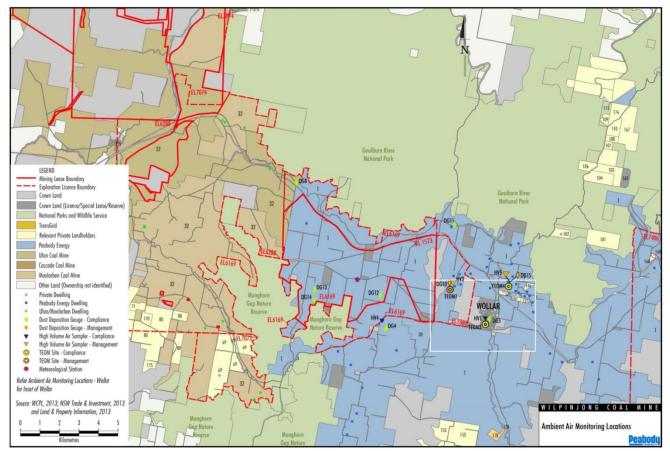
APPENDIX 3B – AIR QUALITY MONITROING DATA

EPL 12425 ID No.	3	4	-	6	-	9	10	11	12	26
Monitoring ID No.	DG4	DG5	DG7*	DG8	DG10	DG11	DG12	DG13	DG14	DG15
2011 Annual Average Total Insoluble Matter (g/m ² /month)	0.90	1.13	1.22	0.94	3.02	1.30	3.73	1.95	1.88	-
2012 Annual Average Total Insoluble Matter (g/m ² /month)	1.05	0.73	1.52	1.03	1.19	1.41	6.52	2.38	2.18	-
2013 Annual Average Total Insoluble Matter (g/m ² /month)	0.87	0.60	-	1.43	2.04	2.1	3.26	1.94	1.04	1.00
2014 Annual Average Total Insoluble Matter (g/m ² /month)	1.68	0.83	-	1.48	3.31	1.28	3.28	2.81	1.43	0.85
2015 Annual Average Total Insoluble Matter (g/m ² /month)	0.90	0.80	-	1.09	3.61	1.94	2.91	5.91	1.16	0.75
2016 Annual Average Total Insoluble Matter (g/m ² /month)	0.7	1.3	-	1.1	1.9	4.2	2.5	33.81	4.80	1.64

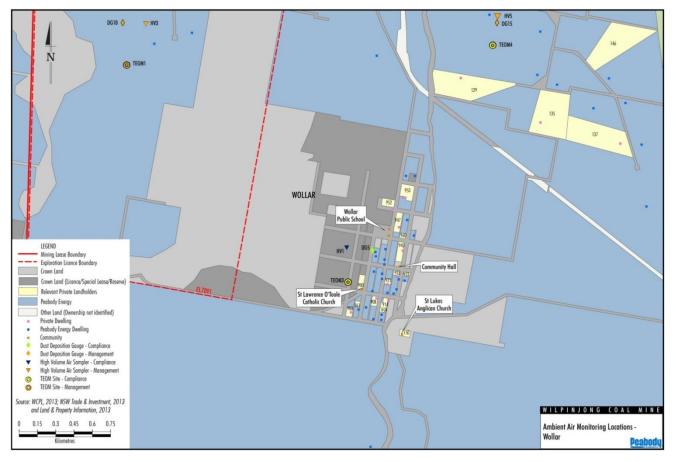
Summary of Annual Average Dust Deposition

Notes: Green shaded cells indicated internal dust depositional monitoring sites at heritage sites. *At the end of the 2012 reporting period DG7 was relocated from the Mittaville Property to Araluen Road. Araluen Road is situated to the north east of Wollar Village. The new dust gauge is identified as DG15.

Monitoring Locations [#]							
EPL 12425 ID No.	13	19	20	27	-	25	28
Monitoring ID No.	HV1	HV3	HV4	HV5	TEOM1^	TEOM3	TEOM4
			2012 Resu	lts			
PM ₁₀ (μg/m ³) recorded range*	2.8 - 21.7	-	12.0 - 21.8	**	3.4 - 60.3	**	**
PM ₁₀ (μg/m ³) annual average	9.1	-	9.7	**	9.7	**	**
TSP (µg/m ³) recorded range*	-	1.9 - 47.0	-	-	-	-	-
TSP (μg/m³) annual average	-	18.8	-	-	-	-	-
1	1	Г	2013 Resu	lts			
PM10 (μg/m ³) recorded range*	1.2 - 43.7	-	2 - 55.1	1.8 - 49.8	3.0 - 82.5	2.4 - 55.6	0.7 – 68.9
PM10 (μg/m³) annual average	10.84	-	12.4	15.71	18.5	13.1	16.8
TSP (μg/m ³) recorded range*	-	3.1 – 77.6	-	-	-	-	-
TSP (μg/m ³) annual average	-	27.45	-	-	-	-	-
			2014 Resu	lts			
PM10 (μg/m ³) recorded range*	1.70 - 41.20	-	1.80 - 37.70	2.80 - 47.80	1.8-69.5	2.65 - 59.12	1.18 - 53.96
PM10 (μg/m ³) annual average	11.15	-	11.95	14.58	17.3	13.2	13.5
TSP (μg/m ³) recorded range*	-	7.20 – 59.0	-	-	-	-	-
TSP (μg/m ³) annual average	-	23.09	-	-	-	-	-
2	1	1	2015 Resu	lts			
PM10 (μg/m ³) recorded range*	1.1 – 29.3	-	1.9 - 40.0	1.0 - 35.3	2.2 - 87.8	1.4 – 78.5	0.1 – 77.3
PM10 (μg/m³) annual average	9.99	-	11.52	11.68	14.1	11.26	14.16
TSP (µg/m ³) recorded range*	-	3.7 - 68.7	-	-	-	-	-
TSP (μg/m ³) annual average	-	22.74	-		-	-	-


Summary of TSP and PM₁₀ Results

Monitoring Locations [#]							
EPL 12425 ID No.	13	19	20	27	-	25	28
Monitoring ID No.	HV1	HV3	HV4	HV5	TEOM1^	TEOM3	TEOM4
			2016 Resu	lts			
PM10 (μg/m ³) recorded range*	1.5 - 23.0	-	1.8 – 25.2	2.5 - 34.2	3.3 - 41.7	0.4 - 34.4	0.0-51.11
PM10 (μg/m ³) annual average	9.78	-	11.69	13.95	15.0	10.2	11.3
TSP (μg/m ³) recorded range*	-	3.9 - 82.0	-	-	-	-	-
TSP (μg/m ³) annual average	-	27.59	-	-	-	-	-


Summary of TSP and PM_{10} Results cont.

Notes: * Data presented is the range of minimum and maximum 24 hour averages. ^ Data recorded at these sites is not for compliance, but for management purposes only. [#] Refer to **Figure below.** ¹Bushfire event on the 18 February 2016.

Air Quality Monitoring Stations

Air Quality Monitoring Stations (Wollar)

2016 Ambient Air Quality Monitoring Reports

Accredited for compliance with ISO/IEC 17025.

No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring

Validated Report

1st January – 31st January 2016

Report No.: DAT10446

Report issue date: 26th February 2016

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081 1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA Tel No: 1300 364 946 Fax No: 1300 668 763 Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Peabody Energy

Customer Details					
Customer	Peabody Energy Australia				
Contact name	Clark Potter				
Address	Locked Bag 2005, Mudgee 2850 NSW				
Email	cpotter@peabodyenergy.com				
Phone	+61 (02) 6370 2527				

Revision History					
Revision	Report ID	Date	Analyst		
0	DAT10446	26/02/2016	Robyn Edwards		

Report by:

Robyn EDWARDS •

REdwords

Approved Signatory:

Jon ALEXANDER

Report No: DAT10446

Peabody Energy

Table of Contents

Customer Details2
Revision History2
Table of Contents 3
List of Figures4
List of Tables5
1.0 Executive Summary
2.0 Introduction
3.0 Monitoring and Data Collection7
3.1. Siting Details7
3.2. Monitored Parameters9
3.3. Data Collection Methods10
3.3.1. Compliance with Standards11
3.3.2. Data Acquisition11
3.4. Data Validation and Reporting11
3.4.1. Validation
3.4.2. Reporting12
4.0 Air Quality Goals
4.1. Air Quality Summary
5.0 Calibrations and Maintenance
5.1. Units and Uncertainties14
5.2. Automatic Checks
5.3. Maintenance

Report No: DAT10446

Peabody Energy

5	5.3.1.	Calibration & Maintenance Summary Tables1	5
6.0	Result	-s1	7
6.1.	Dat	a Capture1	7
6.2.	Gra	phic Representations	8
7.0	Valid I	Data Exception Tables	2
8.0	Repor	t Summary24	4
Apper	ndix 1 -	Definitions & Abbreviations2	5
Apper	ndix 2 -	Explanation of Exception Table	6

List of Figures

Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H_2S - 1 hour data	20
Figure 7: BTX - 1 hour data	21

Report No: DAT10446

Peabody Energy

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	Ð
Table 3: Methods10)
Table 4: Wilpinjong Air Quality Goals (NEPM) 13	3
Table 5: Exceedences Recorded13	3
Table 6: Units and Uncertainties14	1
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S19	5
Table 8: Wilpinjong Wollar Maintenance Table16	5
Table 9: Data Capture for Wilpinjong Wollar Station 12	7
Table 10: Wollar Valid Data Exception Table 22	2

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for $1^{st} - 31^{st}$ January 2016. Data capture for the different pollutants is presented in Table 9.

Report No: DAT10446

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 31^{st}$ January 2016.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)
Wollar	Lat: -32.360105 Long: 149.949509	366

Report No: DAT10446

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography
H ₂ S	Ecotech EC9852 - fluorescence
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence
SO ₂	Ecotech EC9850 – fluorescence
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic
Wind Direction (10m)	Vaisala WS425 – ultrasonic

Peabody Energy

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method
302	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer
Vector Wind	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis[™] version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT10446

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "*Wilpingjong Coal Validated Data Report Jan-16.xls*". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5min Avg
- 3. Hourly Avg
- 4. Daily Avg
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT10446

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT10446

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p-</i> Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

¹ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Parameter	Span / Zero cycle time (approximate) Background cycle ti (approximate)	
NO, NO ₂ , NO _x	01:00 to 01:45 every 2 nd day	N/A
SO ₂	01:00 to 01:40	23:50 to 00:00
H ₂ S	01:45 to 02:40 every 2 nd day	00:45 to 00:55

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

5.3. Maintenance

Non-scheduled maintenance was performed on 15/01/2016 to perform calibrations on the SO_2 and NO_x analysers following a daily check reported fault.

Scheduled 6-monthly maintenance was performed over a two day period on 28/01/2016 and 29/01/2016. No further issues were found and a spare H₂S analyser was left on site.

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Report No: DAT10446

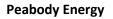


Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	28/01/2016	6-monthly	28/01/2016	Monthly
SO ₂	28/01/2016	6-monthly	28/01/2016	Monthly
H ₂ S	28/01/2016	6-monthly	28/01/2016	Monthly
ВТХ	28/01/2016	3-monthly	28/01/2016	Monthly
Wind Speed	28/01/2016	3-monthly	21/05/2015	2-Yearly
Wind Direction	28/01/2016	3-monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT10446

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation: *Data capture = (Reported air quality data / Total data) x 100%* Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 1^{st}$ January 2016. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

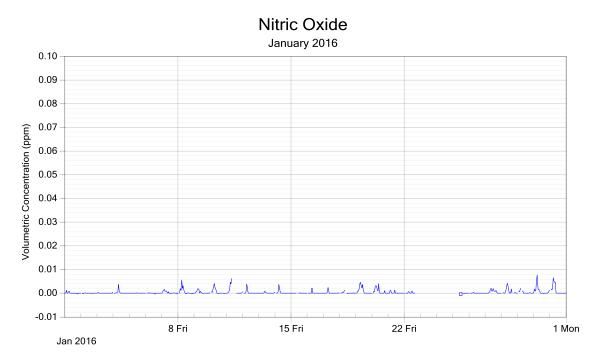
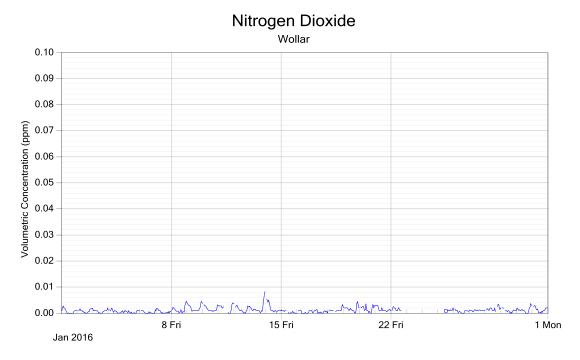
Parameter	Data Capture %
NO, NO ₂ , NO _x	88.1
SO ₂	88.1
H ₂ S	86.6
Benzene	88.7
Toluene	88.7
<i>p</i> -Xylene	88.3
WS, WD	90.6

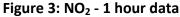
Table 9: Data Capture for Wilpinjong Wollar Station

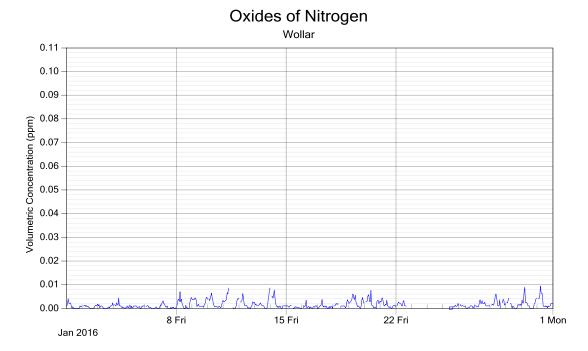
Peabody Energy

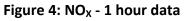
6.2. Graphic Representations

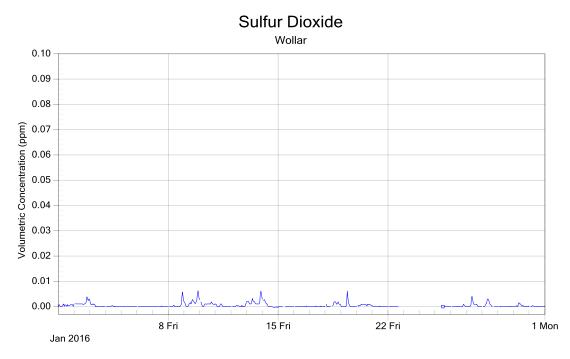
Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

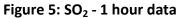




Figure 2: NO - 1 hour data


Report No: DAT10446


Peabody Energy





Report No: DAT10446

WORLD RECOGNISED ACCREDITATION

Peabody Energy

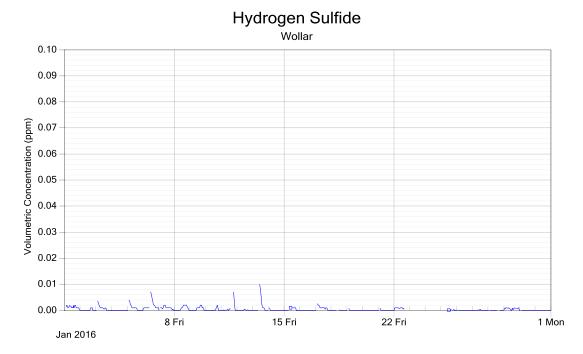


Figure 6: H₂S - 1 hour data

Report No: DAT10446

Peabody Energy

Benzene, Toluene and p-Xylene Wollar p-Xylene N/A thr Avg (ppb) Toluene thr Avg (ppb) Benzene thr Avg (ppb) $<math>f_{0}$ f_{0} f_{0

