include coverage of cumulative impacts and environmental consequences for the preceding three longwall panels.

# Groundwater

- 4. The level 2 TARP in Tables 14A and 14B of the BMP should include a trigger for potential impacts on HBSS shallow (~10m) groundwater levels where suitable baseline data exist, whereby an accelerated reduction in shallow HBSS groundwater levels would trigger an action. One piezometer per swamp with the longest period of baseline data would suffice.
- 5. The level 3 TARP in Tables 14A and 14B of the BMP should be robust enough to ensure that low baseline substrate groundwater levels do not preclude a trigger.
- 6. The technical document on implementing the semi-quantitative groundwater trigger should be incorporated as an appendix in the Water Management Plan or the MC Annual Report, and that

- the time-series of groundwater levels from which the cumulative frequency distributions are derived is added to the document for the readers' reference.
- 7. The incorporation of soil moisture in Table 14A (footnote 6) of the BMP should be replicated in Table 14B of that document.

#### Surface Water

8. MC's progress with implementing previous Panel recommendations related to water quality (Panel Report No: IEAPM 202310-1 R1) should be reviewed by DPHI following publication of MC's 2024 Annual Review.

# **Biodiversity**

- 9. The threatened species survey program report should be provided as soon as possible by MC and reviewed by DPHI.
- 10. If the Giant Dragonfly is recorded during baseline surveys, it is recommended that the results of the baseline monitoring and the proposed amendments to the BMP, including a suitable TARP and monitoring program, are provided to DPHI for review and comment. This should occur prior to commencement of secondary extraction of LW312.
- 11. The Panel considers that there is a strong requirement for pool water level monitoring in suitable breeding pools of tributaries R and S if threatened species are found to be present. The Large Swamp Amphibian Monitoring TARP does not include any triggers related to pool water level. Given the above, the triggers should be amended.
- 12. The Panel recommends that iron flocculent deposition in suitable breeding pools is monitored and incorporated into the triggers for the Large Swamp Amphibian Monitoring TARP.
- 13. The Action/Response in the Level 3 trigger in Table 18 of the Revised BMP (November 2024) should be amended to insert the underlined words: "Where appropriate contingency measures or remediation cannot be implemented to address an impact, or remediation measures are unsuccessful in addressing the impact, Metropolitan Coal would provide a suitable offset to compensate for the impact to the satisfactory of the Planning Secretary".
- 14. The TARP for Large Swamp Amphibian Monitoring should be amended to indicate that if a subsidence impact results in an exceedance of a performance indicator for threatened species, as assessed against control sites, then the PM for threatened species has been exceeded and further assessment against the PM is not required.
- 15. The proposed TARP for amphibians (Table 18 of the Revised BMP, November 2024) should be applied to Swamps 76, 77 and 92 as well as the downstream extent of tributaries P, R and S.
- 16. The TARPs for threatened amphibians should focus on changes in abundance for each individual species, i.e. not overall abundance or relative abundance. Table 18 of the BMP should be amended to ensure this occurs. There may be benefit in looking at relative abundance between life cycle stages (e.g. adult males and females to tadpoles) for individual species.
- 17. A Level 2a trigger should be reported to the Technical Committee as a Level 2a trigger even if detected differences cannot be attributed to mining. Amend the Action/Response to "Any significant differences detected that are not attributable to mining impacts (e.g. are a result of environmental conditions or stochastic events) are to be considered normal conditions and will be reported as Level 1 to the Technical Committee."

18. The performance indicator in Table 18 of the BMP (November 2024) be modified to read 'The abundance of Littlejohn's Tree Frog, Red Crowned Toadlet or Giant Burrowing Frog is not expected to experience a decline compared to previous years that is significantly different to the trend for that species at control sites'. The determination of an impact should be based on a change in abundance of any threatened species and not on the assemblage of all threatened species.

# TABLE OF CONTENTS

| 1.0   | INTRODUCTION                                                              | 10               |
|-------|---------------------------------------------------------------------------|------------------|
| 2.0   | SCOPE OF WORKS                                                            | 13               |
| 3.0   | METHOD OF OPERATION                                                       | 14               |
| 3.1.  | Activities and Timeline                                                   | 14               |
| 3.2.  | Reference Documentation                                                   | 16               |
| 4.0   | COMPLEXITIES AND THEIR RESOLUTION                                         | 19               |
| 4.1.  | Background to Complexities                                                | 19               |
| 4.2.  | Complexities                                                              | 22               |
| 4.3.  | Resolution of Complexities                                                | 23               |
| 4.4.  | Conclusions and Recommendations Re Complexities                           | 32               |
| 5.0   | GROUNDWATER                                                               | 34               |
| 5.1.  | relevant recommendations from Stage 1 advice                              | 34               |
| 5.2.  | Large Swamp Groundwater Monitoring TARP                                   | 35               |
| 5.3.  | Monitoring at the downstream end of Swamp 77                              | 36               |
| 6.0   | SURFACE WATER                                                             | 37               |
| 6.1.  | Relevant recommendations from Stage 1 advice                              | 37               |
| 7.0   | BIODIVERSITY                                                              | 38               |
| 7.1.  | Relevant recommendations from Stage 1 advice                              | 38               |
| 7.2.  | Potential presence of threatened species and implications if present      | 40               |
| 7.3.  | Performance indicators for determining threatened species performance mea | asure exceedance |
| 7.4.  | Threatened amphibian TARP                                                 | 42               |
| 8.0   | OTHER MATTERS                                                             | 43               |
| 9.0   | CONCLUSIONS                                                               | 43               |
| 10.0  | RECOMMENDATIONS                                                           | 46               |
| REFEI | RENCES                                                                    | 48               |
| APPE  | NDIX A – DPHI REQUEST FOR ADVICE AND REVISED REQUEST F                    | OR ADVICE 50     |
| APPE  | NDIX B – PANEL BIOGRAPHY                                                  | 51               |

# Glossary

| ВМР          | Biodiversity Management Plan                                                                                         |
|--------------|----------------------------------------------------------------------------------------------------------------------|
| DCCEEW       | NSW Department of Climate Change, Energy, the Environment, and Water                                                 |
| DCCEEW-CPHR  | NSW Department of Climate Change, Energy, the Environment and<br>Water - Conservation, Heritage and Regulation Group |
| DCCEEW-Water | NSW Department of Climate Change, Energy, the Environment and Water – Water Division                                 |
| DPHI         | Department of Planning, Housing and Infrastructure                                                                   |
| EEC          | Endangered Ecological Community                                                                                      |
| ЕР           | Extraction Plan                                                                                                      |
| EPBC Act     | Commonwealth Environment Protection and Biodiversity<br>Conservation Act 1999                                        |
| HBSS         | Hawkesbury Sandstone                                                                                                 |
| IEAPM        | Independent Expert Advisory Panel for Mining                                                                         |
| IAPUM        | Independent Advisory Panel for Underground Mining                                                                    |
| LW           | Longwall                                                                                                             |
| MM           | Metropolitan Mine                                                                                                    |
| PM           | Performance measure                                                                                                  |
| TARP         | Trigger Action Response Plan                                                                                         |
| TSC          | NSW Threatened Species Conservation Act 1995                                                                         |
| VWP          | Vibrating Wire Piezometer                                                                                            |

# 1.0 INTRODUCTION

Metropolitan Mine (MM) is an operating underground coal mine located approximately 30 kilometres (km) north of Wollongong. The mine is operated by Metropolitan Collieries Pty Ltd (Metropolitan Coal - MC), a wholly owned subsidiary of Peabody Energy Australia Pty Ltd (Peabody). Development consent was granted in June 2009 and has been subsequently modified several times. The subsidence impact performance measures (PMs) stated in the Consolidated Consent are described in Schedule 3 Condition 1, reproduced in the following Table 1.

Table 1: Subsidence impact performance measures (Table 6 of the Extraction Plan).

| Water Resources                                                                                                                    |                                                                                                                                                                                                                    |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Catchment yield to the Woronora Reservoir                                                                                          | Negligible reduction to the quality or quantity of water resources reaching the Woronora Reservoir                                                                                                                 |  |  |
|                                                                                                                                    | No connective cracking between the surface and the mine                                                                                                                                                            |  |  |
| Woronora Reservoir                                                                                                                 | Negligible leakage from the Woronora Reservoir                                                                                                                                                                     |  |  |
|                                                                                                                                    | Negligible reduction in the water quality of Woronora Reservoir                                                                                                                                                    |  |  |
| Watercourses                                                                                                                       |                                                                                                                                                                                                                    |  |  |
| Waratah Rivulet between the full supply level<br>of the Woronora Reservoir and the maingate<br>of Longwall 23 (upstream of Pool P) | Negligible environmental consequences (that is, no diversion of flows, no change in the natural drainage behaviour of pools, minimal iron staining, and minimal gas releases)                                      |  |  |
| Eastern Tributary between the full supply<br>level of the Woronora Reservoir and the<br>maingate of Longwall 26                    | Negligible environmental consequences over at least 70% of the stream length (that is no diversion of flows, no change in the natural drainage behaviour of pools, minimal iron staining and minimal gas releases) |  |  |
| Biodiversity                                                                                                                       |                                                                                                                                                                                                                    |  |  |
| Threatened species, populations, or ecological communities                                                                         | Negligible impact                                                                                                                                                                                                  |  |  |
| Swamps 76, 77 and 92                                                                                                               | Set through condition 4 below                                                                                                                                                                                      |  |  |
| Land                                                                                                                               |                                                                                                                                                                                                                    |  |  |
| Cliffs                                                                                                                             | Less than 3% of the total length of cliffs (and associated overhangs) within the mining area experience mining-induced rock fall                                                                                   |  |  |
| Heritage                                                                                                                           |                                                                                                                                                                                                                    |  |  |
| Aboriginal heritage sites                                                                                                          | Less than 10% of Aboriginal heritage sites within the mining area are affected by subsidence impacts                                                                                                               |  |  |
| Items of historical or heritage significance at<br>the Garrawarra Centre                                                           | Negligible damage (that is fine or hairline cracks that do not require repair), unless the owner of the item and the appropriate heritage authority agree otherwise in writing                                     |  |  |
| Built Features                                                                                                                     |                                                                                                                                                                                                                    |  |  |
| Built features                                                                                                                     | Safe, serviceable and repairable, unless the owner agrees otherwise in writing                                                                                                                                     |  |  |

Under the conditions of the Consolidated Consent, MC is seeking approval for an Extraction Plan (EP) for longwall panels 311 to 316 (LWs 311–316). Figure 1 shows the location of the Project Area and the layout of LW 311 to 316 as proposed in the EP dated 15 November 2024. Figure 2 shows the modified mine plan that is the subject of this advice.

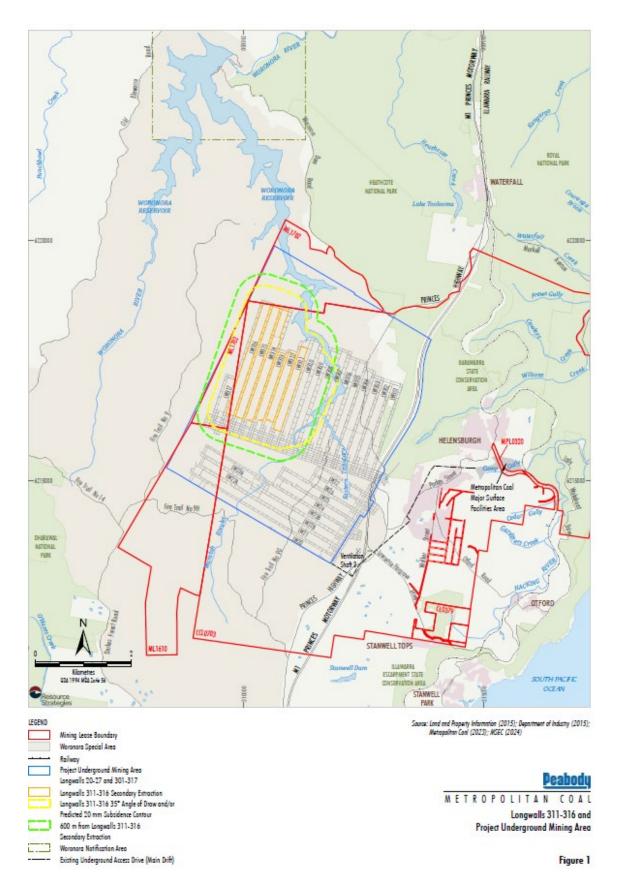



Figure 1: Plan of existing and proposed longwall workings in the current Project Approval area at Metropolitan Mine based on Revision EP-R01-C of the EP for LW311-316 dated November 2024.



Figure 2: Plan of existing and proposed longwall workings in the current Project Approval area at Metropolitan Mine based on Revision EP-R01-C of the EP for LW311-316 dated November 2024 and revisions to the starting and finishing points of LW313.

LW 311 was approved by the Department of Planning, Housing and Infrastructure (DPHI) in October 2024. This Panel advice relates to the extraction plan for LWs 312 to 316.

As shown in Table 1, the subsidence impact PMs identify a separate condition (Condition 4) for Swamps 76, 77 and 92, the areas of which overlap with the proposed LWs 312-316 (Figure 2). Schedule 3 Condition 4 sets the following requirements:

The Proponent shall not undermine Swamps 76, 77 and 92 without the written approval of the Director-General. In seeking this approval, the Proponent shall submit the following information with the relevant Extraction Plan (see condition 6 below):

(a) a comprehensive environmental assessment of the:

- potential subsidence impacts and environmental consequences of the proposed Extraction Plan;
- potential risks of adverse environmental consequences; and
- options for managing these risks;
- (b) a description of the proposed performance measures and indicators for these swamps; and
- (c) a description of the measures that would be implemented to manage the potential environmental consequences of the Extraction Plan on these swamps (to be included in the Biodiversity Management Plan see condition 6(f) below), and comply with the proposed performance measures and indicators.

As part of addressing Schedule 3 Condition 4, MC undertook an assessment (referred to as the *Large Swamp* Assessment) of Swamps 76, 77 and 92 and consulted with a range of government agencies.

The primary catalysts for requesting the Panel's advice are concerns raised by WaterNSW and DCCEEW-CPHR regarding potential impacts to swamps and water quality and the associated impacts to threatened species, watercourses and the Woronora Reservoir.

### 2.0 SCOPE OF WORKS

In 2021, DPHI established the Independent Advisory Panel for Underground Mining (IAPUM) for the purpose of giving it and the Independent Planning Commission (IPC) access to expert advice when assessing mining proposals under the *Environmental Planning and Assessment Act 1979*. The IAPUM's remit was expanded to all mining in 2023 when it was renamed the Independent Expert Advisory Panel for Mining (IEAPM – 'the Panel').

On 4 July 2024, the Director Resource Assessments, DPHI requested the Panel to provide advice in relation to the proposed EP for secondary coal extraction from LWs 311-316 at MM (refer Appendix A). This follows four relevant previous sets of advice provided on MM by the Panel and its predecessor, the IAPUM, these advices being:

- 1. Advice Re: Water Quality Performance Measures for Metropolitan Coal Mine (IEAPM, 2023a)
- 2. Advice Re: Large Swamp Environmental Assessment Requirements for the Extraction Plan for Longwalls 311 to 316 (IEAPM, 2023b)
- 3. Advice Re: Metropolitan Coal Mine: Independent Review of Environmental Performance to 2022 (IEAPM 2023c and IEAPM 2023d)
- 4. Advice Re: Metropolitan Mine Longwalls 308 310 Extraction Plan (IAPUM, 2022).