Figure 7: BTX - 1 hour data

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change User Details Name		Change Date
01/01/2016 00:00	01/01/2016 00:00	Instrument stabilisation – continued from Dec-15	BTX EP		27/01/2016
01/01/2016 00:05	28/01/2016 10:15	Static offset of -0.120 ppb applied to correct zero baseline	<i>p</i> -Xylene	RE	19/02/2016
02/01/2016 06:05	28/01/2016 08:05	Intermittent unrealistic data spikes	<i>p</i> -Xylene	RE	19/02/2016
06/01/2016 01:40	12/01/2016 00:55	Static multiplier of 0.93 applied to correct overnight 'out of tolerance' span values	NO, NO ₂ and NO _x	II RE II 1970	
06/01/2016 10:50	25/01/2016 17:55	Intermittent data transmission errors – not enough samples for 5min averaging	All parameters	RE	19/02/2016
12/01/2016 01:40	14/01/2016 00:00	Static offset of 0.002ppm applied to correct baseline	SO ₂	RE	19/02/2016
13/01/2016 23:40	13/01/2016 00:20	Intermittent short power interruption and subsequent BTX instrument stabilisation	H ₂ S, BTX, WS and WD	RE	19/02/2016
13/01/2016 23:45	29/01/2016 00:40	Intermittent short power interruption and subsequent instrument stabilisation	All parameters	RE	19/02/2016
14/01/2016 01:20	14/01/2016 18:10	Static offset of 0.003 ppm applied to correct baseline	H₂S	H ₂ S RE 19	
14/01/2016 18:15	25/01/2016 18:15	Intermittent additional automatic calibration cycles	H_2S and SO_2	RE	19/02/2016
15/01/2016 08:05	15/01/2016 11:40	Non scheduled maintenance – calibrations performed and subsequent instrument stabilisations (intermittent data affected)	$\begin{array}{c c} SO_2, NO, NO_2, \\ NO, and H_2S \\ RE \\ 19/ \end{array}$		19/02/2016

Report No: DAT10446

Peabody Energy

Start Date	End Date	Reason Change User Details Name		Change Date	
15/01/2016 11:05	28/01/2016 00:55	Static multiplier of 0.95 applied to correct overnight 'out of tolerance' span values	SO ₂	RE	19/02/2016
18/01/2016 11:35	19/01/2016 00:40	Static offset of 0.11 ppm applied to correct zero baseline	H ₂ S	RE	19/02/2016
22/01/2016 17:40	25/01/2016 12:05	Power interruption	All parameters	RE	19/02/2016
28/01/2016 10:20	29/01/2016 06:55	Scheduled 6-monthly maintenance carried over 2 day period – intermittent data affected	All parameters	RE	19/02/2016
28/01/2016 19:55	28/01/2016 19:55	Data gap	All parameters	RE	19/02/2016

Report No: DAT10446

Peabody Energy

8.0 Report Summary

The data capture for Wollar was below 95% for all measured parameters. This was largely due to a data gap between 22/01/2016 and 25/01/2016.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

Peabody Energy

Appendix 1 - Definitions & Abbreviations

втх	Benzene, Toluene and <i>p</i> -Xylene
H ₂ S	Hydrogen sulfide
m/s	Metres per second
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
ppb	Parts per billion
SO ₂	Sulphur dioxide
WD	Vector Wind Direction
WS	Vector Wind Speed

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT10446

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring

Validated Report

1st February – 29th February 2016

Report No.: DAT10560

Report issue date: 29th March 2016

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081 1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA Tel No: 1300 364 946 Fax No: 1300 668 763 Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Peabody Energy

Customer Details		
Customer	Peabody Energy Australia	
Contact name	Clark Potter	
Address	Locked Bag 2005, Mudgee 2850 NSW	
Email	cpotter@peabodyenergy.com	
Phone	+61 (02) 6370 2527	

Revision History			
Revision Report ID Date Analyst			
0	DAT10560	29/03/2016	Robyn Edwards

Report by:

Robyn EDWARDS

REdwords

Approved Signatory:

Jon ALEXANDER

Report No: DAT10560

Peabody Energy

Table of Contents

Customer Details2
Revision History2
Table of Contents 3
List of Figures4
List of Tables5
1.0 Executive Summary
2.0 Introduction
3.0 Monitoring and Data Collection7
3.1. Siting Details7
3.2. Monitored Parameters9
3.3. Data Collection Methods10
3.3.1. Compliance with Standards11
3.3.2. Data Acquisition11
3.4. Data Validation and Reporting11
3.4.1. Validation
3.4.2. Reporting12
4.0 Air Quality Goals
4.1. Air Quality Summary
5.0 Calibrations and Maintenance
5.1. Units and Uncertainties14
5.2. Automatic Checks15
5.3. Maintenance

Report No: DAT10560

Peabody Energy

Ę	5.3.1.	Calibration & Maintenance Summary Tables16	5		
6.0	Resul	ts17	7		
6.1.	Dat	a Capture	7		
6.2.	Gra	aphic Representations	3		
7.0	Valid	Data Exception Tables22	<u>)</u>		
8.0	Repo	rt Summary23	}		
Appendix 1 - Definitions & Abbreviations24					
Apper	Appendix 2 - Explanation of Exception Table25				

List of Figures

Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO $_2$ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H ₂ S - 1 hour data	20
Figure 7: BTX - 1 hour data	21

Report No: DAT10560

Peabody Energy

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for $1^{st} - 29^{th}$ January 2016. Data capture for the different pollutants is presented in Table 9.

Report No: DAT10560

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 29^{th}$ January 2016.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates Sea Level (m)	
Wollar	Lat: -32.360105 Long: 149.949509	366

Report No: DAT10560

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography
H ₂ S	Ecotech EC9852 - fluorescence
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence
SO ₂	Ecotech EC9850 – fluorescence
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic
Wind Direction (10m)	Vaisala WS425 – ultrasonic

Peabody Energy

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method
	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence
H ₂ S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer
Vector Wind Direction	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis[™] version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT10560

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpingjong Coal Validated Data Report Feb-16.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT10560

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT10560

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p-</i> Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

¹ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:40 every 2 nd day	N/A
SO ₂	01:00 to 01:40	23:45 to 23:50
H ₂ S	01:45 to 02:45 every 2 nd day	23:50 to 23:55

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

5.3. Maintenance

Scheduled monthly maintenance was performed over 2 days on the 18th and 19th February.

During this visit on 18/02/2016, the wind sensor had to be lowered to straighten the sensor cross arm as it was sitting at a slight angle. The opportunity was taken to also perform yearly maintenance on the sensor. One of the guy wire mountings was found to be broken and evidence suggests that this was due to the grass cutting tractor having run over it. The mounting was secured and the guy wire was securely tied to it. Note therefore that wind data since last maintenance performed on 28/01/2016 is for reference purposes only.

Report No: DAT10560

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	19/02/2016	Yearly	19/02/2016	Monthly
SO ₂	18/02/2016	Monthly	18/02/2016	Monthly
H ₂ S	18/02/2016	6-monthly	18/02/2016	Monthly
ВТХ	18/02/2016	Monthly	18/02/2016	Monthly
Wind Speed	18/02/2016	Yearly	21/05/2015	2-Yearly
Wind Direction	18/02/2016	Yearly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT10560

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation: *Data capture = (Reported air quality data / Total data) x 100%* Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 29^{th}$ February 2016. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

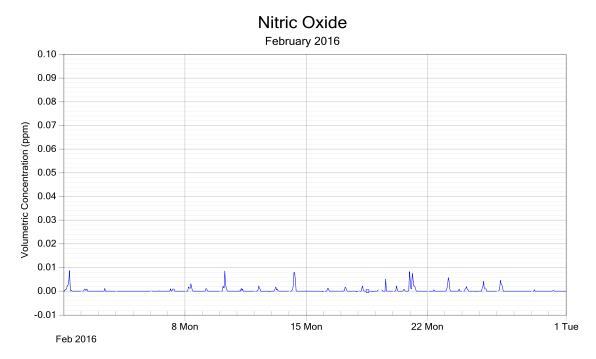
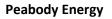
Parameter	Data Capture %
NO, NO ₂ , NO _x	97.5
SO ₂	97.6
H ₂ S	96.3
Benzene	98.5
Toluene	98.5
<i>p</i> -Xylene	97.3
WS, WD	99.5

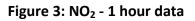
Table 9: Data Capture for Wilpinjong Wollar Station

Peabody Energy

6.2. Graphic Representations

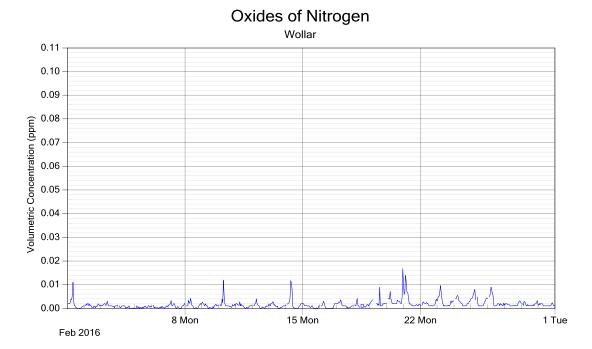
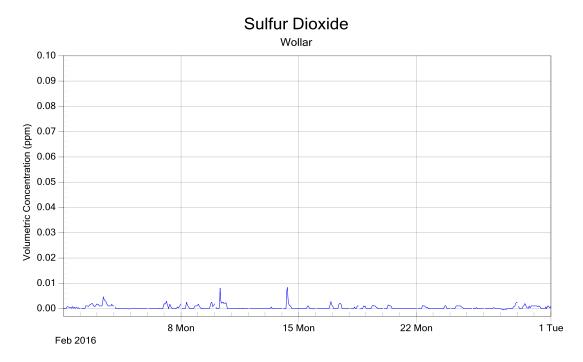
Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

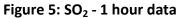




Figure 2: NO - 1 hour data

Report No: DAT10560

Nitrogen Dioxide Wollar 0.10 0.09 0.08 Volumetric Concentration (ppm) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 8 Mon 15 Mon 22 Mon 1 Tue Feb 2016


Figure 4: NO_X - 1 hour data

Report No: DAT10560

Peabody Energy

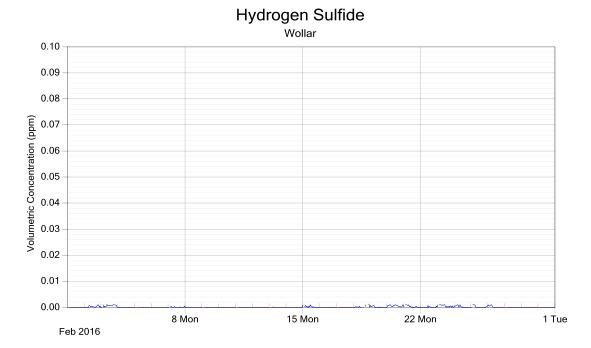


Figure 6: $H_2S - 1$ hour data

Report No: DAT10560

Peabody Energy

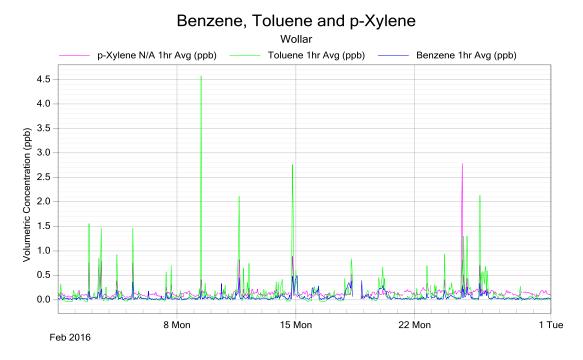


Figure 7: BTX - 1 hour data

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/02/2016 20:50	29/05/2016 10:05	Intermittent unrealistic data spikes	<i>p</i> -Xylene	RE	24/03/2016
18/02/2016 09:20	18/02/2016 19:25	Maintenance – scheduled monthly tasks and calibrations	втх	RE	24/03/2016
18/02/2016 11:35	18/02/2016 22:05	Scheduled maintenance tasks and calibrations – intermittent data affected	SO_2 , NO, NO ₂ , NO _x and H ₂ S	RE	24/03/2016
18/02/2016 12:25	18/02/2016 15:45	Maintenance – scheduled monthly and straightening of sensor cross arm	WS and WD	RE	24/03/2016
19/02/2016 05:00	19/02/2016 09:00	Completion of maintenance – yearly tasks performed	NO, NO ₂ and NO _x	RE	24/03/2016
22/02/2016 20:45	22/02/2016 21:15	Short power interruption and subsequent instrument stabilisation	втх	RE	24/03/2016
25/02/2016 08:10	25/02/2016 08:45	Maintenance – unscheduled remote calibration	NO, NO ₂ and NO _x	RE	24/03/2016

Report No: DAT10560

Peabody Energy

8.0 Report Summary

The data capture for Wollar was above 95% for all measured parameters.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX	Benzene, Toluene and <i>p</i> -Xylene
H ₂ S	Hydrogen sulfide
m/s	Metres per second
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
ppb	Parts per billion
SO ₂	Sulphur dioxide
WD	Vector Wind Direction
WS	Vector Wind Speed

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT10560

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring

Validated Report

1st March – 31st March 2016

Report No.: DAT10651

Report issue date: 28th April 2016

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081 1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA Tel No: 1300 364 946 Fax No: 1300 668 763 Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT10651

Peabody Energy

Customer Details			
Customer	Peabody Energy Australia		
Contact name	Clark Potter		
Address	Locked Bag 2005, Mudgee 2850 NSW		
Email	cpotter@peabodyenergy.com		
Phone	+61 (02) 6370 2527		

Revision History					
Revision Report ID Date Analyst					
0	DAT10651	28/04/2016	Robyn Edwards		

Report by:

Robyn EDWARDS

REdwords

Approved Signatory:

Jon ALEXANDER

Report No: DAT10651

Peabody Energy

Table of Contents

Customer Details2
Revision History2
Table of Contents 3
List of Figures4
List of Tables5
1.0 Executive Summary
2.0 Introduction
3.0 Monitoring and Data Collection7
3.1. Siting Details7
3.2. Monitored Parameters
3.3. Data Collection Methods10
3.3.1. Compliance with Standards11
3.3.2. Data Acquisition11
3.4. Data Validation and Reporting11
3.4.1. Validation
3.4.2. Reporting12
4.0 Air Quality Goals
4.1. Air Quality Summary
5.0 Calibrations and Maintenance
5.1. Units and Uncertainties14
5.2. Automatic Checks
5.3. Maintenance

Report No: DAT10651

Peabody Energy

ŗ	5.3.1.	Calibration & Maintenance Summary Tables16
6.0	Resul	ts17
6.1	Da	ta Capture
6.2	Gra	aphic Representations
7.0	Valid	Data Exception Tables
8.0	Repo	rt Summary23
Apper	ndix 1 -	Definitions & Abbreviations24
Apper	ndix 2 -	Explanation of Exception Table25

List of Figures

Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H_2S - 1 hour data	20
Figure 7: BTX - 1 hour data	21

Report No: DAT10651

Peabody Energy

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and *p*-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for $1^{st} - 31^{st}$ March 2016. Data capture for the different pollutants is presented in Table 9.

Report No: DAT10651

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 31^{st}$ March 2016.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)
Wollar	Lat: -32.360105 Long: 149.949509	366

Report No: DAT10651

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography
H ₂ S	Ecotech EC9852 - fluorescence
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence
SO ₂	Ecotech EC9850 – fluorescence
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic
Wind Direction (10m)	Vaisala WS425 – ultrasonic

Peabody Energy

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method	
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method	
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence	
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method	
	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence	
H ₂ S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence	
BTX (Benzene, Synspec GC955 Series Toluene and Manual <i>p</i> -Xylene) Synspec GC955 - Gas		Synspec GC955 - Gas Chromatography	
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer	
Vector Wind Direction	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer	

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis[™] version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT10651

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "*Wilpingjong Coal Validated Data Report Mar-16.xls*". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT10651

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT10651

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p-</i> Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

¹ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:40 every 2 nd day	N/A
SO ₂	01:00 to 01:40	23:45 to 23:50
H ₂ S	01:45 to 02:45 every 2 nd day	23:50 to 23:55

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

5.3. Maintenance

Scheduled monthly maintenance was performed over two days on 23/03/2016 and 24/03/2016. The NO_x, SO₂ and H₂S instruments were accidently left in 'Out of Service' mode following the completion of maintenance. An unscheduled visit was made on 09/04/2016 to revert this error. Data from 24/03/2016 to 09/04/2016 was reverted to 'valid' prior to the standard monthly validation process. Please refer to the Valid Data Exception Table for details. Further details for April 2016 data will be included in next month's report.

Report No: DAT10651

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter Date of Last Maintenance		Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	24/03/2016	Monthly	24/03/2016	Monthly
SO ₂	24/03/2016 Monthly		24/03/2016	Monthly
H ₂ S	24/03/2016	Monthly	24/03/2016	Monthly
ВТХ	24/03/2016	Monthly	24/03/2016	Monthly
Wind Speed	24/03/2016	Monthly	21/05/2015	2-Yearly
Wind Direction	24/03/2016	Monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT10651

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

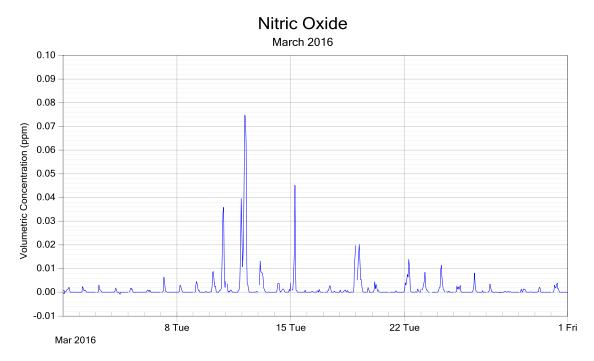
The percentage of data captured is calculated using the following equation: *Data capture = (Reported air quality data / Total data) x 100%* Where:

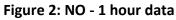
- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 31^{st}$ March 2016. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

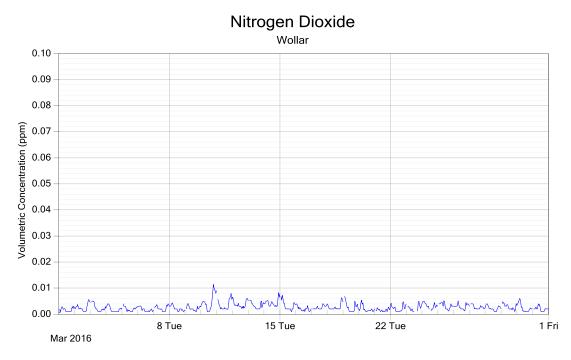
Parameter	Data Capture %
NO, NO ₂ , NO _x	97.9
SO ₂	96.9
H ₂ S	93.0
Benzene	98.5
Toluene	98.5
<i>p</i> -Xylene	93.5
WS, WD	100.0

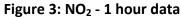

Table 9: Data Capture for Wilpinjong Wollar Station


Peabody Energy

6.2. Graphic Representations

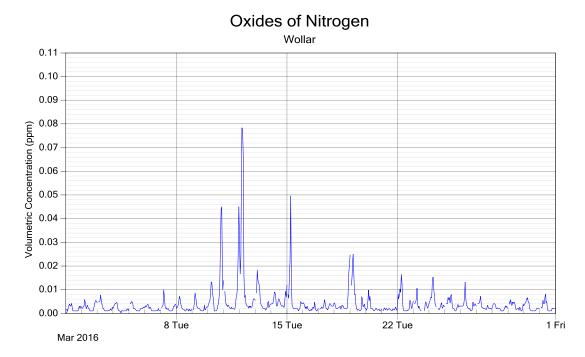
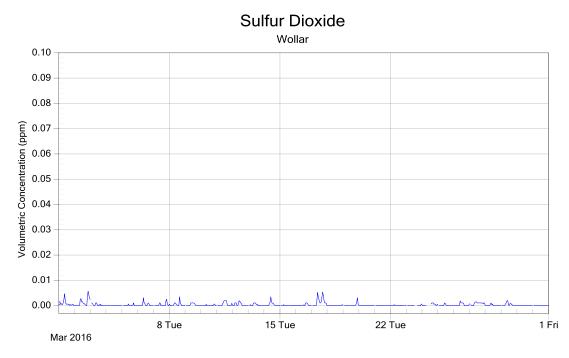
Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

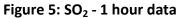




Report No: DAT10651

Peabody Energy


Figure 4: NO_x - 1 hour data

Report No: DAT10651

WORLD RECOGNISED ACCREDITATION

Peabody Energy

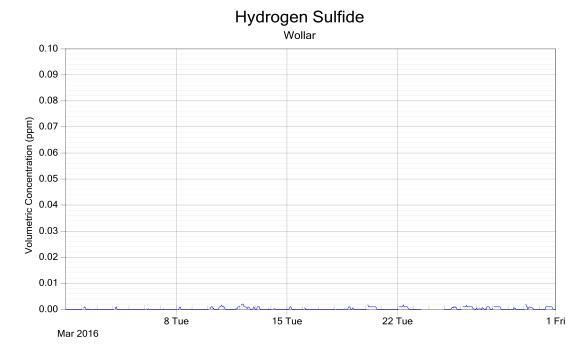


Figure 6: H₂S - 1 hour data

Report No: DAT10651

Peabody Energy

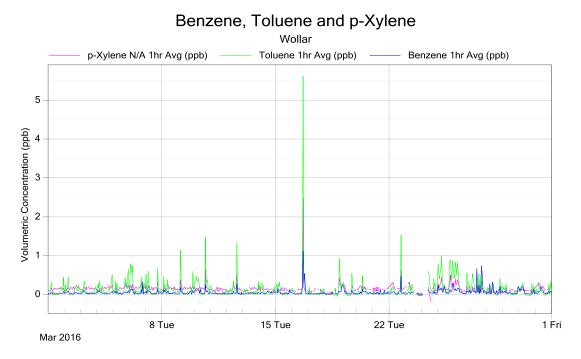


Figure 7: BTX - 1 hour data

Report No: DAT10651

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/03/2016 10:15	31/03/2016 16:20	Intermittent unrealistic data spikes	<i>p</i> -Xylene	RE	26/04/2016
18/03/2016 15:15	18/03/2016 15:45	Short power interruption and subsequent instrument stabilisation. Intermittent H_2S and SO_2 data also affected	BTX, SO ₂ and H ₂ S	RE	26/04/2016
23/03/2016 12:45	23/03/2016 16:15	Maintenance – began scheduled monthly tasks	All parameters	RE	26/04/2016
23/03/2016 16:20	25/03/2016 00:00	Instrument fault	H ₂ S	RE	26/04/2016
24/03/2016 03:10	24/03/2016 07:20	Instrument fault	втх	RE	26/04/2016
24/03/2016 06:55	24/03/2016 14:05	Maintenance – completion of tasks started on 23/03/2016. Instruments affected at different times during this period	All parameters	RE	26/04/2016

Peabody Energy

8.0 Report Summary

The data capture for Wollar was above 95% for all measured parameters, with the exception of p-Xylene and H₂S;

- Data capture for *p*-Xylene was 93.5% and was impacted by maintenance and intermittent unrealistic data spikes.
- H₂S had a data capture of 93.0% and was impacted by an instrument fault resulting in unrealistic readings. This was possibly due to the instrument being accidently left in 'out of service' mode following maintenance on 24/03/2016.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

Peabody Energy

Appendix 1 - Definitions & Abbreviations

втх	Benzene, Toluene and <i>p</i> -Xylene
H ₂ S	Hydrogen sulfide
m/s	Metres per second
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
ppb	Parts per billion
SO ₂	Sulphur dioxide
WD	Vector Wind Direction
WS	Vector Wind Speed

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT10651

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring

Validated Report

1st April – 30th April 2016

Report No.: DAT10720

Report issue date: 26th May 2016

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081 1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA Tel No: 1300 364 946 Fax No: 1300 668 763 Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Peabody Energy

Customer Details			
Customer	Peabody Energy Australia		
Contact name Clark Potter Address Locked Bag 2005, Mudgee 2850 NSW Email cpotter@peabodyenergy.com			
		Phone	+61 (02) 6370 2527

Revision History				
Revision	Report ID	Date	Analyst	
0	DAT10720	26/05/2016	Kelly Erasmus	

Report by:

Kelly Erasmus

Thefted

Ta

Approved Signatory:

Jon Alexander

Report No: DAT10720

Peabody Energy

Table of Contents

Cust	tome	r Details2
Revi	sion	History2
Tabl	e of (Contents3
List	of Fig	gures4
List	of Ta	bles5
1.0	Exe	cutive Summary6
2.0	Intro	oduction7
3.0	Mor	nitoring and Data Collection7
3.1.	Si	iting Details7
3.2.	N	1onitored Parameters9
3.3.	D	ata Collection Methods10
3	.3.1.	Compliance with Standards11
3	.3.2.	Data Acquisition
3.4.	D	ata Validation and Reporting11
3	.4.1.	Validation11
3	.4.2.	Reporting12
4.0	Air (Quality Goals13
4.1.	A	ir Quality Summary
5.0	Cali	brations and Maintenance14
5.1.	U	nits and Uncertainties14
5.2.	A	utomatic Checks
5.3.	N	1aintenance

Report No: DAT10720

Peabody Energy

5	5.3.1.	Calibration & Maintenance Summary Tables16
6.0	Res	ılts17
6.1.	D	ata Capture17
6.2.	G	raphic Representations
7.0	Vali	d Data Exception Tables22
8.0	Rep	ort Summary24
Apper	ndix 1	- Definitions & Abbreviations25
Apper	ndix 2	- Explanation of Exception Table

List of Figures

Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H ₂ S - 1 hour data	20
Figure 7: BTX - 1 hour data	21

Report No: DAT10720

Peabody Energy

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for $1^{st} - 30^{th}$ April 2016. Data capture for the different pollutants is presented in Table 9.

Report No: DAT10720

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 30^{th}$ April 2016.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)	
Wollar	Lat: -32.360105 Long: 149.949509	366	

Report No: DAT10720

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique		
BTX (Benzene, Toluene and <i>p</i> -Xylene) Synspec GC955 - Gas Chromatograp			
H ₂ S	Ecotech EC9852 - fluorescence		
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence		
SO ₂	Ecotech EC9850 – fluorescence		
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic		
Wind Direction (10m)	Vaisala WS425 – ultrasonic		

Peabody Energy

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method		
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method		
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence		
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method		
Ecotech Laboratory		In-house method 6.2 Sulfur dioxide by fluorescence		
H ₂ S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence		
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography		
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications		
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer		
Vector Wind	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications		
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer		

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis[™] version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT10720

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpingjong Coal Validated Data Report Apr-16.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT10720

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT10720

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹	
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb	
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb	
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb	
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb	
Benzene <i>,</i> Toluene and <i>p-</i> Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb	
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s	
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s	

¹ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Parameter	Span / Zero cycle time Background cycle time (approximate) (approximate)	
NO, NO ₂ , NO _x	01:00 to 01:40 every 2 nd day	N/A
SO ₂	01:00 to 01:40	23:45 to 23:50
H ₂ S	01:45 to 02:45 every 2 nd day	23:50 to 23:55

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

5.3. Maintenance

Scheduled monthly maintenance was performed over two days on 28/04/2016. The NO_x, SO₂ and H₂S expired gas cylinders were removed. The NO_x and SO₂ gas bottles were temporarily replaced and a H₂S cylinder was ordered and installed on 17/05/2016. No H₂S calibrations were performed for the rest of the month and the data deemed as invalid. Please refer to the Valid Data Exception Table for details. Further details for May 2016 data will be included in next month's report.

Report No: DAT10720

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	28/04/2016	Monthly	28/04/2016	Monthly
SO ₂	28/04/2016	Monthly	28/04/2016	Monthly
H ₂ S	28/04/2016	Monthly	21/04/2016	Unscheduled
ВТХ	28/04/2016	Monthly	28/04/2016	Monthly
Wind Speed	28/04/2016	Monthly	21/05/2015	2-Yearly
Wind Direction	28/04/2016	Monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT10720

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation: *Data capture = (Reported air quality data / Total data) x 100%* Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 30^{th}$ April 2016. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

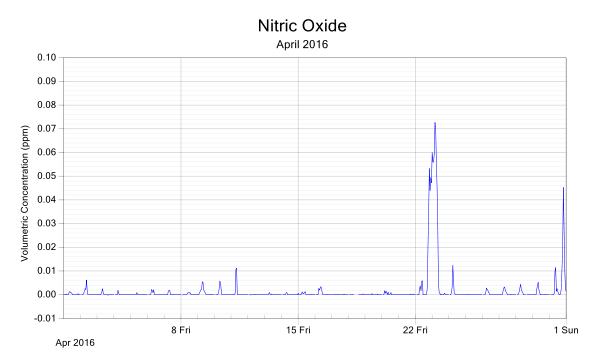
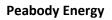
Parameter	Data Capture %
NO, NO ₂ , NO _x	97.7
SO ₂	97.5
H ₂ S	81.6
Benzene	98.4
Toluene	98.4
<i>p</i> -Xylene	92.7
WS, WD	99.3

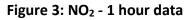
Table 9: Data Capture for Wilpinjong Wollar Station

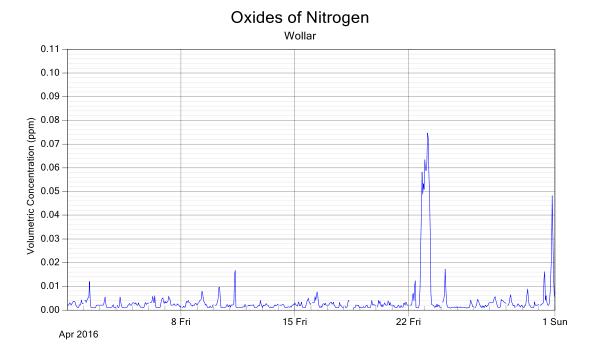
Peabody Energy

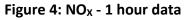
6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and *p*-Xylene were used to construct the following graphical representations.