The scope of DPHI's request for advice pertaining to the EP for LWs 311-316 is as follows:

- Whether the Panel's previous recommendations in the documents above have been adequately addressed, in particular in relation to large swamps and water quality modelling and monitoring;
- The adequacy of large swamp impact predictions presented in the Large Swamp Assessment (Appendix H of the EP) and associated appendices;
- The adequacy of the proposed performance measures and indicators for large swamps required by condition 4(b) Schedule 3 of the consent and included in the Large Swamp Assessment (Section 7.2), and the need or otherwise to set more defined performance measures for large swamps beyond those related to threatened species, populations, or ecological communities;
- The need or otherwise to modify the mine plan to minimise/avoid impacts, particularly on large swamps, and ensure compliance with existing and proposed performance measures;
- The adequacy of the water and swamp monitoring programs;
- *The water and swamp TARPs and whether they;* 
  - Enable measurement of compliance with existing and proposed performance measures established under the consent and proposed in the EP for large swamps; and
  - Have triggers (and associated performance indictors) that adequately reflect the existing and proposed performance measures.

The Panel should feel free to provide any other advice it considers would assist the Department in reviewing the EP.

The Chair of the Panel (Em. Professor Jim Galvin) convened a Project Panel comprised of the following members<sup>1</sup>. Professor Neil McIntyre co-chaired this Project Panel and coordinated this Advice Report:

- Em. Professor Jim Galvin Subsidence and Mining
- Mr John Ross Groundwater
- Professor Neil McIntyre Surface Water
- Dr Ann Young Swamps
- Mr Nathan Garvey Biodiversity and Ecology
- Professor David Waite Water Quality.

# 3.0 METHOD OF OPERATION

#### 3.1. ACTIVITIES AND TIMELINE

After the initial briefing by DPHI Assessments, preliminary review of information and Panel meetings; the Panel determined that due to a range of complexities and some unresolved matters at the time, a two-stage approach was the most suitable for this project. It was envisaged that Stage 1 would conclude advice on LW 311 and LW 312, and Stage 2 would deal with LWs 313 – 316.

# Stage 1

-

Two IEAPM advice reports were submitted to DPHI in Stage 1, being:

<sup>&</sup>lt;sup>1</sup> A summary background on Panel members is presented in Appendix B.

#### 05/09/2024

This advice drew a range of conclusions and recommendations relevant to progressing the Panel's consideration of its scope of advice before the Panel could conclude its advice on LW 311 and LW 312.

### 16/10/2024

This advice was in the form of a letter report which documented some of the complexities associated with distilling the performance measures (PMs) that apply to Swamps 76, 77 and 92, portions of which overlay the proposed LWs 312-316. Consequently, the Panel's advice was limited to supporting the extraction of LW 311 subject to a range of matters that it recommended should be considered when drafting approval conditions for this longwall panel. Further, consideration of LW 312 was transferred to Stage 2.

### Stage 2

This current advice addresses all of the longwalls in Stage 2 (being LWs 312-316) and is presented in the following chapters:

- Chapter 2 Scope of works
- Chapter 3 Method of Operation
- Chapter 4 Complexities and their resolution
- Chapter 5 Groundwater
- Chapter 6 Surface Water
- Chapter 7 Biodiversity
- Chapter 8 Other Matters
- Chapter 9 Conclusions
- Chapter 10 Recommendations.

The Panel convened by videoconference during the preparation of its advice and was administratively supported by the Panel Secretariat staff provided by DPHI – Major Projects Advisory.

The timeline relating to the Panel's assessment of the EP for LWs 311-316 is summarised in Table 2. These activities were supported significantly by a range of knowledge gained by Panel members from previous site visits and documentation reviews relating to MM.

**Table 2**: Timeline relating to the Panel's assessment of the Extraction Plan for LWs 311-316 at Metropolitan Mine

| Date       | Milestone                                                                |  |
|------------|--------------------------------------------------------------------------|--|
| 04/07/2024 | DPHI request for advice from IEAPM and supply of initial documentation   |  |
| 23/07/2024 | Briefing from DPHI staff                                                 |  |
| 23/07/2024 | Panel teleconference to discuss issues and to resolve any advice queries |  |
| 08/08/2024 | IEAPM Request for Information (various detail)                           |  |
| 14/08/2024 | Metropolitan Coal response to IEAPM questions and queries                |  |
| 16/08/2024 | Panel teleconference to discuss issues and report structure              |  |

| Date       | Milestone                                                                                      |  |
|------------|------------------------------------------------------------------------------------------------|--|
| 19/08/2024 | Supply of additional information relating to response to agency advice                         |  |
| 23/08/2024 | BCS briefing                                                                                   |  |
| 27/08/2024 | Panel videoconference to progress report                                                       |  |
| 05/09/2024 | IEAPM Advice Report relating to Longwalls 311-312 issued to DPHI-Assessments                   |  |
| 04/10/2024 | IEAPM Request for Information relevant to Large Swamp assessment, subsidence, fie measurements |  |
| 08/10/2024 | IEAPM Request information relevant to Swamp 77                                                 |  |
| 16/10/2024 | IEAPM Advice Report relating to Longwall 311 only issued to DPHI-Assessments                   |  |
| 05/11/2024 | IEAPM Site Visit                                                                               |  |
| 11/11/2024 | IEAPM request for information relating to borehole logs, imagery, hydrological modelling       |  |
| 14/11/2024 | Supply of additional information by Metropolitan Coal                                          |  |
| 3/12/2024  | Supply of additional information by Metropolitan Coal                                          |  |
| 3/12/2024  | IEAPM request for additional information relating to subsidence predictions                    |  |
| 07/02/2025 | Meeting between Panel Chair and DPHI Assessments                                               |  |
| 18/02/2025 | Supply of additional information by Metropolitan Coal                                          |  |
| 25/02/2025 | Panel videoconference to discuss report progress                                               |  |
| 17/03/2025 | Videoconference with Panel Secretariat                                                         |  |

# 3.2. REFERENCE DOCUMENTATION

Numerous key documents were provided through DPHI to support the Panel in preparing this advice. These documents are listed in Table 3. A range of documents that the Panel has had regard to in compiling this advice are also recorded under References.

 Table 3: Reference Documentation

| Stage                          | Document<br>Reference | Document Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial documentation          | Provided by DPHI      | Extraction Plan LW 311-316 November 2024 including:  Appendix 1 – Subsidence Report i. Appendix A Water Management Plan ii. Appendix B Land Management Plan iii. Appendix C Biodiversity Management Plan iv. Appendix D Heritage Management Plan v. Appendix E Public Safety Management Plan vi. Appendix F Subsidence Management Plan vii. Appendix G Coal Resource Recovery Plan viii. Appendix H Large Swamp Assessment Appendix 2 – Subsidence Addendum Letter Peabody Six Monthly Report - 1 January to 30 June 2023 Report and 10 attachments Pre-submission Agency Advice DPI Fisheries DCCEEW-Water DCCEEW-CPHR DCCEEW-CPHR DCCEEW-CPHR DCCEEW-CPHR follow up Heritage NSW MEG Subsidence Advisory WaterNSW Wollongong City Council IEAPM High Level Review Report LW 311-316 November 2023 (IEAPM202311-1) Metropolitan Coal Response to IEAPM Advice Report 2023 LW 309 Waratah Rivulet TARP Results |
| Supplementary<br>Documentation | Provided by<br>DPHI   | Post Submission Agency Advice  DCCEEW-CPHR DCCEEW-Heritage NSW DPIRD Fisheries DPIRD NSW Resources WaterNSW Wollongong City Council                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Stage | Document<br>Reference               | Document Name                                                                                            |
|-------|-------------------------------------|----------------------------------------------------------------------------------------------------------|
|       | Provided by<br>Metropolitan<br>Coal | Response to Independent Expert Advisory Panel for Mining Request for Information 14 August 2024          |
|       |                                     | Attachment 1 – Predicted Profiles of Subsidence, Upsidence and<br>Closure along Tributaries              |
|       |                                     | Attachment 2 - Eastern Tributary Water Levels Pre and Post Stream<br>Remediation                         |
|       |                                     | Attachment 3 - Eastern Tributary Photography March 2024                                                  |
|       |                                     | Attachment 4 – Fault Photos                                                                              |
|       |                                     | Attachment 5 – Large Swamps Drone Survey                                                                 |
|       |                                     | Response to Agency Advice Submissions 19 August 2024                                                     |
|       |                                     | Appendix 1 Registered Aboriginal Parties Correspondence                                                  |
|       |                                     | Appendix 2 Subsidence Predictions based on Revised Layout, 30m and 60m Width Reductions                  |
|       |                                     | Appendix 3 Eastern Tributary Water Levels Pre and Post Stream<br>Remediation                             |
|       |                                     | Attachment 4 Metropolitan Coal Mine Eastern Tributary Stream Photos                                      |
|       |                                     | Large Swamps and Adaptive Management (issued 26 August 2024)                                             |
|       | Provided by<br>Metropolitan<br>Coal | Response to Independent Expert Advisory Panel for Mining Request for Information                         |
|       | Cour                                | Supplied 14 November 2024                                                                                |
|       |                                     | Cross Sections of Honeysuckle Valley S106                                                                |
|       |                                     | Ariel imagery                                                                                            |
|       |                                     | Swamp GW Borehole Logs                                                                                   |
|       |                                     | Supplied 29 November 2024                                                                                |
|       |                                     | Letter Metropolitan Coal Longwalls 311-316 Extraction Plan – IEAPM<br>Site visit                         |
|       |                                     | Supplied 18 February 2025                                                                                |
|       |                                     | Metropolitan Coal Longwalls 311-316 Extraction Plan November 2024<br>R01-C                               |
|       |                                     | Biodiversity Management Plan November 2024 R01-C                                                         |
|       |                                     | Subsidence Monitoring Program November 2024 R01-C                                                        |
|       |                                     | Water Management Plan November 2024 R01-C                                                                |
|       |                                     | Appendix H Subsidence Report 16 October 2024                                                             |
|       |                                     | Longwalls 311-316 Layout November 2024                                                                   |
|       |                                     | MSEC Longwall 313 modified finishing end and commencing end<br>Mine Subsidence Overview 10 December 2024 |
|       |                                     | Supplied 11 March 2025                                                                                   |
|       |                                     | Swamp 77 Contingency Plan                                                                                |

# 4.0 COMPLEXITIES AND THEIR RESOLUTION

#### 4.1. BACKGROUND TO COMPLEXITIES

The Metropolitan Coal Project (MCP) was assessed in 2009 and is unique in three aspects, being that it was:

- the first coal project to be assessed after amendments to Part 3A of the *Environmental Planning Assessment Act 1979* in 2008 which, at the time, were considered to extinguish the opportunity to retrospectively apply PMs embedded in consent conditions to features not identified at the time of environmental assessment and project determination or to changes in the gazetted status of features from that at the time of environmental assessment and project determination.
- the first coal project to be assessed by the Planning Assessment Commission (PAC) established in 2008 and which, at the time, provided for inclusion of subject experts on PAC Assessment Panels; and
- the first coal project assessment that was required to have regard to the findings and recommendations of the inquiry into the *Impacts of Underground Coal Mining on Natural Features in the Southern Coalfield Strategic Review* usually referred to today as *The Southern Coalfield Inquiry* (SCI).

The combination of these aspects resulted in a step change in the rigour of assessment of the environmental consequences of underground coal mining proposals. Three particularly important developments were:

- Assessment was no longer to be determined primarily on predicted mining-induced subsidence effects (ground movements), as had generally been the case, but rather on using these predictions to inform associated mining-induced subsidence impacts and environmental consequences as recommended by the SCI and defined in the footnote<sup>2</sup> below.
- A focus was brought to the phenomenon of non-conventional surface subsidence (far-field horizontal movements, valley closure, upsidence and other topographical effects), its significant contributions to mining-induced subsidence effects and environmental consequences in the Southern Coalfield of NSW, and to the limitations of prediction methodologies for nonconventional subsidence.
- A shift to framing consent conditions in terms of PMs that defined maximum permissible subsidence impacts and environmental consequences, rather than in terms of maximum permissible subsidence effects.

This process identified a number of matters during the PAC's assessment of the MCP assessment for which the knowledge base to inform the project assessment was inadequate. Three of these matters that impact on the EP for LWs 311-316 relate to valley closure prediction and impacts, mining-induced environmental consequences for valley-infill swamps, and determining the significance of specific swamps and clusters of swamps (noting that at the time Coastal Upland Swamps had not been gazetted

**Subsidence impacts**: the physical changes to the ground and its surface caused by subsidence effects. These impacts are principally tensile and shear cracking of the rock mass and localised buckling of strata caused by valley closure and upsidence but also include subsidence depressions or troughs.

**Environmental consequences**: the environmental consequences of subsidence impacts, including loss of surface flows to the subsurface, loss of standing pools, adverse water quality impacts, development of iron bacterial mats, cliff falls, rock falls, damage to aboriginal heritage sites, impacts on aquatic ecology, ponding, etc.

<sup>&</sup>lt;sup>2</sup> **Subsidence effects**: the deformation of the ground mass surrounding a coal mine due to the mining activity. The term is a broad one, and includes all mining-induced ground movements, including both vertical and horizontal displacement, tilt, strain and curvature.

as an Endangered Ecological Community). The PAC proposed an approach for determining if some swamps in the Southern Coalfield warranted being classified as of 'special significance'.

The PAC made recommendations to the Department as to PMs for natural and man-made features but, unlike later PAC determinations, the Department had latitude in how these were reflected in the consent conditions.

The mine layout for LWs 311 – 316 has been revised three times since first being assessed by Mine Subsidence Engineering Consultants (MSEC) for the purpose of informing the EP for LWs 311-316. The first revision involved a substantial reduction in the original lengths of all six longwall panels for operational reasons. The second revision shortened the length of LW 312 by stopping mining 120 m short of its originally planned finishing position. The third revision reduced the length of LW 313 by 80 m at the finishing end and increased the length of the panel by 82 m at its commencing end. The second and third revisions are related to the EP review process and implemented for the purpose of providing an added level of environmental protection to Swamp 92 by standing off all longwall panels from it.

Figure 3 shows two mining layouts referred to in EP documentation as the 'Previous Layout' and as the 'Revised Layout'. It does not capture the latest revisions to LW 312 and LW 313 shown in Figure 2. The figure shows Swamps 76, 77 and 92 and their associated tributaries S, R and P, respectively, which are focal points in this chapter.



Figure 3: The mine layout for LWs 311 to 316 (MSEC, 2024b), noting that it does not capture changes made to the finish points of LW 312 and LW 313 and the starting point of LW 313.

### 4.2. COMPLEXITIES

A number of environment-related complexities are associated with assessing the proposed mine layout and management plans for LWs 312-316. These principally relate to:

# Swamps of Special Significance

A number of stakeholders contend that one or more of Swamps 76, 77 and 92 are swamps of 'special significance', a concept introduced in the PAC's 2009 *Review Report for the Metropolitan Coal Project*. MC considers that none of the three swamps qualify as swamps of special significance (Peabody, 2024).

# Schedule 3 Condition 4

Schedule 3 Condition 4 (repeated here because of its particular relevance to this advice and bolded for later comparison purposes) states:

The Proponent shall not undermine Swamps 76, 77 and 92 without the written approval of the Director-General. In seeking this approval, the Proponent shall submit the following information with the relevant Extraction Plan (see condition 6 below):

(a) a comprehensive environmental assessment of the:

- potential subsidence impacts and environmental consequences of the proposed Extraction Plan;
- potential risks of adverse environmental consequences; and
- options for managing these risks;
- (b) a description of the proposed performance measures and indicators for these swamps; and
- (c) a description of the measures that would be implemented to manage the potential environmental consequences of the Extraction Plan on these swamps (to be included in the Biodiversity Management Plan see condition 6(f) below), and comply with the proposed performance measures and indicators.