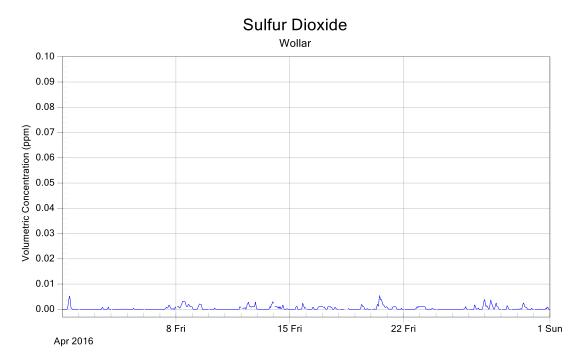



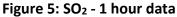

Figure 2: NO - 1 hour data


Report No: DAT10720



Nitrogen Dioxide Wollar 0.10 0.09 0.08 Volumetric Concentration (ppm) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 N 0.00 8 Fri 15 Fri 22 Fri 1 Sun Apr 2016





Report No: DAT10720

Peabody Energy

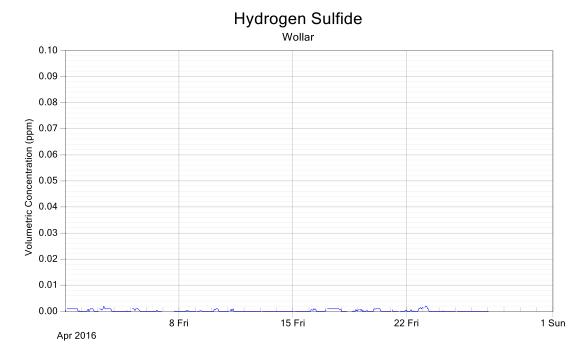


Figure 6: H₂S - 1 hour data

Report No: DAT10720

Peabody Energy

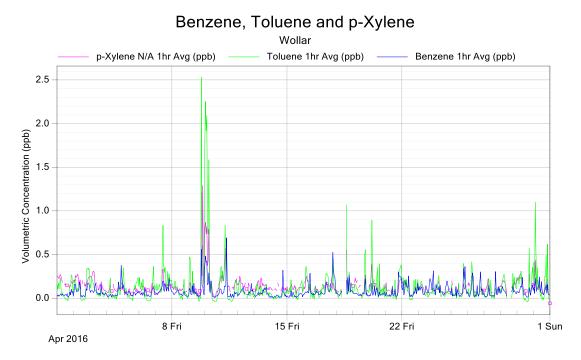


Figure 7: BTX - 1 hour data

Peabody Energy

7.0 Valid Data Exception Tables

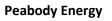

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/04/16 9:30	30/04/16 23:50	Intermittent unrealistic data spikes	p-Xylene	KE	13/05/16
06/04/16 23:25	07/04/16 16:30	Instrument stabilisation after being taken out of service mode	H₂S	KE	26/05/16
18/04/16 9:30	18/04/16 14:40	Short power interruption and subsequent instrument stabilisation	All parameters	KE	26/05/16
18/04/16 2:45	28/04/16 10:25	Static offset of -0.13 µg/m ³ applied to correct baseline FXylene KE		KE	26/05/16
21/04/16 12:50	21/04/16 14:30	Maintenance – unscheduled remote calibration	H ₂ S	KE	13/05/16
25/04/16 4:00	25/04/16 4:05	Intermittent unrealistic data spikes	H ₂ S	KE	26/05/16
27/04/16 3:00	01/05/16 0:00	No calibrations performed due to the removal of the calibration gas bottle H_2S		KE	13/05/16
28/04/16 8:30	28/04/16 16:10	Maintenance – scheduled monthly tasks. Instruments affected at different times during this period. Expired calibration gas cylinders removed. NO _x /SO ₂ cylinder was temporarily replaced.	All parameters	KE	13/05/16

Report No: DAT10720

Start Date	End Date	Reason	Change Details	User Name	Change Date
28/04/16 16:00	01/05/16 0:00	Static offset of +0.12 μg/m ³ applied to correct baseline	p-Xylene	KE	26/05/16

Peabody Energy

8.0 Report Summary

The data capture for Wollar was above 95% for all measured parameters, with the exception of p-Xylene and H₂S;

- Data capture for *p*-Xylene was 92.7% and was impacted by maintenance and intermittent unrealistic data spikes.
- H₂S had a data capture of 81.6% and was impacted by the removal of the calibration gas bottle on 28/04/2016. No calibrations were performed after this date and the data was deemed invalid.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

Peabody Energy

Appendix 1 - Definitions & Abbreviations

втх	Benzene, Toluene and <i>p</i> -Xylene
H ₂ S	Hydrogen sulfide
m/s	Metres per second
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
ppb	Parts per billion
SO ₂	Sulphur dioxide
WD	Vector Wind Direction
WS	Vector Wind Speed

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT10720

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring

Validated Report

1st May – 31st May 2016

Report No.: DAT10824

Report issue date: 24th June 2016

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081 1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA Tel No: 1300 364 946 Fax No: 1300 668 763 Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

WORLD RECOGNISED ACCREDITATION

Peabody Energy

Customer Details				
Customer Peabody Energy Australia				
Contact name	Contact name Clark Potter			
Address	Locked Bag 2005, Mudgee 2850 NSW			
Email	<u>cpotter@peabodyenergy.com</u>			
Phone +61 (02) 6370 2527				

Revision History					
Revision Report ID Date Analyst					
0	DAT10824	24/06/2016	Robyn Edwards		

Report by:

Robyn EDWARDS

REdwords

Approved Signatory:

Jon ALEXANDER

Report No: DAT10824

Peabody Energy

Table of Contents

Customer Details
Revision History2
Table of Contents 3
List of Figures4
List of Tables5
1.0 Executive Summary
2.0 Introduction7
3.0 Monitoring and Data Collection7
3.1. Siting Details7
3.2. Monitored Parameters9
3.3. Data Collection Methods10
3.3.1. Compliance with Standards11
3.3.2. Data Acquisition11
3.4. Data Validation and Reporting11
3.4.1. Validation11
3.4.2. Reporting
4.0 Air Quality Goals
4.1. Air Quality Summary13
5.0 Calibrations and Maintenance14
5.1. Units and Uncertainties14
5.2. Automatic Checks15
5.3. Maintenance15

Report No: DAT10824

Peabody Energy

Ę	5.3.1.	Calibration & Maintenance Summary Tables16
6.0	Resul	ts17
6.1.	Dat	ta Capture17
6.2.	Gra	aphic Representations
7.0	Valid	Data Exception Tables
8.0	Repo	rt Summary23
Apper	ndix 1 -	Definitions & Abbreviations24
Apper	ndix 2 -	Explanation of Exception Table25

List of Figures

Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H ₂ S - 1 hour data	20
Figure 7: BTX - 1 hour data	21

Report No: DAT10824

Table 1: Wilpinjong Mine monitoring site location 7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station 9
Table 3: Methods
Table 4: Wilpinjong Air Quality Goals (NEPM) 13
Table 5: Exceedences Recorded 13
Table 6: Units and Uncertainties 14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S15
Table 8: Wilpinjong Wollar Maintenance Table 16
Table 9: Data Capture for Wilpinjong Wollar Station 17
Table 10: Wollar Valid Data Exception Table 22

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for $1^{st} - 31^{st}$ May 2016. Data capture for the different pollutants is presented in Table 9.

Report No: DAT10824

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 31^{st}$ May 2016.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates Height Above Sea Level (m)	
Wollar	Lat: -32.360105 Long: 149.949509	366

Report No: DAT10824

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment". A siting audit will be carried out at the next available maintenance visit.

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.



Figure 1: Wilpinjong Mine Monitoring Station Location

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography
H ₂ S	Ecotech EC9852 - fluorescence
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence
SO ₂	Ecotech EC9850 – fluorescence
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic
Wind Direction (10m)	Vaisala WS425 – ultrasonic

Peabody Energy

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method	
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method	
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence	
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method	
	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence	
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence	
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography	
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer	
Vector Wind Direction	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer	

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis[™] version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT10824

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named *"Wilpingjong Coal Validated Data Report May-16.xls"*. The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT10824

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT10824

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p-</i> Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

¹ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Parameter	Span / Zero cycle time	Background cycle time	
NO, NO ₂ , NO _x	01:00 to 01:40 every 2 nd day	N/A	
SO ₂	01:00 to 01:40 every 2 nd day	23:45 to 23:50	
H ₂ S	01:45 to 02:45 every 2 nd day	23:40 to 23:45	

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

5.3. Maintenance

No scheduled maintenance was performed during the reporting month.

The empty H_2S gas bottle was replaced on 17/05/2016 and overnight calibration cycles resumed.

A calibration for BTX is overdue and will be performed at the next maintenance visit.

Report No: DAT10824

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	28/04/2016	Monthly	28/04/2016	Monthly
SO ₂	28/04/2016	Monthly	28/04/2016	Monthly
H₂S	17/05/2016	Remote calibration sequence	28/04/2016	Monthly
ВТХ	28/04/2016	Monthly	28/04/2016	Monthly
Wind Speed	28/04/2016	Monthly	21/05/2015	2-Yearly
Wind Direction	28/04/2016	Monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT10824

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation: *Data capture = (Reported air quality data / Total data) x 100%* Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 31^{st}$ May 2016. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Parameter	Data Capture %
NO, NO ₂ , NO _x	98.5
SO ₂	98.0
H ₂ S	45.0
Benzene	88.0
Toluene	88.0
<i>p</i> -Xylene	87.9
WS, WD	91.0

Table 9: Data Capture for Wilpinjong Wollar Station

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

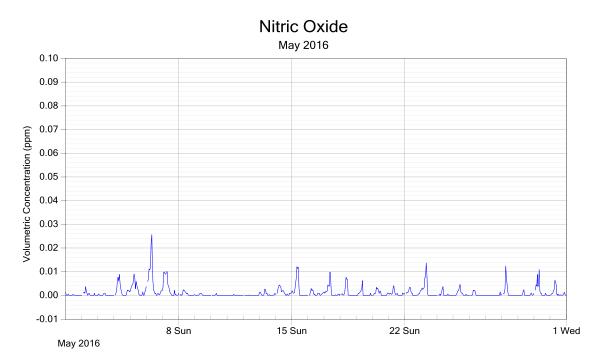


Figure 2: NO - 1 hour data

Report No: DAT10824

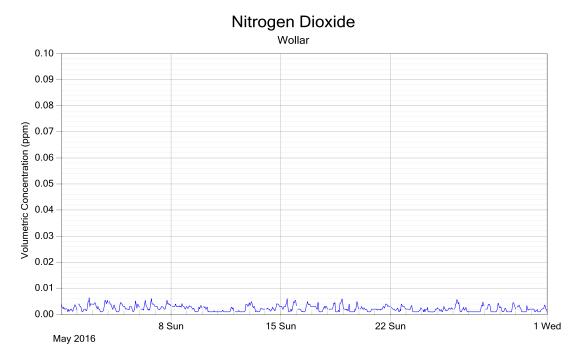


Figure 3: NO₂ - 1 hour data

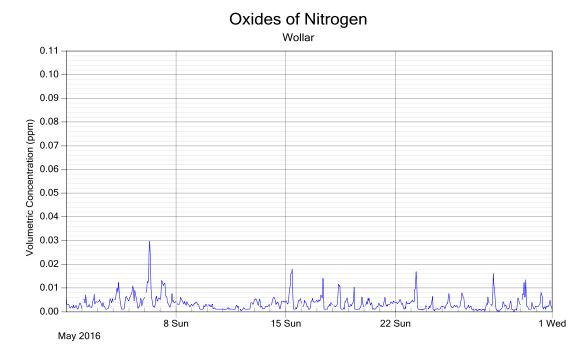


Figure 4: NO_x - 1 hour data

Report No: DAT10824

WORLD RECOGNISED

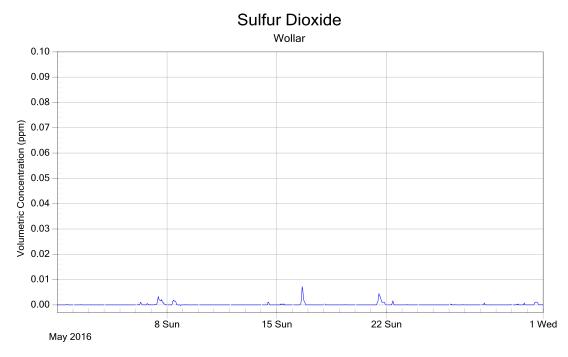


Figure 5: SO₂ - 1 hour data

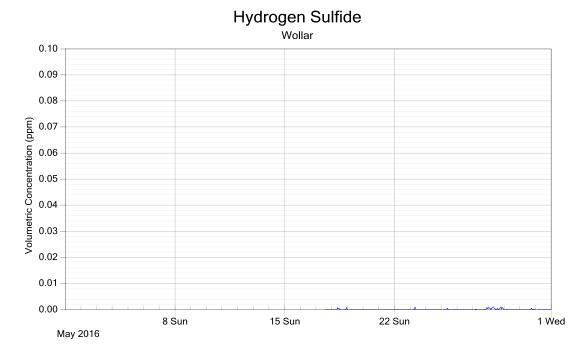


Figure 6: H₂S - 1 hour data

Report No: DAT10824

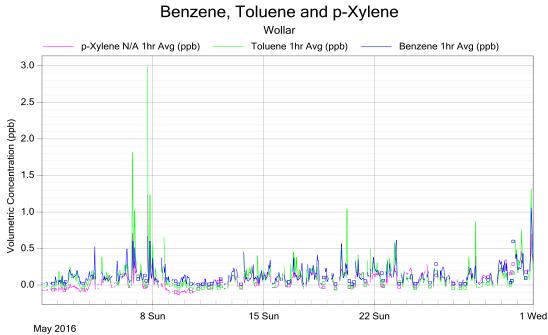


Figure 7: BTX - 1 hour data

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/05/2016 00:00	17/05/2016 11:25	No calibrations performed due to the removal of the calibration gas bottle	H ₂ S	RE	20/06/2016
01/05/2016 00:50	31/05/2016 18:55	Instrument fault – intermittent unrealistic data spikes	втх	RE	20/06/2016
02/05/2016 19:50	05/05/2016 14:20	Instrument fault – wind sensor stalled	WS and WD	RE	20/06/2016
04/05/2016 10:05	04/05/2016 10:05	Data transmission errors	SO_2 , H_2S , BTX , WS and WD	RE	20/06/2016
13/05/2016 10:45	30/05/2016 12:20	Intermittent short power interruption and instrument stabilisation	ВТХ	RE	20/06/2016
17/05/2016 11:30	17/05/2016 13:20	Calibration gas bottle replaced and remote span/zero check performed	H ₂ S	RE	20/06/2016
17/05/2016 13:25	31/05/2016 23:55	Linear multiplier applied to correct overnight span values where A = 1.04 ppb and B = 0.93 ppb	H₂S	RE	20/06/2016
26/05/2016 13:10	26/05/2016 18:15	Static offset of -0.5 ppb applied to correct baseline	<i>p</i> -Xylene	RE	20/06/2016
27/05/2016 04:10	27/05/2016 04:45	Static offset of -0.6 ppb applied to correct baseline	<i>p</i> -Xylene	RE	20/06/2016
27/05/2016 05:20	27/05/2016 06:15	Static offset of -0.6 ppb applied to correct baseline	<i>p</i> -Xylene	RE	20/06/2016
27/05/2016 13:50	27/05/2016 14:40	Static offset of -0.5 ppb applied to correct baseline	<i>p</i> -Xylene	RE	20/06/2016

Peabody Energy

8.0 Report Summary

The data capture for Wollar was below 95% for all measured parameters, with the exception of NO, NO_2 and NO_x and SO_2 ;

- Data capture for H_2S was 45.0% and was due to an empty calibration gas bottle, resulting in no overnight calibrations for more than 7 days.
- Data capture for BTX was 88.0% for benzene and toluene and 87.9% for *p*-Xylene; and was due an on-going instrument fault resulting in unrealistic data spikes.
- Data capture for wind speed and direction was 91.0% and was due to a faulty wind sensor over a 3 day period.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX	Benzene, Toluene and <i>p</i> -Xylene
H ₂ S	Hydrogen sulfide
m/s	Metres per second
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
ppb	Parts per billion
SO ₂	Sulphur dioxide
WD	Vector Wind Direction
WS	Vector Wind Speed

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT10824

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring

Validated Report

1st June – 30th June 2016

Report No.: DAT10926

Report issue date: 28th July 2016

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081 1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA Tel No: 1300 364 946 Fax No: 1300 668 763 Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Peabody Energy

Customer Details			
Customer	Peabody Energy Australia		
Contact name Clark Potter			
Address	Locked Bag 2005, Mudgee 2850 NSW		
Email	cpotter@peabodyenergy.com		
Phone +61 (02) 6370 2527			

Revision History				
Revision	Report ID	Date	Analyst	
0	DAT10926	28/07/2016	Robyn Edwards	

Report by:

Robyn EDWARDS

REdwords

Approved Signatory:

Jon ALEXANDER

Report No: DAT10926

Peabody Energy

Table of Contents

Customer Details2
Revision History2
Table of Contents 3
List of Figures4
List of Tables5
1.0 Executive Summary
2.0 Introduction
3.0 Monitoring and Data Collection7
3.1. Siting Details7
3.2. Monitored Parameters9
3.3. Data Collection Methods10
3.3.1. Compliance with Standards11
3.3.2. Data Acquisition11
3.4. Data Validation and Reporting11
3.4.1. Validation
3.4.2. Reporting12
4.0 Air Quality Goals
4.1. Air Quality Summary
5.0 Calibrations and Maintenance
5.1. Units and Uncertainties14
5.2. Automatic Checks
5.3. Maintenance

Report No: DAT10926

Peabody Energy

5	5.3.1.	Calibration & Maintenance Summary Tables1	6
6.0	Result	s1	7
6.1.	Dat	a Capture1	7
6.2.	Gra	phic Representations1	8
7.0	Valid I	Data Exception Tables2	2
8.0	Repor	t Summary2	3
Apper	ndix 1 -	Definitions & Abbreviations2	4
Apper	ndix 2 -	Explanation of Exception Table2	5

List of Figures

Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H ₂ S - 1 hour data	20
Figure 7: BTX - 1 hour data	21

Report No: DAT10926

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for $1^{st} - 30^{th}$ June 2016. Data capture for the different pollutants is presented in Table 9.