This form of consent condition appears to be unique in two critical respects, namely:

- a) It provides for the Proponent, rather than the project assessment process, to determine a PM;
- b) It provides for the determination of a PM to be delayed until many years after project approval and the commencement of mining, being some 15 years in this case.

Due to the advanced and locked-in state of the overall mine layout that formed the basis of the project assessment and approval conditions, the introduction of any new PM at such a late stage in the life of an underground mining operation has an elevated possibility of not being able to be satisfied either at all, or without impacting adversely on the continuity of production and the ongoing viability of the mine plan.

Consideration of Schedule 3 Condition 4 is complicated further by the fact that Swamps 76, 77 and 92 now meet the definition of Coastal Upland Swamps in the Sydney Basin Bioregion as listed under both the NSW *Biodiversity Conservation Act 2016* (BC Act) and Commonwealth *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act). At the time of Project Approval in 2009, Coastal Upland Swamps in the Sydney Basin Bioregion had not been gazetted as an Endangered Ecological

Community (EEC)<sup>3</sup>. They were only gazetted as such on 9 March 2012 under Part 3 of Schedule 1 of the NSW *Threatened Species Conservation Act 1995* (now the BC Act) and on 17 July 2014 under the EPBC Act.

The Panel has been presented with a view from some stakeholders that as the PMs for Swamps 76, 77 and 92 required under Schedule 3 Condition 4 have yet to be approved by the Director-General (now Planning Secretary), these three swamps should now be treated as EECs when determining those PMs. Opinions on this view are divided, with MC firmly opposing the proposition.

# The Status of the Mine Layout

Longwall panel development has already advanced to a stage where the only mine design control now available for further reducing environmental consequences of extracting LWs 312-316 is to stand off from features. There is a view that if this control is applied to Swamps 76 and 77 it could result in an unviable mining operation. The control is feasible to implement in the case of Swamp 92, because only small portions of this swamp overly longwall panels and these portions are confined to the flanks of the longwall footprints (see Figure 3).

### **4.3.** RESOLUTION OF COMPLEXITIES

The resolution of the complexities noted in Section 4.2 has involved considerable historical research, discussion, third-party advice and time expenditure on the part of the Panel. The Panel has had particular regard to the assessment report of the PAC (DoP, 2009) as it considers that to be the most accurate and verifiable reflection of what the consent conditions were intended to capture.

In that regard, it is noted for the record that the Chair of the IEAPM Panel and a contributor to this current advice, Em. Prof. Jim Galvin, was a member of the PAC Assessment Panel for the MCP and had input into the framing of the PAC's advice on swamps by its Chair, Dr Neil Shepherd. Further, at the time of assessment, the PAC sought and had regard to the advice of Dr Ann Young<sup>4</sup>, who is also a member of the IEAPM Panel for this current advice.

This advice on the resolution of complexities is preceded by a summary of several underpinning surface subsidence principles and subsidence predictions for MM in order to facilitate understanding the Panel's advice on these matters.

# 4.3.1 Underpinning Subsidence Basics

One outcome of the SCI has been the consistent application of the terms 'conventional' subsidence and 'non-conventional subsidence' to describe the two primary sources of subsidence effects. For present purposes, conventional subsidence can be conceptualized as trough-like subsidence of the surface as the overburden sags into mining excavations. The magnitude and areal extent of associated subsidence effects and subsidence impacts are determined primarily by the depth, width and height of the mining excavations (panels) and the widths of the pillars that separate panels (interpanel pillars). Conventional subsidence primarily accounts for subsidence effects and impacts in terrain that is not incised by valleys.

-

<sup>&</sup>lt;sup>3</sup> "Endangered" is the status of Coastal Upland Swamps in the Sydney Basin Bioregion under the NSW *Threatened Species Conservation (TSC) Act 1995.* "Threatened" is an umbrella term for Vulnerable, Endangered, Critically Endangered that is used in the MCP Performance Measures. For the purpose of this advice the two words are inter-changeable; however, for consistency with the TSC Act, EEC is used is where referring specifically to the status of the Coastal Upland Swamps under the TSC Act, and "Threatened" is used otherwise.

<sup>&</sup>lt;sup>4</sup> p.74 of PAC Assessment Report

Non-conventional subsidence, in particular valley closure, is associated with terrain that contains incised valleys, such as that which characterises the Southern Coalfield and the Western Coalfield of NSW and that is reflected in Figure 3. Mining can cause an increase in pre-existing horizontal stress concentrations across valley floors that slowly and naturally drive valley formation. The elevated stress concentrations can cause accelerated cracking, shearing, buckling and uplift (upsidence) of the valley floor strata. The compressive stresses and strains associated with this behaviour can be an order of magnitude, or more, greater than those associated with conventional subsidence and can give rise to significant environmental consequences, especially for continuity of surface flow in valley floors and natural features that depend on surface and near-surface water, and for water quality. While the magnitude of valley closure is also influenced by mining dimensions, it is less sensitive to changes in these dimensions than conventional subsidence and is governed more by the valley depth and width and the proximity of mining.

At the time of determination of the MCP, the concepts of conventional subsidence engineering were well established, and it was accepted that the proposed mine design was conservative for a longwall operation and should result in small levels of conventional subsidence. The EA classified all swamps as 'headwater' swamps, the implication being that they were located away from incised valleys. The combination of these two factors led to the Proponent's proposition that these swamps would not experience more than negligible environmental consequences, which has been the case up to now with respect to demonstrable mining-induced vegetation change.

However, the PAC questioned the proposition that all swamps were headwater swamps and expressed a view that at the least the downstream ends of Swamps 76, 77 and 92 constituted valley infill swamps. This was an important issue because:

- 1. Severe environmental consequences due to valley closure had already resulted from longwall mining under and in the vicinity of Waratah Rivulet at MM (Mills & Huuskes, 2004),(Galvin, 2005).
- 2. An understanding of non-conventional subsidence was still evolving.
- 3. The methodology for predicting non-conventional subsidence effects, impacts and environmental consequences was still under development, with predicted valley closure not correlating well to measured valley closure.

It remains the case that, as shown in Figure 4 (below), predicted valley closure does not correlate well with measured valley closure. This continues to be addressed by designing to an upper bound of predicted valley closure, meaning that measured valley closure is generally less than predicted. However, this poor correlation has implications for predicting impacts due to valley closure, since a range of outcomes can be associated with a given predicted valley closure. This has resulted in the illogical procedure of predicting valley closure impacts based on predicted valley closure rather than on a database of measured valley closure, because predicted valley closure values correlate better with resultant impacts than do measured values. The approach, illustrated in Figure 5, is based on the frequency of cracking of rock bars sufficient to result in a reduction in water being held back by the rock bar. It does not extend to considering other impacts of valley closure. The approach finds application across a number of mining operations in NSW, notwithstanding that it has been the subject of a number of reviews critical of the approach.

Against this background, Figure 6 provides an important basis for resolving some of the complexities associated with the EP for LWs 312-316 and the Panel's advice. It shows the profiles of predicted valley closure for each of Swamps 76, 77 and 92 and their associated tributaries (S, R and P, respectively) for each of the following mine layouts:

- Previous layout (being a layout that was modified just prior to submission of the EP).
- Revised layout (which is now the basis for the EP for LWs 311-316).

• Revised layout but based on a 60 m reduction in panel width, prepared at the request of the Panel.

The most recent revisions to the starting and/or finishing ends of LW 312 and LW 313 are not shown but these result in nil to negligible change in the valley closure predictions shown for the revised layout.

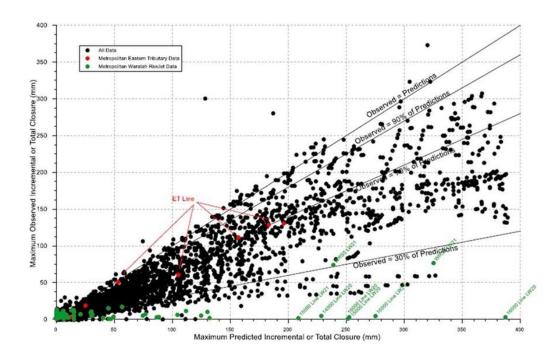



Figure 4: Predicted Versus Observed Valley Closure at Metropolitan Mine and other Southern Coalfield Mines (copied from supplementary information provided by Peabody to DPE 17/08/22).(IEAPM, 2022).

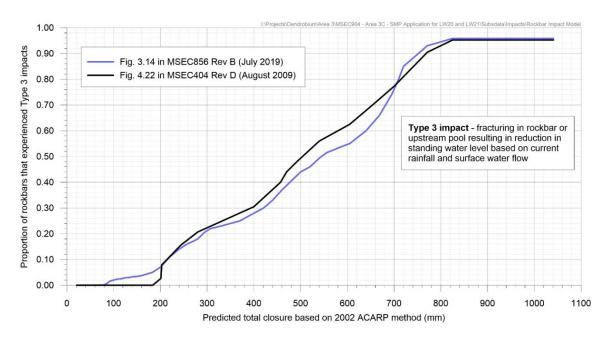



Figure 5: Relationship between predicted total valley closure and proportion of rockbar controlled pools that have experienced Type 3 impacts (Source: (MSEC, 2009, 2019)).

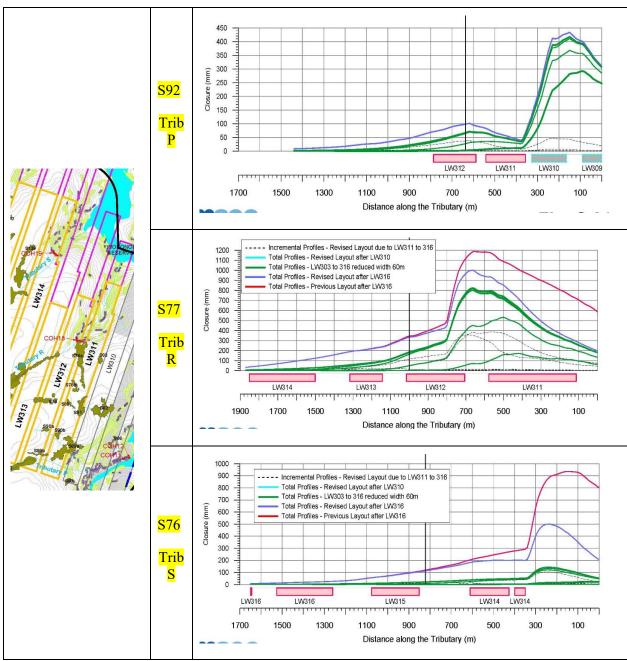



Figure 6: Profiles of cumulative valley closure for 3 different mine layouts evaluated for LWs313 – 316 (Note: LW303 should read LW313). Source: (Peabody, 2024).

# 4.3.2 Proposed Resolutions

# Swamps of Special Significance

The PAC assessment for the MCP introduced the concept of identifying if an individual swamp or group of swamps possessed attributes that resulted in them being of 'special significance' and consequently requiring special consideration in a risk assessment framework. The PAC report stated that:

'Special Significance Status' is based on an assessment of a natural feature that determines the feature to be so special that it warrants a level of consideration (and possibly protection) well beyond that accorded to others of its kind. It may be based on a rigorous assessment of scientific

importance, archaeological and cultural importance, uniqueness, meeting a statutory threshold or some other identifiable value or combination of values.

#### The PAC then went on to conclude that:

There is no convincing evidence before the Panel that identifies any individual swamp or groups of swamps in the project area as being sufficiently unique or different so as to require identification as being of special significance and thus requiring special consideration in a risk assessment framework. This would be the appropriate course if, by some rigorous methodology, a swamp or group of swamps had been identified as being of special significance beyond that accorded to upland swamps generally. The Panel is not convinced that the cluster analysis by DECC provides this level of significance.<sup>5</sup>

It seems reasonable to the Panel to assume that if Coastal Upland Swamps had already been gazetted as an EEC at the time of determination of the MCP, the PAC would not have had a basis or need to include Swamps 76, 77 and 92 in its consideration of features of 'special significance'. Although this was not the case, the issue of 'special significance' is still considered by some to have currency. This is notwithstanding that, at the time of its assessment, the PAC reported that there was no convincing evidence of any individual swamp or group of swamps that required being identified as being of special significance. In some cases, there appears to be a view that such evidence now exists.

In 2012 the (former) Office of Environment and Heritage (now DCCEEW-CPHR) drafted guidance for proponents when undertaking environmental impact assessment for upland swamps, including recommendations on interpretation of the criteria defined by the PAC. These Upland Swamp Environmental Assessment Guidelines (OEH 2012) were released in draft form. To the Panel's knowledge, they were never finalised or formally endorsed. In its advice of 5 September 2024, the Panel expressed a view that because of their size, vegetation complexity and status as an EEC, Swamps 77 and 92 meet the criteria proposed by OEH (2016) for swamps of special significance on the Woronora Plateau.

Subsequently, there have been a number of developments which have resulted in the Panel revisiting the question of whether Swamps 77 and 92 are of special significance. These include:

- A second site visit by the Panel that provided the opportunity for a more detailed and focussed field inspection and assessment of Swamp 77.
- A recognition, following review of the PAC documents as summarised above, that the conclusions of the PAC assessment should prevail as the PAC had the best understanding at the time of the thresholds that it was advocating for swamps to be classified as of special significance.

Notwithstanding that MC does not consider any of Swamps 76, 77 and 92 to be of special significance, MC concurs with the Panel and other stakeholders that Swamp 92 is a significant example of a large Coastal Upland Swamp that is in pristine condition. Consequently, MC has modified its mine plan to provide this swamp with a high level of protection from mining-induced environmental impacts. The modifications are based on not exposing this swamp to conventional tensile strains greater than 0.4 mm/m (being the generally accepted lower threshold for causing cracking of rock) and to valley closure greater than 100 mm. These criteria have translated to the mine layout being modified so that LW312 and LW 313 now stop 120 m and 80 m, respectively, short of their original planned position.

The Panel considers that any further discussion on whether any of Swamps 76, 77 or 92 are or are not classified as being of special significance is academic.

-

<sup>&</sup>lt;sup>5</sup> p.78 of PAC Assessment Report

#### Schedule 3 Condition 4

In assessing conformance of the EP with Schedule 3 Condition 4, the Panel has assigned particular significance to the following extracts from the PAC Assessment Report. These are presented in page number order to arrive at the PAC's recommendation specific to Swamps 76, 77 and 92.

- The Panel was directed specifically to take account of the SCI recommendations in reviewing the Project. As a result, significant deficiencies in the information provided in the EA<sup>6</sup> and PPR<sup>7</sup> have been identified and are commented on throughout this report. However, it is important that the context be noted: the Proponent had commenced many of the studies for the EA prior to the SCI Report becoming available and therefore it is unreasonable to expect that this particular EA could take full account of the SCI findings.<sup>8</sup>
- The Panel noted that there were significant deficiencies in the EA and the PPR in relation to prediction of non-conventional subsidence impacts at swamps. This led to concerns that a small number of swamps might be at risk from this source and it was considered desirable that further work be undertaken to establish the nature and extent of any such risk before undermining of these swamps could proceed.<sup>9</sup>
- The Panel raised with the Proponent on several occasions the issue of the accuracy of the claim that all swamps were headwater swamps. On each occasion, the Panel received strong assurances that the swamps are headwater swamps, e.g. 'there is no evidence to suggest that upland swamps within the Project Area are composite or transitional in nature'.
- It is the view of the Panel that the assessment of potential impacts on upland swamps in the Project Area leaves much to be desired. There is insufficient information in the EA to identify areas within swamps that may have predominantly valley infill characteristics with any level of confidence and there is no attempt to provide valley closure and upsidence predictions for individual swamps despite the high levels of strain recorded at some (unspecified) swamps. 10
- The Proponent has also supplied information on the characteristics of the lower ends of swamps S76, S77 and S92 that suggests that the negative environmental consequences of any subsidence impact involving the terminating features of these swamps would have a limited effect on the swamp because the gradient profile of the swamp shows that the pooling effect behind these features only extends for a short distance. The proposition is that a loss of water from this section of the swamp would have little impact on the overall hydrology of the swamp. This is important because it supports the Panel's view that, even though the predicted closure strains using the current methodology are high, the risks associated with pursuing the Panel's recommended strategy for these three swamps are relatively low (See Section 9.4.2). 11
- After careful consideration of all the material now available to it the Panel considers that, for those swamps unlikely to be exposed to non-conventional subsidence impacts, the risks of significant negative environmental consequences for an individual swamp are low. However........... The Panel is also of the view that at least three of the swamps identified as being exposed to non-conventional subsidence impacts should be the focus of further attention before undermining is allowed to proceed. These are swamps \$76, \$77 and \$92.