Report No: DAT10926

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 30^{th}$ June 2016.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)
Wollar	Lat: -32.360105 Long: 149.949509	366

Report No: DAT10926

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography
H ₂ S	Ecotech EC9852 - fluorescence
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence
SO ₂	Ecotech EC9850 – fluorescence
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic
Wind Direction (10m)	Vaisala WS425 – ultrasonic

Peabody Energy

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method
- Ecotech Laboratory		In-house method 6.2 Sulfur dioxide by fluorescence
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence
BTX (Benzene, Toluene and <i>p</i> -Xylene)	nd Manual Synspec GC955 - Gas Chromatography	
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer
Vector Wind	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis[™] version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT10926

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "*Wilpingjong Coal Validated Data Report Jun-16.xls*". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT10926

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT10926

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹	
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb	
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb	
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb	
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater 0 ppb to 500 K factor of 2		
Benzene, Toluene and <i>p-</i> Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater 0 ppb to 3 K factor of 2		
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater 0 m/s to 15 (K factor of 1.96)		
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s	

¹ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Parameter	Span / Zero cycle time Background cycle time (approximate) (approximate)	
NO, NO ₂ , NO _x	01:00 to 01:40 every 2 nd day	N/A
SO ₂	01:00 to 01:40 every 2 nd day	23:45 to 23:50 every 2 nd day
H ₂ S	01:45 to 02:45 every 2 nd day	23:50 to 23:55 every 2 nd day

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

5.3. Maintenance

Scheduled monthly maintenance was performed over two days on the 28th and 29th June 2016. A new calibration gas bottle was installed on-site during this maintenance.

Report No: DAT10926

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	28/06/2016	Monthly	28/06/2016	Monthly
SO ₂	28/06/2016	Monthly	28/06/2016	Monthly
H ₂ S	28/06/2016	Monthly	28/06/2016	Monthly
ВТХ	29/06/2016	Monthly	29/06/2016	Monthly
Wind Speed	29/06/2016	3 Monthly	21/05/2015	2-Yearly
Wind Direction	29/06/2016	3 Monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT10926

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

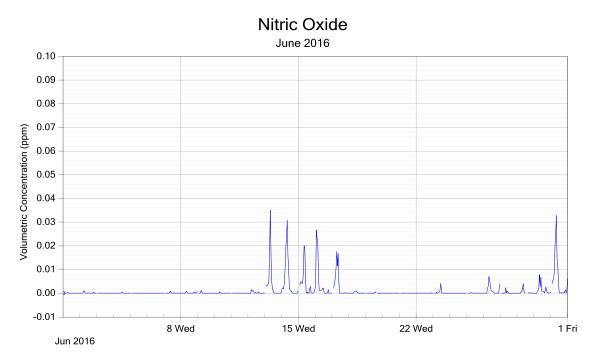
The percentage of data captured is calculated using the following equation: *Data capture = (Reported air quality data / Total data) x 100%* Where:

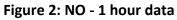
- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

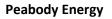
Table 9 displays data capture statistics for $1^{st} - 30^{th}$ June 2016. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

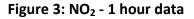
Parameter	Data Capture %
NO, NO ₂ , NO _x	97.9
SO ₂	97.5
H ₂ S	96.2
Benzene	81.9
Toluene	81.9
<i>p</i> -Xylene	81.9
WS, WD	99.9


Table 9: Data Capture for Wilpinjong Wollar Station


Peabody Energy

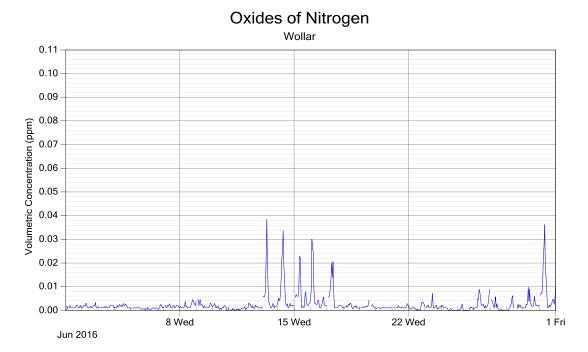
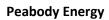
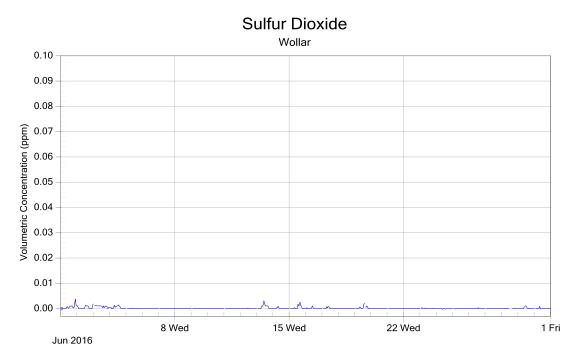

6.2. Graphic Representations

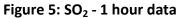
Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.



Report No: DAT10926

Nitrogen Dioxide Wollar 0.10 0.09 0.08 Volumetric Concentration (ppm) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 M 0.00 8 Wed 15 Wed 22 Wed 1 Fri Jun 2016


Figure 4: NO_x - 1 hour data

Report No: DAT10926

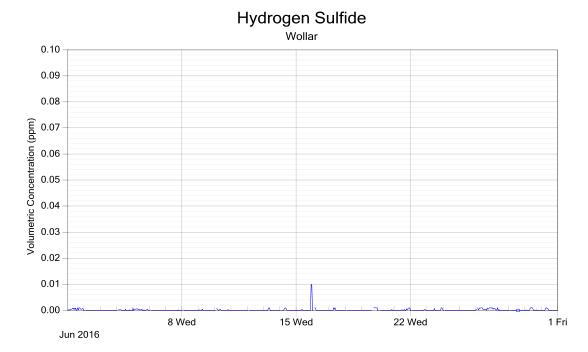


Figure 6: $H_2S - 1$ hour data

Report No: DAT10926

Peabody Energy

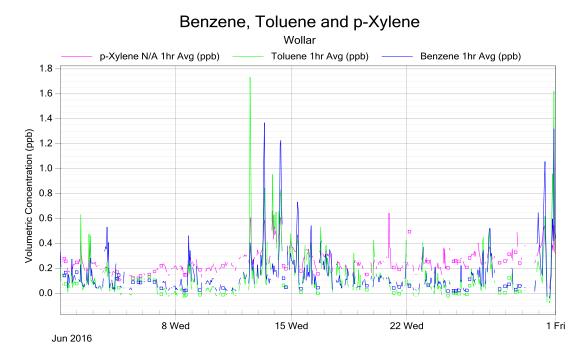


Figure 7: BTX - 1 hour data

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/06/2016 00:00	02/06/2016 01:40	Linear multiplier applied to correct overnight span values where A = 1.04 ppm and B = 0.93 ppm	H ₂ S	RE	26/07/2016
01/06/2016 02:25	30/06/2016 14:25	Logging error – intermittent unrealistic <i>p-X</i> ylene spikes	втх	RE	26/07/2016
02/06/2016 02:25	28/06/2016 12:35	Static multiplier of 0.92 applied to correct overnight span values	H ₂ S	RE	26/07/2016
05/06/2016 10:00	06/06/2016 20:30	Static offset of -0.6 ppm applied to correct baseline	<i>p-X</i> ylene	RE	26/07/2016
06/06/2016 05:55	27/06/2016 23:55	Logging error – intermittent unrealistic Toluene spikes	втх	RE	26/07/2016
18/06/2016 06:10	29/06/2016 21:40	Instrument fault – intermittent unrealistic negative spikes	H₂S	RE	26/07/2016
19/06/2016 16:25	19/06/2016 17:35	Power interruption and gas instrument stabilisation	All parameters	RE	26/07/2016
20/06/2016 00:50	20/06/2016 21:55	Static offset of -0.5 ppm applied to correct baseline	<i>p-X</i> ylene	RE	26/07/2016
24/06/2016 04:45	24/06/2016 06:05	Static offset of -0.4 ppm applied to correct baseline	<i>p-X</i> ylene	RE	26/07/2016
24/06/2016 13:25	24/06/2016 15:30	Static offset of -0.4 ppm applied to correct baseline	<i>p-X</i> ylene	RE	26/07/2016
28/06/2016 12:05	28/06/2016 15:15	Maintenance – scheduled monthly and replacement of calibration gas cylinder	NO, NO ₂ , NO _x and SO ₂	RE	26/07/2016

Report No: DAT10926

Peabody Energy

Start Date	End Date	Reason	Change Details	User Name	Change Date
29/06/2016 05:05	29/06/2016 17:20	Maintenance – scheduled monthly	втх	RE	26/07/2016
29/06/2016 17:25	30/06/2016 23:55	Static offset of 0.42 ppm applied to correct baseline (continued into Jul-16)	<i>p-X</i> ylene	RE	26/07/2016

8.0 Report Summary

The data capture for Wollar was above 95% for all measured parameters, with the exception of BTX;

• Data capture for BTX was 81.9% and was due an on-going instrument fault resulting in unrealistic data spikes.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

Peabody Energy

Appendix 1 - Definitions & Abbreviations

втх	Benzene, Toluene and <i>p</i> -Xylene
H ₂ S	Hydrogen sulfide
m/s	Metres per second
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
ppb	Parts per billion
SO ₂	Sulphur dioxide
WD	Vector Wind Direction
WS	Vector Wind Speed

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT10926

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring

Validated Report

1^{st} July – 31^{st} July 2016

Report No.: DAT11020

Report issue date: 26th August 2016

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081 1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA Tel No: 1300 364 946 Fax No: 1300 668 763 Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

WORLD RECOGNISED ACCREDITATION

Peabody Energy

	Customer Details		
Customer Peabody Energy Australia			
Contact name	Clark Potter		
Address	Locked Bag 2005, Mudgee 2850 NSW		
Email	cpotter@peabodyenergy.com		
Phone	+61 (02) 6370 2527		

Revision History				
Revision Report ID Date Analyst				
0	DAT11020	26/08/2016	Robyn Edwards	

Report by:

Robyn EDWARDS

REdwords

Approved Signatory:

Jon ALEXANDER

Report No: DAT11020

Peabody Energy

Table of Contents

Customer Details2
Revision History2
Table of Contents 3
List of Figures4
List of Tables5
1.0 Executive Summary
2.0 Introduction
3.0 Monitoring and Data Collection
3.1. Siting Details7
3.2. Monitored Parameters9
3.3. Data Collection Methods10
3.3.1. Compliance with Standards11
3.3.2. Data Acquisition11
3.4. Data Validation and Reporting11
3.4.1. Validation
3.4.2. Reporting12
4.0 Air Quality Goals
4.1. Air Quality Summary
5.0 Calibrations and Maintenance
5.1. Units and Uncertainties14
5.2. Automatic Checks
5.3. Maintenance

Report No: DAT11020

Peabody Energy

Ę	5.3.1.	Calibration & Maintenance Summary Tables15
6.0	Resul	ts17
6.1.	Da	ta Capture
6.2.	Gra	aphic Representations
7.0	Valid	Data Exception Tables
8.0	Repo	rt Summary23
Apper	ndix 1 -	Definitions & Abbreviations24
Apper	ndix 2 -	Explanation of Exception Table25

List of Figures

Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: $H_2S - 1$ hour data	20
Figure 7: BTX - 1 hour data	21

Report No: DAT11020

Peabody Energy

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H_2S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for $1^{st} - 31^{st}$ July 2016. Data capture for the different pollutants is presented in Table 9.

Report No: DAT11020

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 31^{st}$ July 2016.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)
Wollar	Lat: -32.360105 Long: 149.949509	366

Report No: DAT11020

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique	
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography	
H₂S	Ecotech EC9852 - fluorescence	
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence	
SO ₂	Ecotech EC9850 – fluorescence	
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic	
Wind Direction (10m)	Vaisala WS425 – ultrasonic	

Peabody Energy

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method	
AS 3580.5.1-2011		Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method	
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence	
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method	
- Ecotech Laboratory		In-house method 6.2 Sulfur dioxide by fluorescence	
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence	
втх	Manufacturer's Instructions	Gas Chromatography Synspec CG955 Series Manual	
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer	
AS 3580.14-2014 Vector Wind		Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer	

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

• Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis[™] version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

Report No: DAT11020

Peabody Energy

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpingjong Coal Validated Data Report Jul-16.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT11020

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT11020

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater0 ppb to 500K factor of 20	
Benzene <i>,</i> Toluene and <i>p-</i> Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater0 ppb to 300K factor of 2	
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater 0 m/s to 1 (K factor of 1.96)	
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

¹ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:40 every 2 nd day	N/A
SO ₂	01:00 to 01:40 every 2 nd day	23:45 to 23:50 every 2 nd day
H ₂ S	01:45 to 02:45 every 2 nd day	23:50 to 23:55 every 2 nd day

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

5.3. Maintenance

Scheduled six monthly maintenance was performed over two days on the 25th and 26th July 2016.