Application of the principles in Section 9.4.1 would require consideration of at least the following approval conditions for swamps S76, S77 and S92:

<sup>&</sup>lt;sup>6</sup> EA – Environmental Assessment

<sup>&</sup>lt;sup>7</sup> PPR – Preferred Project Report – a report based on a revised mine plan produced by the Proponent in response to some matters arising during the assessment process and which informed the compilation of the consent conditions.

<sup>&</sup>lt;sup>8</sup> p.i, Executive Summary, PAC Assessment Report

<sup>&</sup>lt;sup>9</sup> p.iv, Executive Summary, PAC Assessment Report

<sup>&</sup>lt;sup>10</sup> p.86 of PAC Assessment Report

<sup>&</sup>lt;sup>11</sup> p.129 of PAC Assessment Report

- i) To the satisfaction of the Director-General provide a comprehensive assessment of subsidence impacts and possible negative environmental consequences for each swamp arising from the proposed mining activities including impacts from both conventional and nonconventional subsidence.
- ii) If risks of negative environmental consequences are present, conduct an assessment to the satisfaction of the Director-General of the options for managing these risks including possible strategies for avoidance, mitigation and/or remediation. This assessment is to include information on the approach, likelihood of success, costs and any other relevant matter.
- iii) Implement the approved strategy to the satisfaction of the Director-General.
- iv) If the strategy approved under (iii) includes both undermining the swamp and protection from significant environmental consequences, design and implement an approved monitoring program for the area/s of risk that, where relevant, will:
- detect any subsidence-related impact(s) from an approaching longwall or undermining;
- allow those impact(s) to be compared with predicted impact(s);
- identify and measure any hydrologic consequences for the swamp;
- identify and measure any environmental consequences for the swamp; measure the success of any mitigation or remediation strategies employed.
  - v) Where the impacts exceed those predicted and the approved strategies under iii) are unsuccessful in preventing environmental consequences, carry out such additional works as may be required to restore the swamp hydrology and/or provide agreed offsets to compensate for the consequences.

This approach is not designed to provide a higher level of protection to Swamps S76, S77 and S92 than that being afforded to other swamps in the Project Area. Depending on the assessed level of risk, the extent of any likely consequences and the options for managing these, it may well be possible to proceed with any planned undermining without reaching the point where a decision must be made to either damage the swamp or alter the mining parameters to reduce the impact.

The Panel considers that the risks to those parts of the three identified headwater swamps in the Project Area that are exposed to potential impacts from valley closure and upsidence can be managed successfully under the suggested approval conditions. However, the Department may wish to consider whether it is satisfied that there are swamps in the Project Area that may be exposed to risk from non-conventional subsidence have been identified.<sup>12</sup>

The Panel's interpretation of the PAC's commentary and overarching PAC recommendation in the final bolded quote is that the PAC was recommending more detailed studies into valley closure and its consequences for the downstream ends of Swamps 76, 77 and 92, with the objective of successfully managing potential impacts from valley closure in order to afford the same level of protection to the valley-infilled sections of these swamps as afforded to their headwater sections. However, the PAC did not preclude damaging a swamp. It provided for conducting an assessment, to the satisfaction of the Director-General, of the options for managing these risks including possible strategies for avoidance,

-

<sup>&</sup>lt;sup>12</sup> p.87-88 of PAC Assessment Report

mitigation and/or remediation and for offsets should remediation not be successful, with any approved strategy to be implemented to the satisfaction of the Director-General.

Critically, the PAC did not make any recommendation for new PMs and performance indicators to be developed after Project Approval. The intent and enactment of the PACs recommendations regarding Swamps 76, 77 and 92 appears to have been misinterpreted when formulating Schedule 3 Condition 4.

Given that the criteria for assessing and setting PMs for the MCP represented a step change in how coal projects were to be assessed going forward, the Panel considers it reasonable for a learning curve to be associated with framing consent conditions under these changed circumstances. The need for this learning curve is evidenced, for example, by:

- the Project Approval requiring that a description of the proposed PM and indicators for Swamps 76, 77 and 92 be included (addressed) in the EP upon its submission. This effectively means that the design and approval process is circular, in that the EP is to be submitted prior to the approval of the PMs for Swamps 76, 77 and 92 yet this, in turn, should inform the development of the mine layout on which the EP is to be based. This circular process is also illogical and contributes to the mine layout being defined by longwall roadway development (for which an EP is not required) taking place well ahead of the assessment of the EP for the longwall panels delineated by these roadways. Once the longwall development roadways have been driven, the only principal control still available for restricting the development of environmental consequences for features is stand-off distance from them.
- the other component of the PMs specified for Biodiversity in Schedule 3 Condition 1 (Table 1), which stipulates "negligible impact" for threatened species, populations, or ecological communities. This PM should rather have been expressed in terms of "negligible consequence", consistent with the recommendations of the SCI. The MCP PAC stressed the difference between subsidence impacts and environmental consequences, as evidenced in the following extract:

Subsidence impacts and environmental consequences are not the same thing. In many (possibly most) cases there may be subsidence impacts but, unless they are of sufficient magnitude to affect the hydrologic balance of the swamp, there will be no detectable environmental consequences.<sup>13</sup>

Notably, the corresponding PM in the Consent Conditions for the subsequent coal project assessed by the PAC and conditioned by the Department (being the Bulli Seam Operations Project) was conditioned as *negligible consequence*.

In endeavouring to comply with Schedule 3 Condition 4, the Biodiversity Management Plan (also dated November 2024) proposes a PM for Swamp 92 of "negligible environmental consequences" and, for Swamps 76 and 77, a PM of "negligible environmental consequences for threatened species". <sup>14</sup> The Panel acknowledges and supports the transition away from a PM based on "impacts" to one based on "environmental consequences".

Nevertheless, the Panel does not consider that the EP comprehensively addresses the PAC's concerns regarding managing impacts on the valley infill sections of Swamps 76 and 77 and the environmental consequences of any impacts for the headwater sections of these swamps. Since the PAC's concerns were not clearly captured in Schedule 3 Condition 4, this may have to stand. On this occasion, this may not have serious implications since, as reference to Figure 6 shows:

• Valley closure along tributary P within and immediately downstream of Swamp 92 is predicted to be less than 100 mm which, by reference to Figure 5, implies a very low likelihood of any

<sup>14</sup> Tables 14B, 15 and 18 of the BMP.

\_

<sup>&</sup>lt;sup>13</sup> P.81 of the PAC Assessment Report

- significant valley closure impacts on Swamp 92 (notwithstanding as previously noted the limitations of that predictive approach).
- Similarly, predicted valley closure along tributary S within and immediately downstream of Swamp 76 is predicted to be less than 120 mm which, by reference to Figure 5, again implies a very low likelihood of any significant valley closure impacts on Swamp 76.
- Predicted valley closure along tributary R within and immediately downstream of Swamp 77 is up to about 330 mm and, therefore there is a realistic likelihood of cracking and uplift of this tributary. Subsequent to its advice of 5/9/24, MC was able to provide an access route for the Panel to inspect the downstream end of Swamp 77. This inspection has not changed the Panel's views on the likelihood of valley closure induced impacts at this location. However, the inspection satisfied the Panel that it should be technically feasible to remediate impacts to the degree required to protect the integrity of this area of Swamp 77.

To aid in considering submissions and to provide a valuable point of reference, the Panel requested MC to undertake a sensitivity study of the effect on valley closure of decreasing longwall panel widths by 30 m and by 60 m, notwithstanding that this control is both very unlikely to be economically feasible and comes at too late a stage in the mining program to implement. The outcomes of the study are based on reducing the widths of all four longwalls from LW 313 to LW 316 and are also captured in Figure 6. These actions result in a reduction in predicted valley closure of only 130 to 150 mm.

The Panel notes that the proposed PM for Swamp 92 of "negligible environmental consequences" sets an across-the-board absolute and unqualified standard. However, the PM of "negligible environmental consequences for threatened species" for Swamps 76 and 77 does not fully encapsulate the elements of the PM for biodiversity set by Schedule 3 Condition 1 (being "threatened species, populations, or ecological communities"). The Panel is of the view that this proposed PM should be strengthened to "negligible environmental consequences for threatened species, ecological communities and populations".

The Panel is of the understanding that MC's proposed PMs for Swamps 76, 77 and 92 are not intended to apply to threatened species, ecological communities and populations that were not gazetted as such at the time of Project Approval. The Panel's advice is based on accepting that position as:

- 1. It aligns with that which has been adopted consistently since 2009 in a range of forums and advices, including environmental audits, the Inquiry of the Independent Expert Panel into Mining in the Catchment (IEPMC), and past advices of the IAPUM and the IEAPM.
- 2. It is consistent with the objectives of project assessment to lock in the overall mine layout and associated conditions of approval at the time of project assessment in order to provide security of tenure and investment, control over mining going forward and continuity of production.

### The Status of the Mine Layout

The term 'first workings' refers to bord and pillar workings that are designed to result in minimal subsidence of the surface. For this reason, they are exempt in NSW from requiring an EP prior to their formation. This includes longwall development roadways, with the result that longwall panels can be formed up well in advance of the assessment and approval of subsidence effects, subsidence impacts and environmental consequences associated with the extraction of the longwall panels that the first workings have already delineated.

In many longwall mining operations, this can have adverse implications for restricting environmental consequences since at least three of the four primary mine design controls for limiting mining-induced subsidence effects and impacts are no longer available, these being:

- Longwall panel width.
- Interpanel pillar width (width of roadway development pillars).
- Longwall panel direction.

In thicker coal seams, mining height may also constitute a primary control.

In the case of LWs 312 – 316, longwall development is already well ahead of longwall extraction and there is no option to reduce mining height. This means that the only option still available for controlling subsidence impacts and associated environmental consequences on features is for longwall panels to stand off from them. This is both pertinent and suboptimal because the EP for these longwall panels has yet to be approved. It takes on added significance given that the PM for biodiversity required by Schedule 3 Condition 4 for Swamps 76, 77 and 92 above these longwall panels has yet to be approved by the Planning Secretary. Given the extensive and irregular surface footprint of Swamps 76 and 77 over LWs 313 to 316, any future need for longwall extraction to stand off from these swamps could have serious implications for continuity of mining.

A number of concerns have been expressed about this situation, not only in regard to MC but also at other longwall mining operations. However, in the case of MC, it needs to be put into perspective since the mine design is already very conservative for a longwall operation. The longwall panel width is narrow (138-163 m), the interpanel pillar width to height ratios are high (~12 to 15) and the mining height is low by industry standards (2.8 m). One implication of these dimensions is that the ratio of longwall development driveage to longwall extraction is very high by industry standards and contributes to longwall development having to maintained well in advance of longwall extraction.

The conservativeness of the mine design for managing conventional surface subsidence was acknowledged by the PAC and by the Independent Expert Panel for Mining in the Catchment (IEPMC, 2019a, 2019b) and is reflected in no reported non-compliances with biodiversity PMs over the last 15 years. The primary issue going forward is the likely effectiveness of the predeveloped longwall layout for managing unconventional surface subsidence associated with valley closure and the potential environmental consequences this could have for threatened species and populations.

# 4.4. CONCLUSIONS AND RECOMMENDATIONS RE COMPLEXITIES

### Conclusions

- 1. Schedule 3 Condition 4 specific to Swamps 76, 77 and 92 aims to reflect the PAC recommendations that prompted the formulation of this approval condition, but it has been drafted in a manner that appears unique as a project approval condition and, taken literally, presents difficulties in practice to the point of being illogical and unworkable.
- 2. These difficulties appear to arise out of the step change in the rigor of project assessment introduced at the time of assessment of the MCP and the associated learning curve in how environmental consent conditions were to be framed going forward.
- 3. The concept of swamps of 'special significance', advanced by the PAC and raised in some submissions, is academic going forward. The PAC reported that it found no convincing evidence to classify any swamps as such, the Panel does not consider that any of Swamps 76, 77 or 92 to be of 'special significance', there is no basis for applying the concept retrospectively, and the concept has been superseded by the subsequent gazetting of Coastal Upland Swamps as an EEC.
- 4. Swamp 92 is a significant example of a Coastal Upland Swamp that is large, complex and in pristine condition and, given that the majority of this swamp overlies only first workings, the Panel concludes that MC's revision to the mine plan to now stop LW 312 and LW 313 short so as to both avoid undermining this swamp and restrict subsidence effects to very low values,

- complemented with MC's designation of a PM for this swamp of negligible environmental consequences, are responsible and welcomed actions.
- 5. Based on its own review of the PAC report that informed the framing of environment-related consent conditions, the Panel does not consider that the EP comprehensively addresses the PAC's concerns regarding managing impacts on the valley infill sections of Swamps 76 and 77 and the environmental consequences of any impacts for the headwater sections of these swamps. Since the PAC's concerns were not clearly captured in Schedule 3 Condition 4, this may have to stand. However, the outcomes of subsidence assessment and environmental assessment for the valley in-fill sections of Swamps 76 and 77 suggest that the incomplete capture of the PAC's recommendations may not have serious implications for achieving the PMs that are relevant for these swamps.
- 6. In the given circumstances, and in light of the PAC's assessment report and the MCP consent conditions, the Panel concludes that both the intent of the PAC in regard to Swamps 76, 77 and 92 and the intent of Schedule 3 Condition 4 could be achieved if:
  - a. MC's proposed PM for Swamp 92 of "negligible environmental consequences" was endorsed by the Planning Secretary ('Director General').
  - b. MC's proposed PM for Swamps 76 and 77 of "negligible environmental consequences for threatened species" was to be expanded to "negligible environmental consequences for threatened species, ecological communities and populations" in order to also be consistent with Schedule 3 Condition 1, and endorsed by the Planning Secretary (noting that this is confined to species, ecological communities and populations gazetted as threatened at the time of the Project Approval).
  - c. Any approval of the EP for LWs 312-316 included a requirement that all valley closure impacts which present a risk to not achieving the approved PMs relevant to Swamps 76, 77 and/or 92 are to be remediated to the satisfaction of the Planning Secretary within 12 months of the abatement of the valley closure impacts.
- 7. Any approval for the EP for LWs312-316 should include a requirement for an End-of-Panel review report to be produced within 3 months of the completion of each longwall panel and to include coverage of cumulative impacts and environmental consequences for the preceding three longwall panels.

# Recommendations

#### The Panel recommends that:

- 1. The intent of Schedule 3 Condition 4 be given effect by approval conditions that:
  - a. Endorse the refined mine layout that now results in LW312 stopping 120 m short and LW313 stopping 80 m short of their originally planned finishing points.
  - b. Endorse MC's proposed PM for Swamp 92 of "negligible environmental consequences".
  - c. Are based on MC expanding its proposed PM for Swamps 76 and 77 to "negligible environmental consequences for threatened species, ecological communities and populations" before endorsement by the Planning Secretary.
- 2. Any approval of the EP for LWs312-316 should include a requirement that all valley closure impacts which present a risk to not achieving the approved PMs for Swamps 76, 77 and/or 92 are to be remediated to the satisfaction of the Planning Secretary within 12 months of the abatement of the valley closure impacts.