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Report No: DAT11020

Peabody Energy

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	26/07/2016	6-monthly	26/07/2016	Monthly
SO ₂	26/07/2016	6-monthly	26/07/2016	Monthly
H ₂ S	26/07/2016	6-monthly	26/07/2016	Monthly
ВТХ	25/07/2016	Yearly	25/07/2016	Monthly
Wind Speed	25/07/2016	Monthly	21/05/2015	2-Yearly
Wind Direction	25/07/2016	Monthly	21/05/2015	2-Yearly

Report No: DAT11020

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation: *Data capture = (Reported air quality data / Total data) x 100%* Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 31^{st}$ July 2016. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

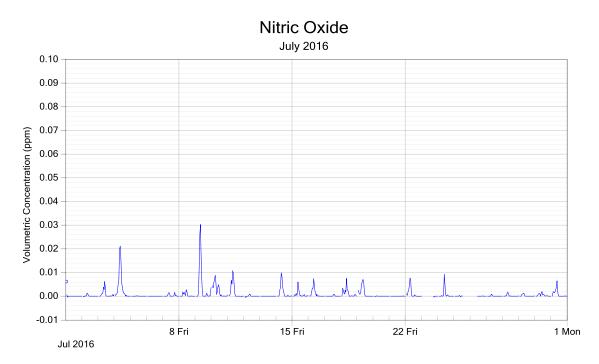
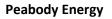
Parameter	Data Capture %	
NO, NO ₂ , NO _x	92.2	
SO ₂	93.3	
H ₂ S	94.1	
Benzene	80.0	
Toluene	80.0	
<i>p</i> -Xylene	79.7	
WS, WD	97.9	

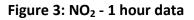
Table 9: Data Capture for Wilpinjong Wollar Station

Peabody Energy

6.2. Graphic Representations

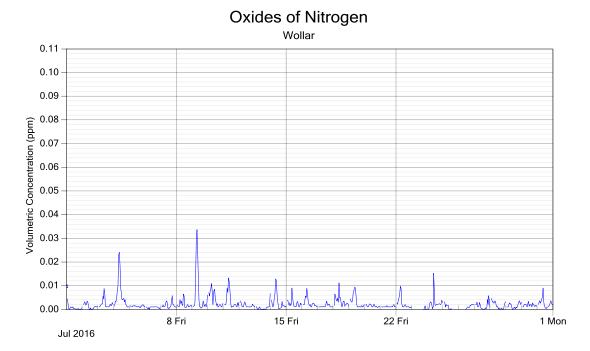
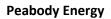
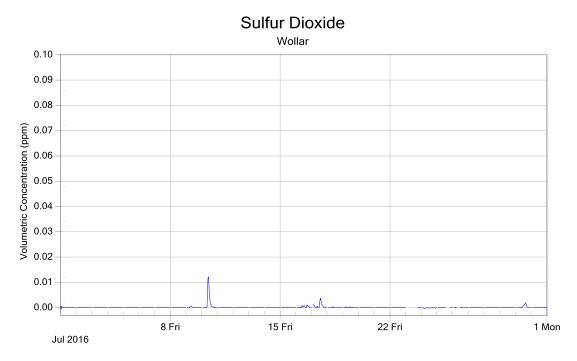
Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

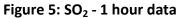




Figure 2: NO - 1 hour data

Report No: DAT11020

Nitrogen Dioxide Wollar 0.10 0.09 0.08 Volumetric Concentration (ppm) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Nha A de J. A. min 0.00 8 Fri 15 Fri 22 Fri 1 Mon Jul 2016


Figure 4: NO_X - 1 hour data

Report No: DAT11020

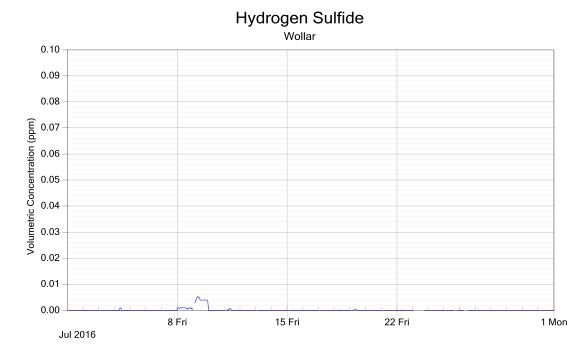


Figure 6: $H_2S - 1$ hour data

Report No: DAT11020

Peabody Energy

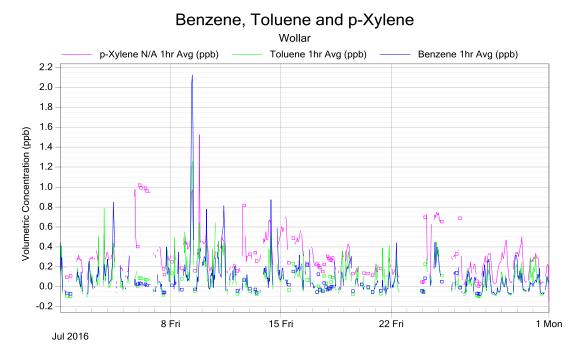


Figure 7: BTX - 1 hour data

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason Change Details		User Name	Change Date
01/07/2016 00:00	26/07/2016 13:56	Static offset of 0.42 ppm applied to correct baseline (continued from Jun-16)			26/07/2016
01/07/2016 05:05	31/07/2016 18:55	Logging error – intermittent unrealistic Toluene / <i>p-X</i> ylene spikes	втх	RE	24/08/2016
03/07/2016 02:50	09/07/2016 15:50	Instrument fault – intermittent unrealistic negative spikes	H ₂ S	H ₂ S RE	
14/07/2016 13:45	14/07/2016 14:15	Intermittent short power interruptions and instrument stabilisation	ions and BTX		24/08/2016
23/07/2016 01:55	23/07/2016 20:40	Power interruption and gas instrument All parameters		RE	24/08/2016
25/07/2016 07:00	25/07/2016 19:45	Scheduled monthly, 6-monthly and yearly maintenance	early WS, WD, SO ₂ , H ₂ S and BTX		24/08/2016
25/07/2016 14:40	26/07/2016 08:10	Instrument left in 'out of service mode' for pending maintenance	NO, NO ₂ and NO _x	RE	24/08/2016
25/07/2016 19:55	31/07/2016 23:55	Static offset of 0.41 ppb applied to correct negative baseline (continues into Aug-16)			24/08/2016
26/07/2016 08:15	26/07/2016 11:20	Completion of scheduled 6-monthly maintenance	$\left \begin{array}{c} NO, NO_2, NO_x, \\ SO_2 \text{ and } H_2 S \end{array} \right RE \qquad 2$		24/08/2016

Peabody Energy

8.0 Report Summary

The data capture for Wollar was below 95% for all measured parameters, with the exception of wind speed and direction. Please refer to Table 9 on page 17 for data capture rates; and Table 10 on page 22 for data exceptions.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

Peabody Energy

Appendix 1 - Definitions & Abbreviations

втх	Benzene, Toluene and <i>p</i> -Xylene	
H ₂ S	Hydrogen sulfide	
m/s	Metres per second	
NO	Nitric oxide	
NO ₂	Nitrogen dioxide	
NO _x	Oxides of nitrogen	
ppb	Parts per billion	
SO ₂	Sulphur dioxide	
WD	Vector Wind Direction	
WS	Vector Wind Speed	

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT11020

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring

Validated Report

1st August – 31st August 2016

Report No.: DAT11111

Report issue date: 28th September 2016

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081 1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA Tel No: 1300 364 946 Fax No: 1300 668 763 Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

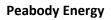
Report No: DAT11111

Peabody Energy

Customer Details				
Customer Peabody Energy Australia				
Contact name Clark Potter				
Address	Locked Bag 2005, Mudgee 2850 NSW			
Email <u>cpotter@peabodyenergy.com</u>				
Phone +61 (02) 6370 2527				

Revision History				
Revision Report ID Date Analyst				
0	DAT11111	28/09/2016	Robyn Edwards	

Report by:


Robyn EDWARDS

REdwords

Approved Signatory:

Jon ALEXANDER

Report No: DAT11111

Table of Contents

Customer Details2
Revision History2
Table of Contents 3
List of Figures4
List of Tables5
1.0 Executive Summary
2.0 Introduction
3.0 Monitoring and Data Collection7
3.1. Siting Details7
3.2. Monitored Parameters9
3.3. Data Collection Methods10
3.3.1. Compliance with Standards11
3.3.2. Data Acquisition11
3.4. Data Validation and Reporting11
3.4.1. Validation
3.4.2. Reporting12
4.0 Air Quality Goals
4.1. Air Quality Summary
5.0 Calibrations and Maintenance
5.1. Units and Uncertainties14
5.2. Automatic Checks15
5.3. Maintenance

Report No: DAT11111

Peabody Energy

5	5.3.1.	Calibration & Maintenance Summary Tables15	5
6.0	Result	ts17	7
6.1.	Dat	a Capture	7
6.2.	Gra	phic Representations	3
7.0	Valid	Data Exception Tables22	2
8.0	Repor	t Summary23	3
Apper	ndix 1 -	Definitions & Abbreviations24	1
Apper	ndix 2 -	Explanation of Exception Table25	5

List of Figures

Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H_2S - 1 hour data	20
Figure 7: BTX - 1 hour data	21

Report No: DAT11111

Peabody Energy

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H_2S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for $1^{st} - 31^{st}$ August 2016. Data capture for the different pollutants is presented in Table 9.

Report No: DAT11111

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 31^{st}$ August 2016.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)	
Wollar	Lat: -32.360105 Long: 149.949509	366	

Report No: DAT11111

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique		
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography		
H ₂ S	Ecotech EC9852 - fluorescence		
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence		
SO ₂	Ecotech EC9850 – fluorescence		
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic		
Wind Direction (10m)	Vaisala WS425 – ultrasonic		

Peabody Energy

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method	
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method	
110, 110 ₂ , 110 _x	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence	
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method	
502	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence	
H ₂ S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence	
BTX Manufacturer's Ga		Gas Chromatography Synspec CG955 Series Manual	
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer	
Vector Wind	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer	

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis[™] version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT11111

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "*Wilpingjong Coal Validated Data Report Aug-16.xls*". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT11111

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Time Period Value of Exceedence	
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT11111

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹	
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb	
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb	
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb	
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb	
Benzene, Toluene and <i>p-</i> Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb	
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s	
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s	

¹ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)	
NO, NO ₂ , NO _x	01:00 to 01:40 every 2 nd day	N/A	
SO ₂	01:00 to 01:40 every 2 nd day	23:45 to 23:50 every 2 nd day	
H ₂ S	01:45 to 02:45 every 2 nd day	23:50 to 23:55 every 2 nd day	

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

5.3. Maintenance

Maintenance was performed on 29/08/2016.

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Report No: DAT11111

Peabody Energy

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	29/08/2016	Monthly	29/08/2016	Monthly
SO ₂	29/08/2016	Monthly	29/08/2016	Monthly
H ₂ S	29/08/2016	Monthly	29/08/2016	Monthly
ВТХ	29/08/2016	Monthly	29/08/2016	Monthly
Wind Speed	29/08/2016	Monthly	21/05/2015	2-Yearly
Wind Direction	29/08/2016	Monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available.

Report No: DAT11111

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation: *Data capture = (Reported air quality data / Total data) x 100%* Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 31^{st}$ August 2016. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Parameter	Data Capture %
NO, NO ₂ , NO _x	96.5
SO ₂	96.0
H ₂ S	96.8
Benzene	96.8
Toluene	96.8
<i>p</i> -Xylene	96.7
WS, WD	99.6

Table 9: Data Capture for Wilpinjong Wollar Station

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

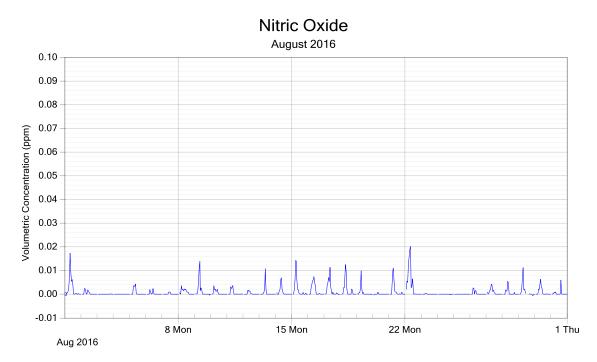


Figure 2: NO - 1 hour data

Report No: DAT11111

Peabody Energy

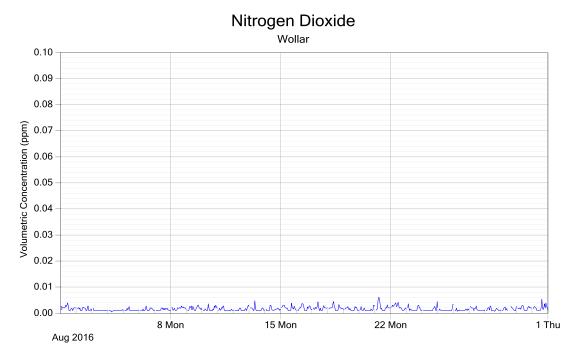
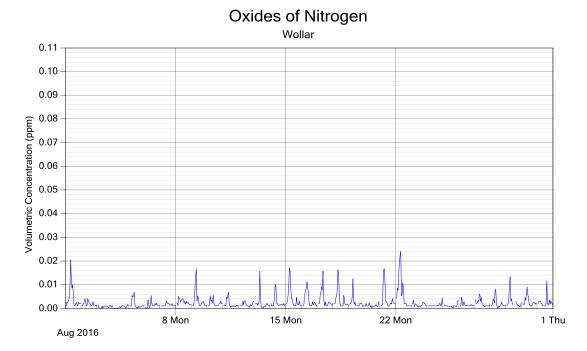
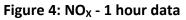
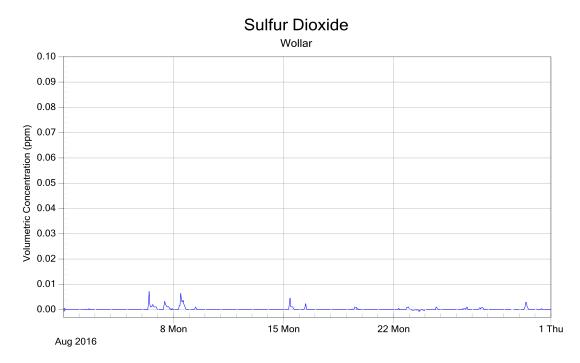
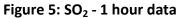




Figure 3: NO₂ - 1 hour data





Report No: DAT11111

Peabody Energy

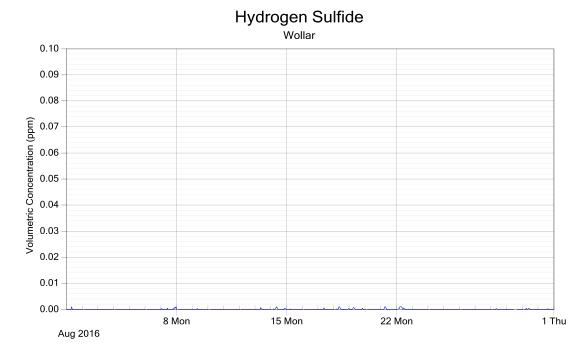


Figure 6: $H_2S - 1$ hour data

Report No: DAT11111

Peabody Energy

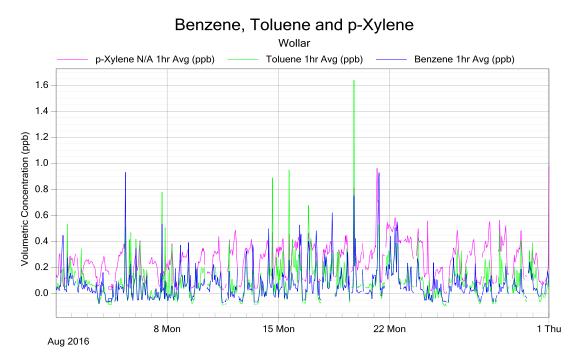


Figure 7: BTX - 1 hour data

Report No: DAT11111

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/08/2016 00:00	31/08/2016 23:55	Static offset of 0.3 ppb applied to correct negative baseline	<i>p</i> -Xylene	RE	13/09/2016
01/08/2016 13:05	31/08/2016 17:45	Logging error – intermittent unrealistic Toluene / <i>p-X</i> ylene spikes	втх	RE	13/09/2016
01/08/2016 13:10	20/08/2016 21:05	Intermittent blocks of data where static offset of -0.55 ppm applied to correct baseline	<i>p</i> -Xylene	RE	13/09/2016
19/08/2016 13:35	19/08/2016 14:05	Short power interruption and instrument stabilisation	втх	RE	13/09/2016
21/08/2016 12:55	26/08/2016 23:45	Intermittent blocks of data where static offset of -0.4 ppm applied to correct baseline	<i>p</i> -Xylene	RE	13/09/2016
29/08/2016 12:30	29/08/2016 16:25	Maintenance – monthly tasks performed and BTX instrument stabilisation	All parameters	RE	13/09/2016

Report No: DAT11111

Peabody Energy

8.0 Report Summary

The data capture for Wollar was above 95% for all measured parameters.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX	Benzene, Toluene and <i>p</i> -Xylene
H ₂ S	Hydrogen sulfide
m/s	Metres per second
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
ppb	Parts per billion
SO ₂	Sulphur dioxide
WD	Vector Wind Direction
WS	Vector Wind Speed

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT11111

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring

Validated Report

1st September – 30th September 2016

Report No.: DAT11232

Report issue date: 28th October 2016

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081 1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA Tel No: 1300 364 946 Fax No: 1300 668 763 Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

WORLD RECOGNISED ACCREDITATION

Peabody Energy

Customer Details			
Customer	Peabody Energy Australia		
Contact name	Clark Potter		
Address	Locked Bag 2005, Mudgee 2850 NSW		
Email	cpotter@peabodyenergy.com		
Phone	+61 (02) 6370 2527		

Revision History					
Revision Report ID Date Analyst					
0	DAT11232	28/10/2016	Robyn Edwards		

Report by:

Robyn EDWARDS

Edwards.