3. Any approval for the EP for LWs312-316 should include a requirement for an End-of-Panel review report to be produced within 3 months of the completion of each longwall panel and to include coverage of cumulative impacts and environmental consequences for the preceding three longwall panels.

# 5.0 GROUNDWATER

Shallow groundwater systems located above LWs 311 to 316 comprise:

- Localised perched groundwater in the shallow colluvial substrate in each of the upland swamps (more so in the valley fill swamps rather than the headwater swamps)
- Localised perched groundwater in the weathered HBSS located near surface beneath the upland swamps
- Regional groundwater located at depth in the HBSS. The regional water table beneath the ridgelines occurs within this formation.

Perched groundwater is ephemeral and is recharged by rainfall. Moisture conditions in the swamp substrate are known to vary between fully saturated and dry.

Regional groundwater discharges sustain baseflows to permanent pools and creeks located low in the catchment towards Woronora Reservoir. Declines in this water table due to increased rock fracturing and lateral shears are known to accelerate groundwater drainage and impact water quality and quantity in rock pools, springs and stream baseflows.

Mining can also have impacts on perched groundwater. An acceleration of perched groundwater drainage in both the swamp substrate and the weathered sandstone, resulting in drier conditions for longer periods, can result from surface cracking of the sandstone immediately below a swamp. The Panel recognises that an accelerated decline in perched HBSS groundwater levels does not necessarily mean that there will be a corresponding accelerated decline in substrate water levels, however it is a useful performance indicator to trigger appropriate action.

# 5.1. RELEVANT RECOMMENDATIONS FROM STAGE 1 ADVICE

Recommendations in the Stage 1 advice relevant to LWs 312-316 are listed below followed by comments on MC's response:

- The T6 standpipes and the multi-level VWPs for Swamps 92 and 77 and standpipes at two sites in Swamp 76 should be installed as soon as practicable. The Panel is satisfied that MC is making efforts to install the recommended groundwater monitoring as soon as practicable.
- It is recommended that updates to the 1-dimensional and 2-dimensional models and their predictions should be undertaken in annual reviews to refine understanding of reasons for any observed subsidence consequences and to refine predictions for subsequent longwalls. The Panel is satisfied that MC intends to update the swamp hydrology models in consideration of relevant new monitoring data and report updates in annual reviews.
- The large swamp groundwater level 2 TARP should include a trigger for potential impacts on HBSS shallow (~10m) groundwater levels, at which frequency of analysis of swamp groundwater levels should increase. The Panel is not satisfied with the proposal for considering the HBSS shallow groundwater in the TARPs. This is addressed in Section 5.2 below
- The large swamp groundwater triggers should allow for the possibility that the baseline period levels have been below the logger level. This has been addressed in the revised TARP although further modification is recommended. This is addressed in Section 5.2 below.

- The highest-level large swamp groundwater trigger action should include reviewing the mine plan for longwalls yet to be mined; The large swamp groundwater TARP should explicitly state that a trigger at any one site constitutes a trigger for that swamp; The large swamp groundwater TARP should include quarterly reporting of level 2 triggers and associated analysis. The Panel is satisfied with how these recommendations have been addressed in the revised TARP.
- The upland swamp groundwater levels 2 and 3 TARP includes a trigger for potential impacts on soil moisture, at which analysis of soil moisture changes in relation to recession rates and groundwater levels should be undertaken. The Panel is satisfied with how soil moisture has been treated in the revised upland swamp groundwater monitoring TARP (Table 14A of the BMP), and recommends it is similarly included in Table 14B of that document.
- A technical document, which clearly defines how the large swamp groundwater TARP triggers are assessed, including examples, should be appended to the management plan. A technical document was provided to the Panel. The Panel considers the method to be reasonable. It is recommended that the technical document is incorporated as an appendix in the Water Management Plan or the Annual Report and that the time-series of groundwater levels from which the cumulative frequency distributions are derived is added to the document for the readers' reference.
- It is recommended that a shallow swamp groundwater monitoring piezometer is installed near to the end of Swamp 77 at its downstream extent and, if safely accessible, rockbars and pools within the lower end of Swamp 77 should also be monitored for loss of water and visual impacts (fracturing and iron staining). MC has committed to installing a piezometer in the lower end of Swamp 77 although the Panel now believes (after the November site inspection) that this site is of limited value. This is reviewed further under Section 5.3 below.
- It is recommended that the action "Initiate assessment against the performance measure for threatened species" is removed from the highest-level Upland Swamp Groundwater TARP so that the trigger of this [groundwater] TARP defines an exceedance of both the Performance Indicator and the Performance Measure for the large swamps. The topic of suitable TARPs and performance indicators for the threatened species PM is covered in Section 7.0 of this advice.

### 5.2. LARGE SWAMP GROUNDWATER MONITORING TARP

In its Stage 1 advice the Panel recommended:

The large swamp groundwater level 2 TARP should include a trigger for potential impacts on HBSS shallow (~10m) groundwater levels, at which frequency of analysis of swamp groundwater levels should increase.

The rationale for this recommendation was given as:

The TARP omits the HBSS shallow groundwater level, which if impacted could provide an early warning of groundwater impacts to the swamps.

The revised proposed large swamp groundwater monitoring TARPs (Table 14B of the Biodiversity Management Plan, November 2024) does not address the recommendation, rather the triggers still rely on measurements of the swamp substrate groundwater levels.

The MC response to the Panel recommendation was:

The revised Extraction Plan will include a monthly analysis of the HBSS groundwater levels once valley closure at a Large Swamp GNSS pair is above 50 millimetres (mm). Relevant

hydrographs and a brief analysis will be provided to the Technical Committee on a monthly basis when the Large Swamp Valley Closure TARP is at Level 1 or Level 2. If the Valley Closure TARP reaches Level 3, the analysis would be increased to a fortnightly frequency.

Associated with that response, MC has proposed a Large Swamps Valley Closure Monitoring TARP, in which the level 2 trigger actions include consideration of swamp groundwater and deeper monitoring data. The Panel considers this to be an insufficient response to its recommendation because:

- The triggers employed in the Large Swamps Valley Closure Monitoring TARP are not a logical or sufficient indicator of potential subsidence impacts and impacts to the shallow HBSS sandstone groundwater may occur prior to the valley closure triggers.
- As previously advised, the shallow HBSS groundwater levels can provide an early warning of
  impacts to the swamp substrate groundwater levels. At monitoring locations 76-2, 77-2 and 92-2
  there is hydraulic connectivity between the shallow HBSS groundwater and the swamp substrate
  groundwater for much of the time, hence it is likely that drainage of shallow groundwater in the
  weathered HBSS could lead to impacts on the swamp substrate groundwater during periods of
  low rainfall.
- The proposed level 2 trigger is not robust since the baseline minimum 7-day substrate water level for some piezometers is at or below the logger level, so it would be impossible for a level 2 trigger to be activated at these locations. One way of addressing this is incorporating the shallow HBSS groundwater levels.
- The Panel's previous recommendation is straightforward to apply where reasonable baseline data exist.

For LWs 312-316, the Panel recommends that the level 2 TARP should include a trigger for potential impacts on HBSS shallow (~10m) groundwater levels where suitable baseline data exist, whereby an accelerated reduction in shallow HBSS groundwater levels would trigger an action. One piezometer per swamp with the longest period of baseline data would suffice. The level 3 TARP should also be robust enough to ensure that low baseline substrate groundwater levels do not preclude a trigger.

### 5.3. MONITORING AT THE DOWNSTREAM END OF SWAMP 77

In its Stage 1 advice, the Panel recommended:

It is recommended that a shallow swamp groundwater monitoring piezometer is installed near to the end of Swamp 77 at its downstream extent and, if safely accessible, rockbars and pools within the lower end of Swamp 77 should also be monitored for loss of water and visual impacts (fracturing and iron staining).

MC responded (table of responses received by Panel on 2nd October 2024):

Piezometer Installation: A proposed location has been identified for a substrate monitoring piezometer in the downstream end of Swamp 77, as discussed in the response to Recommendation 6.

Rockbar and Pool Monitoring: While rock platforms have been observed at the downstream end of Swamp 77, there is no evidence that these are 'controlling rock bars'. Based on visual observations and a review of LiDAR data, there is no obvious controlled rock bar feature, which would hold-back water/sediment, that has been identified within or at the downstream end of Swamp 77.

There are no observable pools in the lower end of Swamp 77, although moisture is evident at some locations in the substrate after rainfall. There are a handful of minor pools below Swamp 77 prior to the stream dropping over the edge of cliff/overhang COH18. Metropolitan Coal is investigating the installation of a fixed camera to be mounted at the discharge point of Swamp 77 to record once daily still images of any changes to water colour and detect the presence of iron staining. A walking access track to the lower end of Swamp 77 for visual monitoring is being applied for under the SWAF for works described in Recommendation 31 and Metropolitan will add the installation of a substrate piezometer to the SWAF currently being prepared. While this inclusion will delay the SWAF and subsequent approval, installation may be possible in December 2024 or January 2026.

The installation as planned would meet the recommendation for monitoring at the downstream end of Swamp 77.

The Panel's recommendation was based on the high subsidence impacts predicted to occur at the downstream end of Swamp 77 and therefore the high risk of hydrological impacts. During the site visit on 4th November 2024, the Panel visited the area near the downstream end of Swamp 77 where the piezometer is planned to be installed. Following this inspection, the Panel considers that a piezometer in the lower end of Swamp 77 is not a sufficient basis for a groundwater performance indicator as the groundwater level is likely to be shallow and have large seasonal variations. Given the piezometer is also likely to destroyed by debris and flood flows, this monitoring site is now considered to be of limited value. The Panel considers that the practical options for assessing the hydrological impacts at the downstream end of Swamp 77 are:

- 1. Monitoring of hydrology at the installed sites further upstream in the swamp (i.e. as already included in the proposed TARPs subject to the advice in Section 5.2), since these will influence the baseflow supply to the lower end of Swamp 77;
- 2. Monitoring of physical impacts to the rockbars at the downstream end of Swamp 77.

It is recommended that approval conditions for LWs 312-316 include a requirement that the physical condition of the rockbars at the downstream end of Swamp 77 is monitored; any visible fracturing is reported and assessed by MC's technical committee, and; if the fracturing is considered to be a risk to the environmental consequences for threatened species, then contingency measures are proposed.

# 6.0 SURFACE WATER

#### 6.1. RELEVANT RECOMMENDATIONS FROM STAGE 1 ADVICE

Recommendations in the Stage 1 advice relevant to LWs 312-316 were:

- The site S92-GS water quality monitoring should include measurement of total metals concentrations.
- Peabody should commit, subject to access permission, to monitoring the depth profiles of water quality of the Woronora Reservoir at WDFS1 or other suitable site including regular (at least bi-annual) sampling throughout the remaining mining period, plus sampling following level 3 triggers for water quality reaching the reservoir.
- An analysis of historical water quality trends in Woronora Reservoir and their relation to mining development should be included in the Metropolitan Coal 2024 Annual Review, and this should not be provisional on further suitable data becoming available.

The Panel is satisfied with MC's response to these recommendations. Progress with implementing the Woronora Reservoir recommendations should be reviewed by DPHI after publication of MC's 2024 annual review report.

During the Panel's visit to the swamps on 4<sup>th</sup> November 2024, clear evidence of iron staining, presumably as a result of natural processes, was observed. This highlights the sensitivity of this region to potential enhanced iron mobilisation as a result of increased cracking. While the impact of increased iron mobilisation and subsequent transport of iron on Woronora Reservoir water quality is uncertain but likely to be small (see Panel Report No: IEAPM 202310-1(R1)), the visual impact within the catchment is likely to be significant. Ecological impacts of increased iron mobilisation and surface deposition of iron oxides are uncertain though, based on results provided by Klop-Toker et al. (2021), negative impacts on the breeding and subsequent viability of threatened species such as Littlejohn's Tree Frog (*Litoria littlejohni*), if present, are likely to be substantial. An associated recommendation is included in Section 7.4 of this advice.

All aspects of surface water management for LWs 312-316, including the proposed Performance Indicators, TARPs and monitoring plans are considered by the Panel to be satisfactory for this EP, except as advised in Section 7 of this advice.

## 7.0 BIODIVERSITY

#### 7.1. RELEVANT RECOMMENDATIONS FROM STAGE 1 ADVICE

Recommendations in the Stage 1 advice relevant to LWs 312-316 are listed below followed by comments on the MC response:

- Recommendation 8. Further baseline surveys are required for threatened frog species, using appropriate survey methods and effort, conducted at a suitable time of year with survey locations targeting breeding habitat through the upland swamps (where present) and along suitable reaches of Tributaries P, R and S. MC has engaged an ecologist to undertake further amphibian surveys with surveys anticipated to be completed in late 2024 to early 2025. However, the Panel is yet to see the methods proposed for these baseline surveys or the results. This is discussed further in Section 7.2.
- Recommendation 9. Additional surveys are required for Swamps 92, 77 and 76 using best practice methods. The Panel recommends the company engage with BCS (now DCCEEW-CPHR) in developing a suitable survey method. The Revised BMP (November 2024) commits to undertaking additional targeted surveys for the Giant Dragonfly in Swamps 76, 77 and 92 and the Ground Parrot in Swamp 92. The Revised BMP (November 2024) states that Giant Dragonfly surveys will target exuviae but no survey method is provided for the Ground Parrot. The Panel is yet to see the methods proposed for these baseline surveys or the results. This is discussed further in Section 7.2.
- Recommendation 11. It is recommended that the action "Initiate assessment against the performance measure for threatened species" is removed from the highest-level Upland Swamp Groundwater TARP so that the trigger of this TARP defines an exceedance of both the Performance Indicator and the Performance Measure for the large swamps. In Table 14B of the Revised BMP (November 2024) this has been amended to "Complete assessment against the performance measure for threatened species". PMs and performance indicators are discussed further in Section 7.3.