Approved Signatory:

Pedro CASCÃO

Asia

Report No: DAT11232

Peabody Energy

Table of Contents

Customer Details2
Revision History2
Table of Contents 3
List of Figures4
List of Tables5
1.0 Executive Summary
2.0 Introduction
3.0 Monitoring and Data Collection7
3.1. Siting Details7
3.2. Monitored Parameters9
3.3. Data Collection Methods10
3.3.1. Compliance with Standards11
3.3.2. Data Acquisition11
3.4. Data Validation and Reporting11
3.4.1. Validation
3.4.2. Reporting12
4.0 Air Quality Goals
4.1. Air Quality Summary
5.0 Calibrations and Maintenance
5.1. Units and Uncertainties14
5.2. Automatic Checks
5.3. Maintenance

Report No: DAT11232

Peabody Energy

5	5.3.1.	Calibration & Maintenance Summary Tables1	5
6.0	Result	ts1	7
6.1.	Dat	a Capture1	7
6.2.	Gra	phic Representations1	8
7.0	Valid I	Data Exception Tables2	2
8.0	Repor	t Summary2	3
Apper	ndix 1 -	Definitions & Abbreviations2	4
Apper	ndix 2 -	Explanation of Exception Table2	5

List of Figures

Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H_2S - 1 hour data	20
Figure 7: BTX - 1 hour data	21

Report No: DAT11232

Peabody Energy

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H_2S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for September 2016. Data capture for the different pollutants is presented in Table 9.

Note: Benzene, Toluene and *p*-*X*ylene data in this report has been included for reference only. The data for this instrument is pending further investigation into performance and calibration. The data will be reviewed following the completion of this investigation.

Report No: DAT11232

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for September 2016.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)	
Wollar	Lat: -32.360105 Long: 149.949509	366	

Report No: DAT11232

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique	
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography	
H ₂ S	Ecotech EC9852 - fluorescence	
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence	
SO ₂	Ecotech EC9850 – fluorescence	
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic	
Wind Direction (10m)	Vaisala WS425 – ultrasonic	

Peabody Energy

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method	
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method	
110, 110 ₂ , 110 _x	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence	
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method	
502	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence	
H ₂ S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence	
втх	Manufacturer's Instructions	Gas Chromatography Synspec CG955 Series Manual	
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer	
Vector Wind	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer	

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis[™] version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT11232

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "*Wilpingjong Coal Validated Data Report Sept-16.xls*". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT11232

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT11232

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p-</i> Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

¹ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:40 every 2 nd day	N/A
SO ₂	01:00 to 01:40 every 2 nd day	23:45 to 23:50 every 2 nd day
H ₂ S	01:45 to 02:45 every 2 nd day	23:50 to 23:55 every 2 nd day

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, H₂S and BTX

5.3. Maintenance

Scheduled monthly maintenance was performed on 02/09/2016, with an additional maintenance visit performed over a 2-day period on 22^{nd} and 23^{rd} September.

Remote maintenance was performed on 1st, 8th, 16th and 28th September.

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Report No: DAT11232

Peabody Energy

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	23/09/2016	Monthly	23/09/2016	Monthly
SO ₂	23/09/2016	Monthly	23/09/2016	Monthly
H ₂ S	23/09/2016	Monthly	23/09/2016	Monthly
ВТХ	22/09/2016	Monthly	22/09/2016	Monthly
Wind Speed	23/09/2016	Monthly	21/05/2015	2-Yearly
Wind Direction	23/09/2016	Monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available.

Report No: DAT11232

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation: *Data capture = (Reported air quality data / Total data) x 100%* Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for September 2016. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

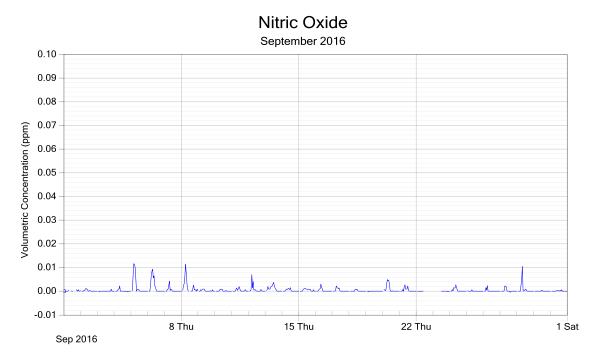
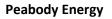
Parameter	Data Capture %
NO, NO ₂ , NO _x	92.4
SO ₂	91.9
H ₂ S	92.3
Benzene	81.0
Toluene	81.0
<i>p</i> -Xylene	81.0
WS, WD	85.1

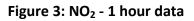
Table 9: Data Capture for Wilpinjong Wollar Station

Peabody Energy

6.2. Graphic Representations

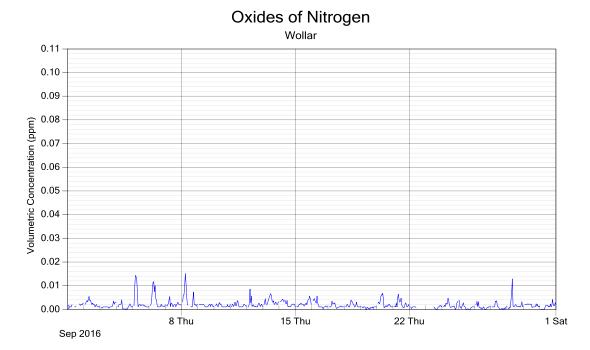
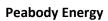
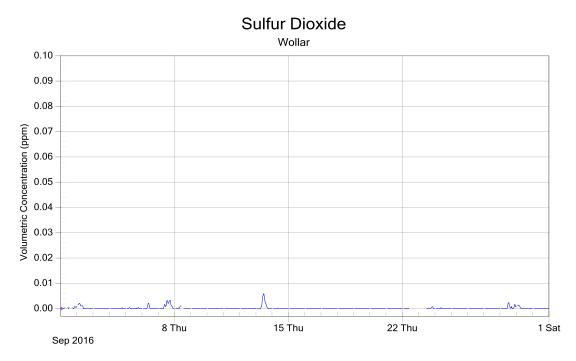
Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

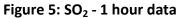




Figure 2: NO - 1 hour data

Report No: DAT11232

Nitrogen Dioxide Wollar 0.10 0.09 0.08 Volumetric Concentration (ppm) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 1 0.00 8 Thu 15 Thu 22 Thu 1 Sat Sep 2016


Figure 4: NO_x - 1 hour data

Report No: DAT11232

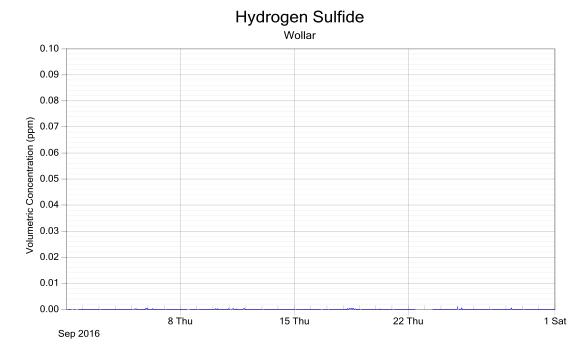


Figure 6: $H_2S - 1$ hour data

Report No: DAT11232

Peabody Energy

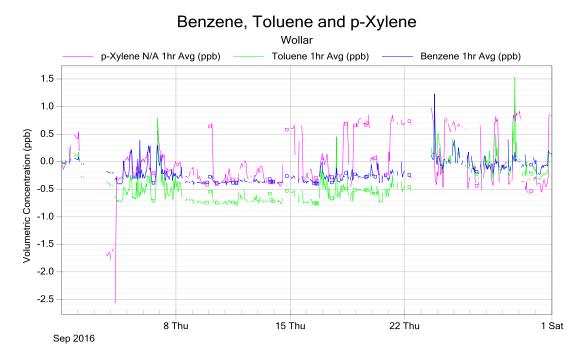


Figure 7: BTX - 1 hour data

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/09/2016 00:30	30/09/2016 03:35	Instrument fault – intermittent unrealistic spikes	втх	RE	26/10/2016
01/09/2016 08:05	01/09/2016 18:35	Maintenance – remote tasks performed intermittently	All parameters	RE	26/10/2016
02/09/2016 10:25	02/09/2016 16:45	Maintenance – monthly BTX tasks performed. Remaining parameters intermittently affected	BTX, H₂S, SO₂, WS, WD and Sigma	RE	26/10/2016
03/09/2016 08:30	03/09/2016 14:10	Intermittent data transmission errors	All parameters	RE	26/10/2016
08/09/2016 11:15	08/09/2016 14:15	Maintenance – remote tasks performed intermittently	All parameters	RE	26/10/2016
16/09/2016 16:00	16/09/2016 17:55	Maintenance – remote calibration performed H ₂ S		RE	26/10/2016
22/09/2016 11:40	23/09/2016 14:30	Maintenance – monthly tasks performed over 2-days. Intermittent data affected	All parameters	RE	26/10/2016
28/09/2016 00:20	30/09/2016 23:55	Instrument fault – data flat lining	WS, WD & Sigma	RE	26/10/2016
28/09/2016 07:30	28/09/2016 08:00	Maintenance – remote calibration performed	втх	RE	26/10/2016

Report No: DAT11232

WORLD RECOGNISED ACCREDITATION

Peabody Energy

8.0 Report Summary

The data capture for Wollar was below 95% for all measured parameters.

All parameters were affected by maintenance, both remote and on-site.

BTX data is also affected by unrealistic data spikes.

Wind speed and direction data was also affected by an instrument fault. This fault continues into October 2016.

Note: Benzene, Toluene and *p-X*ylene data in this report has been included for reference only. The data for this instrument is pending further investigation into performance and calibration. The data will be reviewed following the completion of this investigation.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

Peabody Energy

Appendix 1 - Definitions & Abbreviations

втх	Benzene, Toluene and <i>p</i> -Xylene
H ₂ S	Hydrogen sulfide
m/s	Metres per second
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
ppb	Parts per billion
SO ₂	Sulphur dioxide
WD	Vector Wind Direction
WS	Vector Wind Speed

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT11232

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring

Validated Report

1st October – 31st October 2016

Report No.: DAT11316

Report issue date: 28th November 2016

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081 1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA Tel No: 1300 364 946 Fax No: 1300 668 763 Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

WORLD RECOGNISED ACCREDITATION

Peabody Energy

	Customer Details		
Customer	Peabody Energy Australia		
Contact name	Clark Potter		
Address	Idress Locked Bag 2005, Mudgee 2850 NSW		
Email	cpotter@peabodyenergy.com		
Phone	+61 (02) 6370 2527		

Revision History				
Revision	Report ID	Date	Analyst	
0	DAT11316	28/11/2016	Robyn Edwards	

Report by:

Robyn EDWARDS

REdwards

Approved Signatory:

Jon ALEXANDER

Page **2** of **27**

Report No: DAT11232

Peabody Energy

Table of Contents

Customer Details2	
Revision History2	
Table of Contents 3	
List of Figures4	
List of Tables5	
1.0 Executive Summary6	
2.0 Introduction	
3.0 Monitoring and Data Collection7	
3.1. Siting Details7	
3.2. Monitored Parameters9	
3.3. Data Collection Methods10	
3.3.1. Compliance with Standards11	
3.3.2. Data Acquisition	
3.4. Data Validation and Reporting11	
3.4.1. Validation11	
3.4.2. Reporting12	
4.0 Air Quality Goals	
4.1. Air Quality Summary13	
5.0 Calibrations and Maintenance14	
5.1. Units and Uncertainties14	
5.2. Automatic Checks15	
5.3. Maintenance	

Report No: DAT11232

Peabody Energy

5	.3.1.	Calibration & Maintenance Summary Tables15	5
6.0	Resul	ts17	7
6.1.	Dat	a Capture	7
6.2.	Gra	aphic Representations	3
7.0	Valid	Data Exception Tables23	3
8.0	Repo	rt Summary24	ł
Appen	dix 1 -	Definitions & Abbreviations25	5
Appen	dix 2 -	Explanation of Exception Table	5

List of Figures

Figure 1: Wilpinjong Mine Monitoring Station Location	
Figure 2: NO - 1 hour data	
Figure 3: NO ₂ - 1 hour data	
Figure 4: NO _x - 1 hour data	
Figure 5: SO ₂ - 1 hour data	
Figure 6: H ₂ S - 1 hour data	
Figure 7: BTX - 1 hour data	21
Figure 8: WS - 1 hour data	21
Figure 9: Wind Rose	22

Report No: DAT11232

Peabody Energy

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	23

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for October 2016. Data capture for the different pollutants is presented in Table 9.

Note: Benzene, Toluene and *p*-*X*ylene data in this report has been included for reference only. The data for this instrument is pending further investigation into performance and calibration. The data will be reviewed following the completion of this investigation.

Report No: DAT11232

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for October 2016.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)	
Wollar	Lat: -32.360105 Long: 149.949509	366	

Report No: DAT11232

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography
H ₂ S	Ecotech EC9852 - fluorescence
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence
SO ₂	Ecotech EC9850 – fluorescence
Wind Speed (horizontal, 10m)	Gill Windsonic
Wind Direction (10m)	Gill Windsonic

Peabody Energy

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method
302	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence
втх	Manufacturer's Instructions	Gas Chromatography Synspec CG955 Series Manual
Vector Wind Speed (Horizontal)	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer
Vector Wind Direction	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis[™] version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT11232

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpingjong Coal Validated Data Report Oct-16.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT11232

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT11232

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p-</i> Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.01 m/s or 2.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 60 m/s
Vector Wind Direction	Deg	1 deg	±2 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

¹ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:40 every 2 nd day	N/A
SO ₂	01:00 to 01:40 every 2 nd day	23:45 to 23:50 every 2 nd day
H ₂ S	01:45 to 02:45 every 2 nd day	23:50 to 23:55 every 2 nd day
втх	02:45 to 05:20 every 7 th day	N/A

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, H₂S and BTX

5.3. Maintenance

Scheduled monthly maintenance was performed over a period of 2-days on 25th and 26th October.

An unscheduled remote calibration was performed on 20/10/2016 for H₂S following a raised fault to correct the overnight span values on 17^{th} and 19^{th} October.

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Report No: DAT11232

Peabody Energy

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	25/10/2016	Monthly	25/10/2016	Monthly
SO ₂	25/10/2016	Monthly	25/09/2016	Monthly
H ₂ S	26/10/2016	Monthly	26/10/2016	Monthly
ВТХ	26/10/2016	Yearly	26/09/2016	Monthly
Wind Speed	25/10/2016	Monthly	21/05/2015	2-Yearly
Wind Direction	25/10/2016	Monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available.