- Recommendation 12. It is recommended that the Performance Indicator under Upland Swamp Vegetation Monitoring is removed (while maintaining the monitoring, annual reporting and TARP) and instead the groundwater Performance Indicator is relied upon to assess the Performance Measure for the large swamps. This recommendation has been revised as it was not based on the classification of Swamps 76, 77 and 92 as at the time of Project Approval but rather than on their subsequent gazetting as EECs. The TARP table has been removed from the Revised BMP (November 2024), while vegetation monitoring will be conducted in Swamps 76 and 77. Given the very low likelihood of impacts to Swamp 92 following revisions to the longwall layout, this is considered suitable. The Panel supports the inclusion of Swamp 92 (along with Swamps 76 and 77) in drone surveys.
- Recommendation 21. The Biodiversity Management Plan should present a set of TARPs for the large swamps separately from the TARPs for other swamps. The Revised BMP (November 2024) includes TARPS specific to the Large Swamps for groundwater and amphibian monitoring. No Large Swamp specific TARP is provided for other threatened species. If the baseline surveys for the Giant Dragonfly or Ground Parrot identify these species, then amendments to the BMP will be required including additional monitoring and a new TARP(s).
- Recommendation 22. The Amphibian Performance Indicator and TARP should focus on abundance of individual species and availability of habitat (particularly breeding pools) along individual waterways.
- Recommendation 23. The Amphibian TARP Level 2 trigger should assess if there has been a reduction in abundance of a threatened species (Red-crowned Toadlet, Littlejohn's Tree Frog or Giant Burrowing Frog) along an impacted waterway which has not been observed at control sites for one year. The Level 3 trigger should assess if there has been a reduction in abundance of a threatened species (Red-crowned Toadlet, Littlejohn's Tree Frog or Giant Burrowing Frog) along an impacted waterway which has not been observed at control sites for greater than one year. The Revised BMP (November 2024) provides a new TARP for Large Swamp Amphibian Monitoring at Table 18. The Panel is generally supportive of the amendments to the TARP for threatened amphibians and recognises that substantive changes have been made in response to previous recommendations from the Panel. Further comments on threatened amphibian TARPs are in Section 7.4.
- Recommendation 24. Both Level 2 and 3 triggers should also include a trigger for drying of pools resulting in loss of habitat. It is recommended that periods align with the trigger levels above (i.e. loss of habitat for one year (Level 2) and greater than one year (Level 3)). The Revised BMP (November 2024) commits to installing pool water level monitoring equipment in pools if breeding pools are identified during baseline surveys. Numerous pools were identified by DCCEEW-CPHR during surveys conducted in 2023 and declines in water availability following mining have been tied to declines in abundance of Littlejohn's Tree Frog (Klop-Toker et al. 2021). The Panel considers that there is a strong requirement for pool water level monitoring at any breeding pool sites identified. The Large Swamp Amphibian Monitoring TARP does not include any triggers related to pool water level. Given the above, the triggers should be amended.
- Recommendation 25. Further detail should be provided on the analysis to be conducted in relation to threatened species. The wording of the final action/response should make reference to implementation of appropriate mitigation/remediation or provisions of offsets, as per Sections 9 and 10. Remove the word "consider". The Revised BMP (November 2024) provides updates on the proposed analysis of threatened amphibian monitoring data. The Panel is of the view that this is satisfactory. The Large Swamp Amphibian Monitoring TARP includes an Action/Response "Where appropriate contingency measures or remediation cannot be implemented to address an impact, Metropolitan Coal would provide a suitable offset to

- compensate for the impact to the satisfactory of the Secretary of Planning". The Panel views this as satisfactory subject to the insertion of the words "or remediation measures are unsuccessful in addressing the impact".
- Recommendation 26. A reduction in a frog abundance at an impact site should translate directly to exceedance of the Performance Measure, hence the action "Initiate assessment against the performance measure for threatened species" should be deleted from the action/response. Table 19 of the Biodiversity Management Plan should be reviewed to determine if this is required. In their response to the Panel recommendations in September 2024, MC contend that this is inconsistent with Recommendation 23 and that assessment of a PM must consider changes relative to control sites in accordance with a Before-After Control-Impact (BACI design). The Panel supports this position. For clarity, the Panel's concern was, and remains, that if a performance indicator determines exceedance of the PM there need not be any further assessment of whether the PM has been exceeded. In this case, the Panel accepts that assessment against a control site is appropriate. If that indicates there has been a mining consequence on threatened species then no further assessment is required.

Recommendations 34-41 have largely been addressed and/or considered in sections above.

#### 7.2. POTENTIAL PRESENCE OF THREATENED SPECIES AND IMPLICATIONS IF PRESENT

At the time of submitting this advice, MC has not provided any baseline survey results in the mining area of LWs 312-316 that address the Stage 1 recommendations, except summaries of results in the Honeysuckle Creek catchment. Therefore, the Panel is unable to advise further on the likelihood that the threatened species PMs (the PMs in Table 13 of the EP dated November 2024) will be exceeded if the proposed mine plan proceeds or on the need for additional PMs and performance indicators for other threatened species (Giant Dragonfly and Ground Parrot). The Panel repeats its Stage 1 advice that:

"The key impact to terrestrial biodiversity, particularly amphibians, will arise from reduced streamflow and/or reduction in pool water levels which provide habitat for breeding frogs. Subsidence impacts, including cracking of bedrock, leakage from pools and diversion of surface water flow, is predicted to occur along the lower lengths of Tributaries P, R and S given predicted valley closure levels (Appendix I of Peabody 2024a and MSEC 2024). If subsidence impacts do occur along these tributaries, this is highly likely to result in impacts to threatened species where they are present (presence is indicated in the BCS (now DCCEEW-CPHR) survey results presented to the Panel on 23 August 2024), particularly the Littlejohn's Tree Frog and Giant Burrowing Frog who both rely on pools for breeding. If these impacts do occur, and result in loss of breeding habitat, they are unlikely to be considered negligible."

This is documented for upland swamps and streams above Dendrobium Mine where a number of impact monitoring sites have shown reduced habitat conditions and reduced frog detection (Klop-Toker et al. 2021, Niche 2024). On that basis, if surveys show that threatened species that are dependent on pool levels exist in lengths of tributaries R or S where pool levels are predicted to be impacted, then it is highly likely that under the proposed mine layout, contingency measures will ultimately be required<sup>15</sup>.

The Panel also notes the conclusion of Niche (2024) that "mining effects have likely resulted in the loss or reduction of the population" of Giant Dragonfly in swamps above Dendrobium Mine and that further survey "would assist in assessing whether undermined swamps may still present suitable foraging habitat". Loss of sustained high moisture levels in the swamp sediments is known to be a loss of breeding habitat with South32 (2023) noting that once groundwater levels decline below the depth of larval burrows (>70 cm) "and the peat dries the habitat and potentially population in a specific swamp

\_

<sup>&</sup>lt;sup>15</sup> In the case of tributary P, the additional/incremental valley closure due to the extraction of LWs 311-316 is not high and less likely to result in environmental consequences for threatened species, if they are present.

is lost" (p.36). This conclusion supports the view that where Giant Dragonfly are present, exceedance of a swamp groundwater performance indicator is highly likely to lead to exceedance of the threatened species PM, and emphasises the Panel's concern for robust baseline surveys to confirm the presence or absence any populations of Giant Dragonfly above LWs 311-316.

# 7.3. PERFORMANCE INDICATORS FOR DETERMINING THREATENED SPECIES PERFORMANCE MEASURE EXCEEDANCE

In its Stage 1 advice, the Panel advised that the (then) proposed PM *Negligible Impact on Threatened species, Populations and Ecological Communities* should be tightly linked to the proposed groundwater performance indicator, so that an exceedance of the latter would unambiguously define an exceedance of the former. This advice was based on the following:

- The long (potentially decades) lag between mining and consequences to threatened species, and ecological communities in the swamps, hence groundwater being a more timely indicator.
- The Panel's opinion, recent research (Mason et al. 2021, Cairns et al. 2024) and NSW government advice 16 that coastal upland swamp ecosystems are adapted to the swamp hydrology including intermittent water-logging. Hence impacts to swamp groundwater are regarded by the Panel as inevitably leading to environmental consequences for the swamp ecosystem including any threatened species that is part of that ecosystem.

In its response to the recommendations, MC stated:

Metropolitan Coal does not agree that an impact to the groundwater level in the swamp substrate means that there would be an exceedance of the Performance Measure Negligible impact on Threatened Species, Populations, or Ecological Communities. This is evidenced by the lack of Performance Measures exceedance for Swamps 20 and 28 despite an exceedance of the groundwater level performance indicator.

If data analysis indicates a biodiversity Performance Indicator has been exceeded, Metropolitan Coal will complete an assessment against the Performance Measure and consider the need for management measures.

The premise of the Panel's Stage 1 advice was that, in the context of Schedule 3 Condition 4, the swamps would be treated as a threatened ecological community. Under that premise, the Panel had no doubt that enhanced drainage of a swamp would equate to exceedance of the PM. That premise is no longer considered appropriate for the reasons given in Section 4.1 of this advice and the PM is now interpreted as relating only to threatened species.

Nevertheless, the Panel considers that the swamps provide habitat for groundwater-dependent relevant threatened species, namely the Giant Dragonfly. If this species is present (currently unknown and pending baseline survey results), the Panel considers that greater than negligible consequence to the population is highly likely if greater than negligible drainage of the swamp groundwater occurs. In lieu of a robust monitoring program capable of reliably determining whether greater than negligible environmental consequences have occurred for this threatened species, this is the Panel's position. This places the emphasis on MC to complete robust and reliable baseline surveys and, if recorded, define a robust monitoring program and suitable performance indicators to address the PM in a timely manner.

| The Panel | l recommends |
|-----------|--------------|
|-----------|--------------|

<sup>&</sup>lt;sup>16</sup> https://threatenedspecies.bionet.nsw.gov.au/profile?id=20261

- If the Giant Dragonfly or Ground Parrot are identified during baseline surveys, amendments to the BMP are required, including a TARP, suitable performance indicators and robust monitoring program capable of determining in a timely manner whether greater than negligible environmental consequences have occurred. If this is not achieved, in lieu of this, the exceedance of the groundwater performance indicators should be viewed as resulting in an exceedance of the threatened species PM.
- That the results of the baseline surveys and any resulting amendments to the BMP are provided to the Panel for review and comment prior to being endorsed by the Department. Endorsement should occur prior to commencement of secondary extraction of LW 312.

#### 7.4. THREATENED AMPHIBIAN TARP

As noted above, the Panel is generally supportive of the amendments to the TARP for threatened amphibians included in the November 2024 version of the BMP. The Panel makes the following comments on that TARP:

- The proposed TARP (BMP November 2024, Table 18) related to amphibians is titled "Large Swamp Amphibian Monitoring". The Panel has concerns over potential impacts to threatened species in the downstream sections of tributaries R and S and considers that the TARP for LWs 311-316 should apply to these streams also.
- The location and length of monitoring transects must be informed by baseline surveys. Monitoring transects should be located in areas with known populations of threatened amphibians.
- The TARP now considers changes in relative abundance. The Panel is of the view that analysis of relative abundance is not suitable for measuring changes in amphibian populations. For example, if baseline monitoring detects two species with 90 individuals of Species 1 and 10 individuals of Species 2 the relative abundance of Species 1 is 9:1 or 90%. If in subsequent years, monitoring detects 9 individuals of Species 1 and 1 individual of Species 2 the relative abundance of Species 1 remains 90% despite a large drop in the abundance of Species 1.
- The measurement of abundance should focus on changes in abundance for each individual species, i.e. not overall abundance or relative abundance. Table 18 of the BMP should be amended to ensure this occurs. The performance indicator in Table 18 should be modified to read 'The abundance of Littlejohn's Tree Frog, Red Crowned Toadlet or Giant Burrowing Frog is not expected to experience a decline compared to previous years that is significantly different to the trend for that species at control sites'.
- An additional approach is to measure the relative abundance of adults (males and females), juveniles and tadpoles to detect changes in different life stages. This approach is similar to the approach taken by Klop-Toker et al. (2021) and would allow the measure of relative abundance of different life cycle stages in relation to subsidence impacts to determine whether this results in environmental consequences for threatened amphibians, given a greater likelihood of impacts to early lifecycle stages where the species is reliant on pools.
- It is not clear how the two parameters of non-threatened amphibians and species richness are used in the TARP analysis. This should be clarified or these elements removed.
- It is not clear how acoustic recorders are used in the assessment. Acoustic recorders can determine how frequently adult males are calling within a localised area. However, this may mask any environmental consequences which occur. For example, Klop-Toker et al. (2021) found that adult frogs can still occupy the landscape, and adult males may continue calling, even though tadpole numbers may decline significantly.
- The TARPs must include pool level monitoring and triggers related to pool level monitoring.

- A Level 2a trigger should be reported to the Technical Committee as a Level 2a trigger even if detected differences cannot be attributed to mining. Causation may not be able to be determined and may be uncertain. Amend the Action/Response as below:
  - "Any significant differences detected that are not attributable to mining impacts (e.g. are a result of environmental conditions or stochastic events) are to be considered normal conditions and will be reported as Level 1 to the Technical Committee."
- Based on results provided by Klop-Toker et al. (2021), negative impacts on the breeding and subsequent viability of threatened species such as Littlejohn's Tree Frog from increased iron mobilisation and surface deposition of iron oxides are likely to be substantial. The Panel recommends that iron flocculent deposition in suitable breeding pools is monitored and incorporated into the triggers for the Large Swamp Amphibian Monitoring TARP.

## 8.0 OTHER MATTERS

The Panel emphasises the importance of appropriate surface water, groundwater and biodiversity monitoring being planned far enough in advance to provide a sufficient understanding of the groundwater, surface water and ecological systems and sufficient baseline data for assessing potential impacts and consequences. The Panel acknowledges the efforts made by MC in addressing much of the Panel's advice on monitoring and emphasises that continued focus on this issue is critical.

In previous advice, the Panel has recommended MC develop a replicable and reliable technique for mapping the extent of, and sub-communities within, the upland swamps. The revised BMP (November 2024) makes a commitment to undertaking drone surveys. Remote sensing techniques provide a robust and reliable method for undertaking impact assessments and monitoring changes due to subsidence. The Panel strongly recommends MC develop these methods for their current application for LWs 317 and 318 and for future monitoring.

# 9.0 CONCLUSIONS

### Complexities and their resolution

- 1. Schedule 3 Condition 4 specific to Swamps 76, 77 and 92 aims to reflect the PAC recommendations that prompted the formulation of this approval condition, but it has been drafted in a manner that appears unique as a project approval condition and, taken literally, presents difficulties in practice to the point of being illogical and unworkable.
- 2. These difficulties appear to arise out of the step change in the rigor of project assessment introduced at the time of assessment of the MCP and the associated learning curve in how environmental consent conditions were to be framed going forward.
- 3. The concept of swamps of 'special significance' was advanced by the PAC and raised in some submissions is academic going forward. The PAC reported that it found no convincing evidence to classify any swamps as such, the Panel does not consider that any of Swamps 76, 77 or 92 to be of 'special significance', there is no basis for applying the concept retrospectively, and the concept has been superseded by the subsequent gazetting of Coastal Upland Swamps as an EEC.
- 4. Swamp 92 is a significant example of a Coastal Upland Swamp that is large, complex and in pristine condition and, given that the majority of this swamp overlies only first workings, the Panel concludes that MC's revision to the mine plan to now stop LW 312 and LW 313 short so

- as to both avoid undermining this swamp and restrict subsidence effects to very low values, complemented with MC's designation of a Performance Measure (PM) for this swamp of negligible environmental consequences, are responsible and welcomed actions.
- 5. Based on its own review of the PAC report that informed the framing of environment-related consent conditions, the Panel does not consider that the EP comprehensively addresses the PAC's concerns regarding managing impacts on the valley infill sections of Swamps 76 and 77 and the environmental consequences of any impacts for the headwater sections of these swamps. Since the PAC's concerns were not clearly captured in Schedule 3 Condition 4, this may have to stand. However, the outcomes of subsidence assessment and environmental assessment for the valley in-fill sections of Swamps 76 and 77 suggest that the incomplete capture of the PAC's recommendations may not have serious implications for achieving the PMs that are relevant for these swamps.
- 6. In the given circumstances, and in light of the PAC's assessment report and the MCP consent conditions, the Panel concludes that both the intent of the PAC in regard to Swamps 76, 77 and 92 and the intent of Schedule 3 Condition 4 could be achieved if:
  - a. MC's proposed PM for Swamp 92 of "negligible environmental consequences" was endorsed by the Planning Secretary ('Director General').
  - b. MC's proposed PM for Swamps 76 and 77 of "negligible environmental consequences for threatened species" was to be expanded to "negligible environmental consequences for threatened species, ecological communities and populations" in order to also be consistent with Schedule 3 Condition 1, and endorsed by the Planning Secretary (noting that this is confined to species, ecological communities and populations gazetted as threatened at the time of the Project Approval).
  - c. Any approval of the EP for LWs 312-316 included a requirement that all valley closure impacts which present a risk to not achieving the approved PMs relevant to Swamps 76, 77 and/or 92 are to be remediated to the satisfaction of the Planning Secretary within 12 months of the abatement of the valley closure impacts.
- 7. Any approval for the EP for LWs312-316 should include a requirement for an End-of-Panel review report to be produced within 3 months of the completion of each longwall panel and to include coverage of cumulative impacts and environmental consequences for the preceding three longwall panels.

## Groundwater

- 8. The groundwater recommendations from the Panel's advice on LWs 311-312, all of which are relevant to LWs 312-316, have been addressed satisfactorily in the proposed TARP or otherwise in the MC responses to the recommendations, with exceptions:
  - a. The shallow Hawkesbury Sandstone (HBSS) groundwater should be included in the triggers in the relevant Trigger Action Response Plan (TARPs) (Table 14A and Table 14 B of the Biodiversity Management Plan (BMP)).
  - b. Soil moisture measurements should explicitly be considered in the analysis of impacts and consequences following a level 2 or 3 swamp groundwater trigger in both Table 14A and Table 14 B of the BMP.
  - c. Further refinements to the description of the semi-quantitative analysis of groundwater recession are advisable.
- 9. The proposed piezometer in the lower end of Swamp 77 will be a useful source of information, but due to the nature of the lower end of the swamp this piezometer will not be a suitable basis for a TARP or groundwater performance indicator. The Panel concludes that the practical options for assessing the hydrological impacts at the downstream end of Swamp 77 are:

monitoring of hydrology at the installed sites further upstream in the swamp since these will influence the baseflow supply to the lower end of Swamp 77; and monitoring of physical impacts to the rockbars at the downstream end of Swamp 77.

## Surface water

10. The surface water recommendations in the Panel's advice on LWs 311-312, all of which are relevant to LWs 312-316, have been addressed satisfactorily in the MC responses, with the exception of aspects raised in the Biodiversity section of this advice.

# **Biodiversity**

- 11. If valley closures along lengths of tributaries R and S are as high as predicted, this is likely to result in environmental consequences for threatened species if and where they are present, particularly the Littlejohn's Tree Frog and Giant Burrowing Frog which both rely on pools for breeding. If these impacts do occur, and result in loss of breeding habitat, the environmental consequences for these species are unlikely to be considered negligible. In the case of tributary P, the additional/incremental valley closure due to the extraction of LWs 311-316 is not high and less likely to result in environmental consequences for threatened species, if they are present.
- 12. The TARPs for amphibians, presented in the Revised BMP (November 2024) are generally supported. However, a number of amendments to these TARPs are recommended (see Section 10).
- 13. Baseline surveys for the Giant Dragonfly and Ground Parrot are incomplete and no TARP or monitoring program is provided for either threatened species. If the baseline surveys for the Giant Dragonfly or Ground Parrot identify these species, then amendments to the BMP will be required including additional monitoring and a new TARP(s).
- 14. The Panel's previous (Stage 1) recommendation that the assessment of the biodiversity PM for Swamps 76, 77 and 92 should be based directly on the groundwater performance indicator was premised on these swamps being regarded as EECs for the purpose of assessing the EP for LW 312-316. Given this this premise is no longer considered appropriate, the Panel concludes that PM is now interpreted as relating only to threatened species and that previous recommendation is superseded by those below.
- 15. Notwithstanding the above, the Panel is of the view that should the Giant Dragonfly be recorded in the upland swamps, exceedance of a swamp groundwater performance indicator is highly likely to lead to exceedance of the threatened species PM given the obligate dependence of this species on groundwater. A robust TARP, performance indicator and monitoring program will be required if biodiversity monitoring is relied upon to demonstrate that the PM has not been exceeded.

## 10.0 RECOMMENDATIONS

### Complexities and their resolution

#### The Panel recommends that:

- 1. The intent of Schedule 3 Condition 4 be given effect by approval conditions that:
  - a. Endorse the refined mine layout that now results in LW312 stopping 120 m short and LW313 stopping 80 m short of their originally planned finishing points.
  - b. Endorse MC's proposed PM for Swamp 92 of "negligible environmental consequences".
  - c. Are based on MC expanding its proposed PM for Swamps 76 and 77 to "negligible environmental consequences for threatened species, ecological communities and populations" before endorsement by the Planning Secretary.
- 2. Any approval of the EP for LWs312-316 should include a requirement that all valley closure impacts which present a risk to not achieving the approved PMs for Swamps 76, 77 and/or 92 are to be remediated to the satisfaction of the Planning Secretary within 12 months of the abatement of the valley closure impacts.
- 3. Any approval for the EP for LWs312-316 should include a requirement for an End-of-Panel review report to be produced within 3 months of the completion of each longwall panel and to include coverage of cumulative impacts and environmental consequences for the preceding three longwall panels.

#### Groundwater

- 4. The level 2 TARP in Tables 14A and 14B of the BMP should include a trigger for potential impacts on HBSS shallow (~10m) groundwater levels where suitable baseline data exist, whereby an accelerated reduction in shallow HBSS groundwater levels would trigger an action. One piezometer per swamp with the longest period of baseline data would suffice.
- 5. The level 3 TARP in Tables 14A and 14B of the BMP should be robust enough to ensure that low baseline substrate groundwater levels do not preclude a trigger.
- 6. The technical document on implementing the semi-quantitative groundwater trigger should be incorporated as an appendix in the Water Management Plan or the MC Annual Report, and that the time-series of groundwater levels from which the cumulative frequency distributions are derived is added to the document for the readers' reference.
- 7. The incorporation of soil moisture in Table 14A (footnote 6) of the BMP should be replicated in Table 14B of that document.

## Surface Water

8. MC's progress with implementing previous Panel recommendations related to water quality (Panel Report No: IEAPM 202310-1 R1) should be reviewed by DPHI following publication of MC's 2024 Annual Review.

### **Biodiversity**

- 9. The threatened species survey program report should be provided as soon as possible by MC and reviewed by DPHI.
- 10. If the Giant Dragonfly is recorded during baseline surveys, it is recommended that the results of the baseline monitoring and the proposed amendments to the BMP, including a suitable

- TARP and monitoring program, are provided to DPHI for review and comment. This should occur prior to commencement of secondary extraction of LW312.
- 11. The Panel considers that there is a strong requirement for pool water level monitoring in suitable breeding pools of tributaries R and S if threatened species are found to be present. The Large Swamp Amphibian Monitoring TARP does not include any triggers related to pool water level. Given the above, the triggers should be amended.
- 12. The Panel recommends that iron flocculent deposition in suitable breeding pools is monitored and incorporated into the triggers for the Large Swamp Amphibian Monitoring TARP.
- 13. The Action/Response in the Level 3 trigger in Table 18 of the Revised BMP (November 2024) should be amended to insert the underlined words: "Where appropriate contingency measures or remediation cannot be implemented to address an impact, or remediation measures are unsuccessful in addressing the impact, Metropolitan Coal would provide a suitable offset to compensate for the impact to the satisfactory of the Secretary of Planning".
- 14. The TARP for Large Swamp Amphibian Monitoring should be amended to indicate that if a subsidence impact results in an exceedance of a performance indicator for threatened species, as assessed against control sites, then the PM for threatened species has been exceeded and further assessment against the PM is not required.
- 15. The proposed TARP for amphibians (Table 18 of the Revised BMP, November 2024) should be applied to Swamps 76, 77 and 92 as well as the downstream extent of tributaries P, R and S.
- 16. The TARPs for threatened amphibians should focus on changes in abundance for each individual species, i.e. not overall abundance or relative abundance. Table 18 of the BMP should be amended to ensure this occurs. There may be benefit in looking at relative abundance between life cycle stages (e.g. adult males and females to tadpoles) for individual species.
- 17. A Level 2a trigger should be reported to the Technical Committee as a Level 2a trigger even if detected differences cannot be attributed to mining. Amend the Action/Response to "Any significant differences detected that are not attributable to mining impacts (e.g. are a result of environmental conditions or stochastic events) are to be considered normal conditions and will be reported as Level 1 to the Technical Committee."
- 18. The performance indicator in Table 18 of the BMP (November 2024) be modified to read 'The abundance of Littlejohn's Tree Frog, Red Crowned Toadlet or Giant Burrowing Frog is not expected to experience a decline compared to previous years that is significantly different to the trend for that species at control sites'. The determination of an impact should be based on a change in abundance of any threatened species and not on the assemblage of all threatened species.

# REFERENCES

-----

- DoP. (2009). The Metropolitan Coal Project Review Report Planning Assessment Commission. N. Shepherd, J. Bennet, J. M. Galvin, C. D. Mackie and J. Tilleard. ISBN 978-0-9806592-0-7. Sydney: Department of Planning, NSW Government.
- Galvin, J. M. (2005). A Risk Study and Assessment of the Impacts of Longwall Mining on Waratah Rivulet and Surrounds at Metropolitan Colliery. Report to NSW Department of Primary Industries., Galvin & Associates Report No: 0504/17-1c, pp. 128. Report No. 0504/17-1c. Sydney: Galvin & Assoc.
- IAPUM 2022. Advice Re: Metropolitan Mine Longwalls 308-310 Extraction Plan. dated September 2022
- IEAPM 2023a. Advice Re: Water Quality Performance Measures for Metropolitan Coal Mine. Report IEAPM 202310-1(R1) dated October 2023
- IEAPM 2023b. Advice Re: Metropolitan Coal Mine: High Level Review Large swamp environmental assessment requirements for the Extraction Plan for Longwalls 311 to 316. Report IEAPM 202311-1 dated November 2023
- IEAPM 2023c. Advice Re: Metropolitan Coal Mine: Independent review of environmental performance to 2022 (Dupen, 2023). Report IEAPM 202309-2 dated September 2023
- IEAPM. (2022). Metropolitan Mine. Longwalls 308 310 Extraction Plan. Independent Expert Advisory Panel for Mining. September 2022.
- IEPMC. (2019a). Galvin, J.M., McIntyre, N., Young, A., Williams, R.M., Armstrong, C. & Canbulat, I. Independent Expert Panel for Mining in the Catchment Report: Part 1. Review of Specific Mining Activities at the Metropolitan and Dendrobium Coal Mines. NSW Office of NSW Chief Scientist and Engineer.
- IEPMC. (2019b). Galvin, J.M., McIntyre, N., Young, A., Williams, R.M., Armstrong, C. & Canbulat, I. Independent Expert Panel for Mining in the Catchment Report: Part 2. Coal Mining Impacts in the Special Areas of the Greater Sydney Water Catchment. NSW Office of NSW Chief Scientist and Engineer
- Klop-Toker K, Stock, S, Wallace S, Hayward M, Mahony M (2021). Litoria littlejohni (Littlejohn's tree frog) Research Report 2020-21 South32 Dendrobium Mine. School of Environmental and Life Sciences, The University of Newcastle.
- Mills, K. W., & Huuskes, W. (2004). The Effects of Mine Subsidence on Rockbars in the Waratah Rivulet at Metropolitan Colliery. Paper presented at the 6th Triennial Conf. Mine Subsidence Technological Society, Maitland.
- MSEC. (2009). Illawarra Coal Bulli Seam Operations. Subsidence Predictions and Impact Assessments to Support The Part 3A Application. Mine Subsidence Engineering Consultants. Report No. MSEC404 Rev. D.
- MSEC. (2019). LW301 to 303 Revised Extraction Plan. Report to Metropolitan Coal. Mine Subsidence Engineering Consultants. Report No. MSEC984.

- MSEC. (2024a). Metropolitan Mine Longwall 313 Modified Finishing End and Commencing End. Mine Subsidence Overview. Mine Subsidence Engineeering Consultants. Ref: MSEC1441-200 Revision A.
- MSEC. (2024b). Metropolitan Mine Revised Layout for Longwalls 311 to 316. Mine Subsidence Overview. Mine Subsidence Engineeering Consultants. Ref: MSEC1441 Revision A.
- MSEC 2024. Metropolitan Mine Revised Layout for Longwalls 311 to 316 Mine Subsidence Overview. Letter to Jon Degotardi dated 2 June 2024.
- OEH 2012, Upland Swamp Environmental Assessment Guidelines, Office of Environment and Heritage, Sydney.
- OCSE. (2019). Independent Expert Panel for Mining in the Catchment Report: Part 2. Coal Mining Impacts in the Special Areas of the Greater Sydney Water Catchment. Galvin, J.M., McIntyre, N., Young, A., Williams, R.M., Armstrong, C., Canbulat, I. Sydney: NSW Office of NSW Chief Scientist and Engineer.
- Peabody. (2024). Metropolitan Coal Longwalls 311 316 Extraction Plan. Response to IEAPM RFI. 14/8/24.
- Peabody 2024a. Metropolitan Coal Longwalls 311-316 Extraction Plan Main Text
- South32, 2023. Dendrobium Area 3B Swamp Rehabilitation Research Program, South 32 Illawarra Metallurgical Coal.

# APPENDIX A – DPHI REQUEST FOR ADVICE AND REVISED REQUEST FOR ADVICE



Our ref: MP 08\_0149

**Emeritus Professor Jim Galvin** 

Chair - Independent Expert Advisory Panel for Mining

By email: <u>j.galvin@bigpond.net.au</u>

# 4 July 2024

Subject: Request for Advice – Metropolitan Coal Mine – Longwalls 311 to 316 Extraction Plan

Dear Prof Galvin

I am writing to you to request advice from the *Independent Expert Advisory Panel for Mining* (the Panel) in relation to the Metropolitan Coal Mine (MP 08\_0149).

Metropolitan Coal is seeking approval for an Extraction Plan (EP) for secondary coal extraction from Longwalls (LW) 311 to 316 which are a continuation of the longwall series undermining the Woronora Reservoir. A copy of the EP application is provided as **Attachment** 1.

Metropolitan Coal has consulted with several agencies in the preparation of this EP. A copy of agency advice and Metropolitan Coal's response to this advice is attached for your consideration (see Attachment 2).

Further feedback is being sought from these agencies by the Department and will be provided to the Panel when received (to be provided as Attachment 3).

The Department considers the key technical issues for LWs 311 to 316 are the potential impacts to swamps and water quality, as raised in the advice from the Department of Climate Change, Energy, the Environment and Water (DCCEEW), Biodiversity, Conservation and Science (BCS) and WaterNSW. In particular, the impacts of mining on three large swamps (i.e. S76, S77 and S92) and their associated threatened species, and water quality of watercourses and the Woronora Reservoir, have been raised as specific concerns.

The Panel has previously provided advice on the Metropolitan Mine which included recommendations relevant to the LW 311 to 316 EP. This advice included:

• Advice re: Metropolitan Mine Longwalls 308 – 310 Extraction Plan (September 2022);

1



- Independent review of environmental performance to 2022 (September 2023);
- Water Quality Performance Measures for Metropolitan Coal Mine (October 2023);
- High Level Review Large swamp environmental assessment requirements for the Extraction Plan for Longwalls 311 to 316 (November 2023).

Metropolitan Coal provided responses to recommendations made in these documents (see Attachments 4 and 5).

The Department is seeking advice from the Panel on the LW 311 to 316 EP, including:

- whether the Panel's previous recommendations in the documents above have been adequately addressed, particularly in relation to large swamps and water quality modelling and monitoring;
- the adequacy of the large swamp impact predictions presented in the *Large Swamp*Assessment (Appendix H of the EP) and associated appendices;
- the adequacy of the proposed performance measures and indicators for large swamps required by condition 4(b) Schedule 3 of the consent and included in the *Large Swamp Assessment* (Section 7.2), and the need or otherwise to set more defined performance measures for large swamps beyond those related to threatened species, populations, or ecological communities;
- the need or otherwise to modify the mine plan to minimise/avoid impacts, particularly on large swamps, and ensure compliance with existing and proposed performance measures:
- the adequacy of the water and swamp monitoring programs;
- the water and swamp TARPs and whether they:
  - —enable measurement of compliance with existing and proposed performance measures established under the consent and proposed in the EP for large swamps; and
  - —have triggers (and associated performance indicators) that adequately reflect the existing and proposed performance measures.

The Panel should feel free to provide any other advice it considers would assist the Department in reviewing the EP.



To assist the Panel, I have attached a copy of Metropolitan Coal's six-monthly report January to June 2023, and the most recent Waratah Rivulet Technical Committee Valley Closure Meeting for LW 309 (see Attachment 6 and 7).

It would be appreciated if the Panel can provide advice on the EP by 16 August 2024.

Please contact me on 8274 1274 or <a href="mailto:jessie.evans@dpie.nsw.gov.au">jessie.evans@dpie.nsw.gov.au</a> if you have any questions or require additional information for your review.

Yours sincerely,



Jessie Evans

Director

**Energy and Resource Assessments** 

### Attachments:

- 1. LW 311 to 316 EP
- 2. Agency Advice to Metropolitan Coal
- 3. Agency Advice to the Department
- 4. Metropolitan Coal's response to agency comments
- 5. Metropolitan Coal's responses to Panel recommendations on the EPs for LW 308-310 and LW 31-316
- 6. Metropolitan Coal Six Monthly Report January to June 2023
- 7. Waratah Rivulet Technical Committee Valley Closure Meeting for LW 309 1 March 2024



Our ref: MP 08\_0149

Emeritus Professor Jim Galvin

Chair - Independent Expert Advisory Panel for Mining

By email: j.galvin@bigpond.net.au

2 August 2024

Subject: Request for Advice - Metropolitan Coal Mine - Longwalls 311 to 316 Extraction Plan

Dear Prof Galvin

Thank you for your letter dated 26 July 2024, outlining the Panel's staged approach for providing advice on the Metropolitan Coal Mine Extraction Plan for Longwalls 311 to 316 (Extraction Plan). I note the staged approach will comprise:

- 1. Reviewing whether the Panels' previous recommendations have been adequately addressed in relation to large swamps and water quality modelling and monitoring;
- 2. Restricting the Stage 1 advice to LW311 and 312; and
- 3. Recommending clear and timely performance indicators that unambiguously define when impacts on biodiversity are greater than negligible.

The Department accepts this staged approach.

As the Panel is aware, the Department has requested that government agencies provide advice on the Revised Extraction Plan. WaterNSW and BCS have requested additional information on performance measures and indicators and adequacy of monitoring programs.

The Department will request that Metropolitan Coal provides a response to agency comments for Stage 1. To aid in providing a timely response to the Panel, the Department will request that Metropolitan Coal's response is focused on proposed performance measures and indicators, and monitoring programs, for LWs 311 and 312.

It would be appreciated if the Panel can provide advice on the EP by 23 August 2024.

Please contact me on 8274 1274 or <u>jessie.evans@dpie.nsw.gov.au</u> if you have any questions or require additional information for your review.

Yours sincerely,

Jessie Evans

Director

**Energy and Resource Assessments** 

# APPENDIX B – PANEL BIOGRAPHY

#### Jim Galvin (Chair)

Professor Galvin is an Emeritus Professor (University of New South Wales) in Mining Engineering and former member of the NSW Planning Assessment Commission. Professor Galvin is one of the world's foremost experts on underground coal mining and subsidence and has extensive experience in geomechanics, mine management and risk management. He was a member of the Independent Panel for the Southern Coalfield Inquiry (2008), several subsequent reviews of mining projects in the Southern Coalfield and most recently, Chair of the Independent Expert Panel on Mining in the Catchment.

#### **John Ross**

John Ross is a Senior Principal Hydrogeologist with over 40 years' experience specialising in water resource, site contamination, infrastructure, mining and natural resource impact assessment and management. His specialty is sedimentary basin hydrogeology, particularly the Great Artesian Basin, Sydney-Gunnedah and Gloucester basins here in NSW. John has held specialist management roles in public and private corporations and environmental consultancies. He has a Bachelor of Science (Geology) and a Certificate in Engineering Hydrology and Groundwater Hydrology.

John provides technical hydrogeological expertise and advice across the spectrum of water resource development, environmental/water planning, assessment and management projects, including environmental impact assessments, environmental audits and technical peer reviews, monitoring programs, remedial action plans, modelling and groundwater licensing matters. John also has extensive experience in community and regulatory consultation across the eastern seaboard.

## **Neil McIntyre (co-Chair for this Advice)**

Neil McIntyre is Professor of Hydrology and Water Resources at The University of Queensland. He holds a BEng in Civil Engineering from Edinburgh University, and an MSc in Environmental Engineering and PhD in water quality modelling from Imperial College London. He is a Chartered Civil Engineer (UK Engineering Council), with expertise including surface water hydrology, water security assessments, and impacts of land use changes and mining on hydrology and water quality. His advisory roles have included serving on the Institution of Civil Engineer's Water Expert Panel (UK), the Steering Committee of the Commonwealth Leading Practice Sustainable Development Program, and the NSW Independent Expert Panel for Mining in the Catchments.

# **Ann Young**

Dr Young is a retired academic who worked at the University of Wollongong's School of Earth and Environmental Sciences. Her PhD was a seminal study into the upland swamps on the Woronora Plateau. Between 2006 and 2017, she was a member of community consultative committees at two mines in the Southern Coalfield. She was involved with the Commonwealth Government's review of Temperate Highland Peat Swamps on Sandstone EEC and a member of the NSW Government's Independent Expert Panel for Mining in the Catchment.

#### **Nathan Garvey**

Nathan is an experienced ecologist with over 20 years' practice in biodiversity assessment and approvals across eastern Australia. Nathan holds a Bachelor of Science and Graduate Diploma in Biological Science from the University of NSW and is a Certified Environmental Practitioner and a Biodiversity Assessment Method (BAM) accredited assessor under the Biodiversity Conservation Act.

Nathan has experience across a diverse range of sectors including mining, oil and gas, linear infrastructure, renewable energy and residential development, including biodiversity assessment for major projects, offsetting and EPBC Act referrals. He has strong expertise and experience in the assessment of impacts to biodiversity arising from subsidence, as well as impacts to groundwater dependent ecosystems arising from groundwater drawdown. He is one of NSW's leading experts in biodiversity approvals and offsetting.

#### **David Waite**

David Waite is a Scientia Professor in the School of Civil and Environmental Engineering at the University of New South Wales. Professor Waite obtained his PhD from the Massachusetts Institute of Technology and has served as the Head of the Department of Water Engineering (1993-1999), Director of the Centre for Water and Waste Technology (1993-2006), Head of the School of Civil and Environmental Engineering (2007-2013) and Deputy Dean of the Faculty of Engineering (2013-2018) at UNSW. His principal research areas are that of investigation of physico-chemical processes in natural and engineered systems and biogeochemical transformation and fate of contaminants. Professor Waite is the CEO of the UNSW Centre for Transformational Environmental Technologies (CTET) and is an Associate Editor of the journal Environmental Science & Technology. He was honoured with international membership of the US National Academy of Engineering in 2018 for his distinguished service to engineering.

# METROPOLITAN COAL LONGWALLS 311-316

# **EXTRACTION PLAN**









# ATTACHMENT 4 KEY CONTACT REGISTER

# **Peabody**

# ATTACHMENT 4 KEY CONTACT REGISTER

# Table A4-1 Emergency Contacts

| Organisation                                                   | Phone Number                   |
|----------------------------------------------------------------|--------------------------------|
| Emergency Services (Police, Fire Ambulance)                    | 000                            |
| NSW Environment Protection Authority                           | 131 555                        |
| State Emergency Services                                       | 132 500                        |
| WorkCover Authority                                            | 13 10 50                       |
| Subsidence Advisory NSW (24-hour Emergency Service)            | 1800 248 083                   |
| Dams Safety NSW Executive Engineer (24-hour Emergency Contact) | (02) 9842 8070<br>0403 681 645 |
| Wollongong City Council                                        | (02) 4227 7111                 |

Table A4-2
Internal Metropolitan Coal Contact Details

| Position                                    | Contact Name      | Phone Number   |
|---------------------------------------------|-------------------|----------------|
| Executive General Manager                   | James Hannigan    | (02) 4294 7201 |
| Mining Engineering Manager                  | Brenton Vermeulen | (02) 4294 7234 |
| Approvals Manager                           | Jon Degotardi     | (02) 4294 7233 |
| Technical Services Manager                  | Nicolas Tucker    | (02) 4294 7294 |
| Environment & Community Superintendent      | Stephen Love      | (02) 4294 7384 |
| Metropolitan Control Room (Manned 24 hours) | Control Operator  | (02) 4294 7333 |
| Community Hotline (24 hours)                |                   | 1800 115 003   |

| Metropolitan Coal Longwalls 311-316 Extraction Plan         |  |           |
|-------------------------------------------------------------|--|-----------|
| Revision No.EP-R01-A                                        |  | Page A4-1 |
| Document ID: Longwalls 311-316 Extraction Plan Attachment 4 |  |           |

Table A4-3 Stakeholder Contact Details

| Stakeholder                                              | Position                                                               | Contact Name                  | Email/Contact Phone Number                                                             | Postal Address                         |
|----------------------------------------------------------|------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------|----------------------------------------|
| NSW Government Ager                                      | ncies                                                                  |                               |                                                                                        |                                        |
| Department of Planning, Housing and                      | Director, Resource<br>Assessments                                      | Jessie Evans                  | Jessie.Evans@planning.nsw.gov.au                                                       | Locked Bag 5022<br>Paramatta NSW 2124  |
| Infrastructure (DPHI)                                    | Principal Planning Officer,<br>Resource Assessments                    | Melanie Hollis                | melanie.hollis@planning.nsw.gov.au                                                     |                                        |
| Resources Regulator                                      | Project Coordinator,<br>Royalties and Advisory                         | Alex Love                     | industry.coordination@industry.nsw.gov.au                                              | GPO Box 5477<br>Maitland NSW 2320      |
|                                                          | Services  Manager & Principal Inspector Environment                    | Greg Kininmonth               | Greg.Kininmonth@planning.nsw.gov.au                                                    | PO Box 674<br>Wollongong NSW<br>2520   |
| Subsidence Advisory<br>NSW                               | Manager, Claimant<br>Outcomes - South                                  | Matthew Montgomery            | Matthew.Montgomery@customerservice.nsw.gov.au 24hr contact 1800 248 083                | PO Box 488G,<br>Newcastle 2300         |
| Dams Safety NSW                                          | Manager, Mining Projects                                               | Heather Middleton             | Heather.Middleton@dpie.nsw.gov.au<br>dsc.mining@damsafety.nsw.gov.au<br>(02) 9842 8077 | Locked Bag 5123<br>Parramatta NSW 2124 |
| WaterNSW                                                 | Manager, Environment & Catchment Protection                            | Camilla Edmunds               | camilla.edmunds@waternsw.com.au                                                        | PO Box 398<br>Parramatta NSW 2124      |
| Natural Resources<br>Access Regulator                    | -                                                                      | -                             | nrar.servicedesk@industry.nsw.gov.au                                                   | Locked Bag 5123<br>Parramatta NSW 2124 |
| Biodiversity,<br>Conservation and<br>Science Directorate | Director, South-East<br>Conservation and Regional<br>Delivery Division | Michael Saxon                 | Michael.Saxon@environment.nsw.gov.au                                                   | Locked Bag 5022<br>Paramatta NSW 2124  |
|                                                          | Senior Team Leader,<br>Ecosystems and Threatened<br>Species            | James Dawson                  | James.Dawson@environment.nsw.gov.au (02) 4224 4125                                     |                                        |
| Heritage NSW                                             | Archaeologist (Illawarra)                                              | Rose O'Sullivan               | heritagemailbox@environment.nsw.gov.au                                                 | Locked Bag 5020<br>Paramatta NSW 2124  |
| Department of Primary<br>Industries – Fisheries          | Regional Manager,<br>Central/Metro Aquatic<br>Ecosystems               | Scott Carter                  | Scott.Carter@dpi.nsw.gov.au                                                            | Locked Bag 1<br>Nelson Bay NSW 2315    |
| NSW Environment<br>Protection Authority                  | Manager Regional Operations Illawarra Senior Operations Officer        | Peter Bloem Andrew Couldridge | Andrew.Couldridge@epa.nsw.gov.au (02) 4224 4100                                        | PO Box 513<br>Wollongong NSW 2520      |

| Metropolitan Coal Longwalls 311-316 Extraction Plan         |  |  |
|-------------------------------------------------------------|--|--|
| Revision No.EP-R01-A Page A4-2                              |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Attachment 4 |  |  |

# Table A4-3 (Continued) Stakeholder Contact Details

| Stakeholder                                                 | Position                       | Contact Name   | Email/Contact Phone Number  | Postal Address                                    |
|-------------------------------------------------------------|--------------------------------|----------------|-----------------------------|---------------------------------------------------|
| Aboriginal Groups                                           |                                |                |                             |                                                   |
| Cubbitch Barta Native<br>Title Claimants                    | -                              | Glenda Chalker | -                           | 55 Nightingale Road<br>Pheasants Nest NSW<br>2574 |
| Korewal Elouera<br>Jerrungurah Tribal<br>Elders Corporation | -                              | Reuben Brown   | -                           | 86 Hertford Street<br>Berkeley NSW 2506           |
| Caines Family                                               | -                              | Gary Caines    | -                           | 28 Gowan Brae Road<br>Mount Ousley NSW 2519       |
| La Perouse Botany Bay<br>Aboriginal Corporation             | -                              | Yvonne Simms   | -                           | 10 Murrong Place<br>La Perouse NSW 2036           |
| Woronora Plateau<br>Gundungara Elders<br>Councils           | -                              | Paul Cummins   | -                           | 11 Garnett Grove<br>Flinders NSW 2529             |
| Tharawal Local<br>Aboriginal Land Council                   | -                              | Rebecca Ede    | -                           | PO Box 245<br>Thirlmere NSW 2572                  |
| Wodi Wodi<br>Dharawal/Yuin<br>Traditional Owners            | -                              | James Davis    | -                           | 2 Poplar Avenue<br>Unanderra NSW 2526             |
| Illawarra Local<br>Aboriginal Land Council                  | Chief Executive Officer        | Adell Hyslop   | -                           | PO Box 1306<br>Wollongong NSW 2500                |
| Community                                                   |                                |                |                             |                                                   |
| Wollongong City Council                                     | Development Project<br>Officer | Nina Kent      | nkent@wollongong.nsw.gov.au | Locked Bag 8821<br>Wollongong DC NSW<br>2500      |
| Metropolitan Coal<br>Community Consultative<br>Committee    | Independent Chair              | Lisa Andrews   | lisaandrews.ic@gmail.com    | PO Box 6017<br>Lake Munmorah NSW<br>2259          |

| Metropolitan Coal Longwalls 311-316 Extraction Plan         |  |           |
|-------------------------------------------------------------|--|-----------|
| Revision No.EP-R01-A                                        |  | Page A4-3 |
| Document ID: Longwalls 311-316 Extraction Plan Attachment 4 |  |           |

**INSERT ATTACHMENT 3** 

| Metropolitan Coal – Longwalls 311-316 Extraction Plan       |  |  |  |
|-------------------------------------------------------------|--|--|--|
| Revision No. EP-R01-E                                       |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Attachment 4 |  |  |  |

# METROPOLITAN COAL LONGWALLS 311-316

# **EXTRACTION PLAN**









# ATTACHMENT 4 KEY CONTACT REGISTER

# **Peabody**

**INSERT ATTACHMENT 4** 

| Metropolitan Coal – Longwalls 311-316 Extraction Plan       |  |  |  |
|-------------------------------------------------------------|--|--|--|
| Revision No. EP-R01-E                                       |  |  |  |
| Document ID: Longwalls 311-316 Extraction Plan Attachment 4 |  |  |  |