Report No: DAT11232

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation: *Data capture = (Reported air quality data / Total data) x 100%* Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for October 2016. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

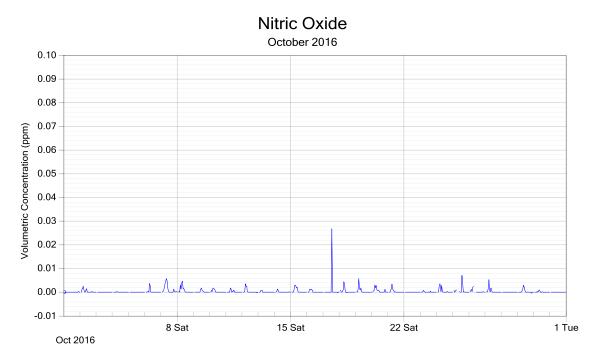
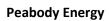
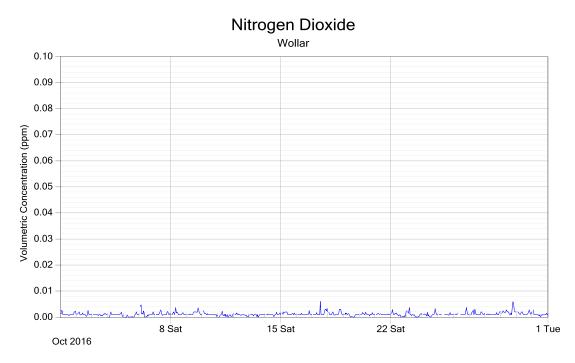
Parameter	Data Capture %
NO, NO ₂ , NO _x	96.2
SO ₂	96.0
H ₂ S	93.2
Benzene	88.9
Toluene	88.9
<i>p</i> -Xylene	88.9
WS, WD	43.1

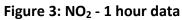
Table 9: Data Capture for Wilpinjong Wollar Station

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.


Figure 2: NO - 1 hour data

Report No: DAT11232

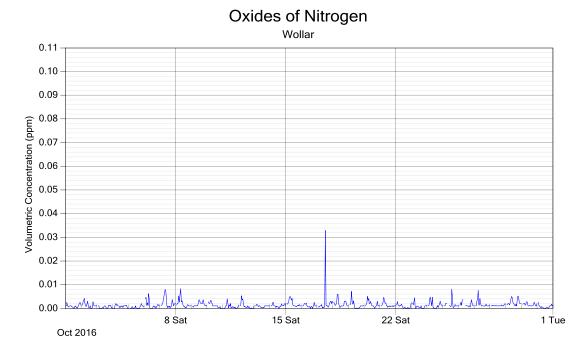
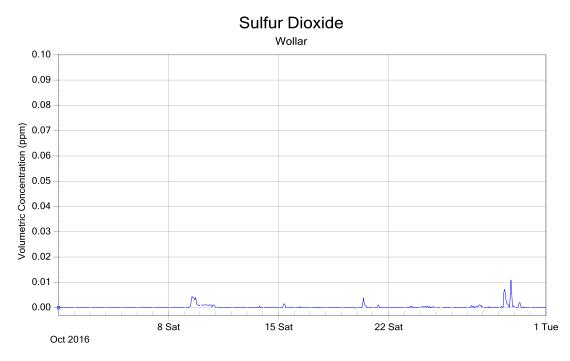
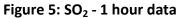
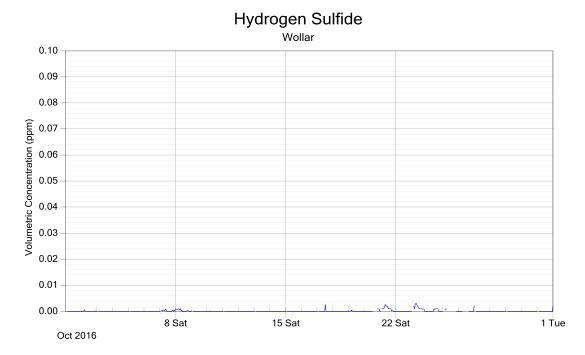
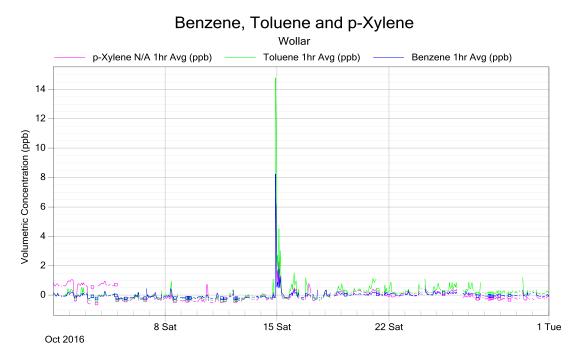
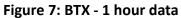
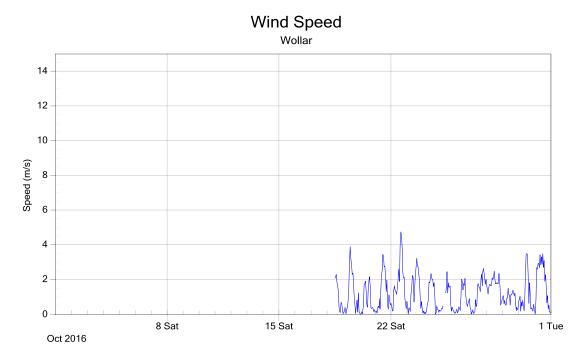
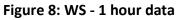




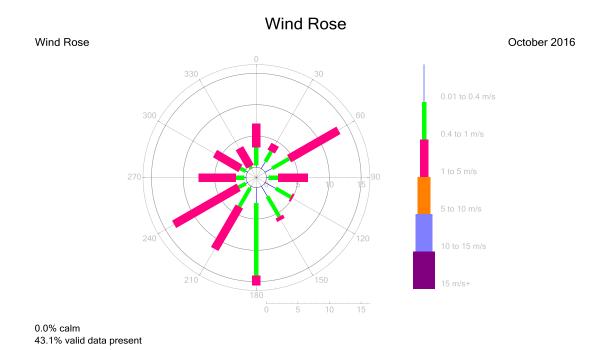
Figure 4: NO_x - 1 hour data

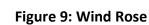
Report No: DAT11232


Figure 6: $H_2S - 1$ hour data


Report No: DAT11232





Report No: DAT11232

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason Change Details		User Name	Change Date
01/10/2016 00:00	18/10/2016 11:50	Instrument fault – data flat lining	WS, WD & Sigma	RE	23/11/2016
01/10/2016 10:40	31/10/2016 19:35	Instrument fault – intermittent unrealistic spikes	втх	RE	23/11/2016
18/10/2016 11:20	28/10/2016 15:50	Intermittent data transmission errors	H ₂ S, BTX, NO, NO ₂ & NO _x	RE	23/11/2016
20/10/2016 14:35	20/10/2016 19:25	Maintenance – remote calibration performed to correct overnight span values		RE	23/11/2016
25/10/2016 07:05	26/10/2016 15:40	Maintenance – monthly tasks performed over 2 days. Intermittent data affectedAll parameters		RE	23/11/2016
25/10/2016 20:45	26/10/2016 00:00	Static offset of -0.004ppm applied to correct zero baseline	H ₂ S	RE	23/11/2016
26/10/2016 15:45	26/10/2016 23:45	Static offset of 0.001ppm applied to correct H ₂ S		RE	23/11/2016
27/10/2016 02:40	31/10/2016 23:55	Static offset of -0.003ppm applied to correct zero baseline H ₂ S		RE	23/11/2016

Report No: DAT11232

Peabody Energy

8.0 Report Summary

The data capture for Wollar was below 95% for all measured parameters, with the exception of NO_x channels and SO_2 .

Please refer to Data Capture Percentage Table 9 on page 17 for details, and Table 10 on page 23 for valid data exceptions.

Note: Benzene, Toluene and *p-X*ylene data in this report has been included for reference only. The data for this instrument is pending further investigation into performance and calibration. The data will be reviewed following the completion of this investigation.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX	Benzene, Toluene and <i>p</i> -Xylene
H ₂ S	Hydrogen sulfide
m/s	Metres per second
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
ppb	Parts per billion
SO ₂	Sulphur dioxide
WD	Vector Wind Direction
WS	Vector Wind Speed

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT11232

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring

Validated Report

1st November – 30th November 2016

Report No.: DAT11437

Report issue date: 28th December 2016

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081 1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA Tel No: 1300 364 946 Fax No: 1300 668 763 Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT11437

WORLD RECOGNISED ACCREDITATION

Peabody Energy

Customer Details		
Customer Peabody Energy Australia		
Contact name Clark Potter		
Address	Address Locked Bag 2005, Mudgee 2850 NSW	
Email	<u>cpotter@peabodyenergy.com</u>	
Phone	+61 (02) 6370 2527	

Revision History			
Revision Report ID Date Analyst			
0	DAT11437	28/12/2016	Robyn Edwards

Report by:

Robyn EDWARDS

REdwards

Approved Signatory:

Jon ALEXANDER

Report No: DAT11437

Peabody Energy

Table of Contents

Customer Details2	
Revision History2	
Table of Contents 3	
List of Figures4	
List of Tables5	
1.0 Executive Summary6	
2.0 Introduction	
3.0 Monitoring and Data Collection7	
3.1. Siting Details7	
3.2. Monitored Parameters9	
3.3. Data Collection Methods10	
3.3.1. Compliance with Standards11	
3.3.2. Data Acquisition	
3.4. Data Validation and Reporting11	
3.4.1. Validation11	
3.4.2. Reporting12	
4.0 Air Quality Goals	
4.1. Air Quality Summary13	
5.0 Calibrations and Maintenance14	
5.1. Units and Uncertainties14	
5.2. Automatic Checks15	
5.3. Maintenance	

Report No: DAT11437

Peabody Energy

5	5.3.1.	Calibration & Maintenance Summary Tables1	.5
6.0	Resul	ts1	.7
6.1.	Dat	ta Capture1	.7
6.2.	Gra	aphic Representations1	.8
7.0	Valid	Data Exception Tables2	23
8.0	Repo	rt Summary2	24
Apper	ndix 1 -	Definitions & Abbreviations2	25
Apper	ndix 2 -	Explanation of Exception Table2	26

List of Figures

Figure 1: Wilpinjong Mine Monitoring Station Location	
Figure 2: NO - 1 hour data	
Figure 3: NO ₂ - 1 hour data	
Figure 4: NO _x - 1 hour data	
Figure 5: SO ₂ - 1 hour data	
Figure 6: H ₂ S - 1 hour data	
Figure 7: BTX - 1 hour data	21
Figure 8: WS - 1 hour data	21
Figure 9: Wind Rose	

Report No: DAT11437

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H_2S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	23

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for November 2016. Data capture for the different pollutants is presented in Table 9.

Note: Benzene, Toluene and *p*-*X*ylene data in this report has been included for reference only. The data for this instrument is pending further investigation into performance and calibration. The data will be reviewed following the completion of this investigation.

Report No: DAT11437

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for November 2016.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)	
Wollar	Lat: -32.360105 Long: 149.949509	366	

Report No: DAT11437

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique	
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography	
H ₂ S	Ecotech EC9852 - fluorescence	
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence	
SO ₂	Ecotech EC9850 – fluorescence	
Wind Speed (horizontal, 10m)	Gill Windsonic	
Wind Direction (10m)	Gill Windsonic	

Peabody Energy

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method	
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method	
110, 110 ₂ , 110 _x	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence	
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method	
502	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence	
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence	
втх	Manufacturer's Instructions	Gas Chromatography Synspec CG955 Series Manual	
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14 Meteorological monitoring for ambient air quality monitoring applications	
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer	
Vector Wind	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer	

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis[™] version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT11437

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "*Wilpingjong Coal Validated Data Report Nov-16.xls*". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT11437

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT11437

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p-</i> Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.01 m/s or 2.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 60 m/s
Vector Wind Direction	Deg	1 deg	±2 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

¹ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	00:45 to 01:40 every day	N/A
SO ₂	00:45 to 01:40 every day	23:45 to 23:50 every day
H ₂ S	01:35 to 02:45 every 2 nd day	23:50 to 23:55 every 2 nd day
втх	02:45 to 04:45 every 7 th day	N/A

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, H₂S and BTX

5.3. Maintenance

Scheduled monthly maintenance was performed over a period of 2-days on 27th and 28th November.

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Report No: DAT11437

Peabody Energy

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	27/11/2016	Monthly	27/11/2016	Monthly
SO ₂	27/11/2016	Monthly	27/11/2016	Monthly
H ₂ S	27/11/2016	Monthly	27/11/2016	Monthly
втх	28/11/2016	Monthly	28/11/2016	Monthly
Wind Speed	27/11/2016	3-monthly	21/05/2015	2-Yearly
Wind Direction	27/11/2016	3-monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available.

Report No: DAT11437

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation: *Data capture = (Reported air quality data / Total data) x 100%* Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for November 2016. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

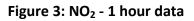
Parameter	Data Capture %
NO, NO ₂ , NO _x	93.2
SO ₂	92.8
H ₂ S	93.2
Benzene	88.3
Toluene	88.3
<i>p</i> -Xylene	88.4
WS, WD	96.1

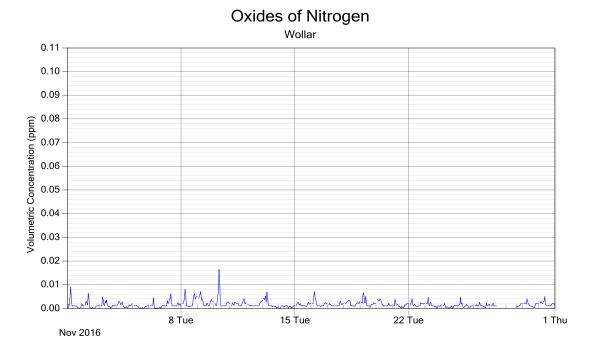
Table 9: Data Capture for Wilpinjong Wollar Station

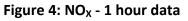
Peabody Energy

6.2. Graphic Representations

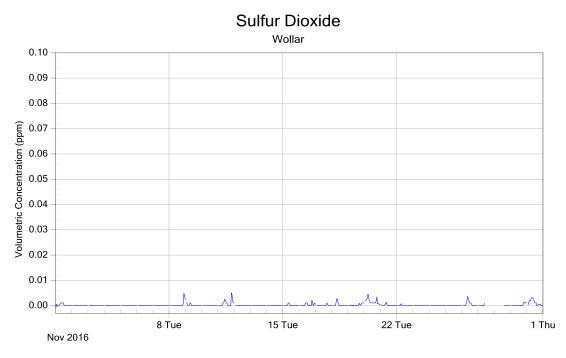
Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

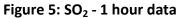

Figure 2: NO - 1 hour data


Report No: DAT11437



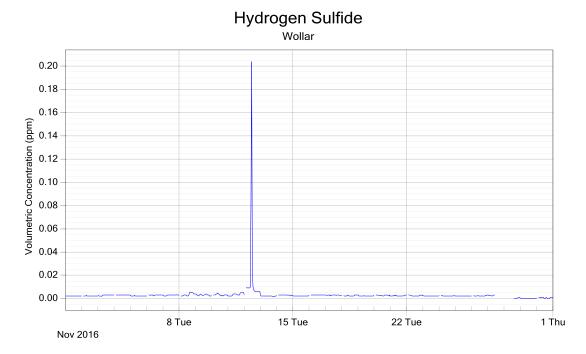
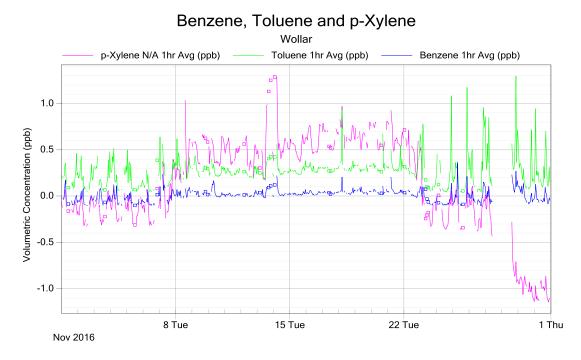
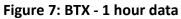
Nitrogen Dioxide Wollar 0.10 0.09 0.08 Volumetric Concentration (ppm) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Murt. 0.00 8 Tue 15 Tue 22 Tue 1 Thu Nov 2016

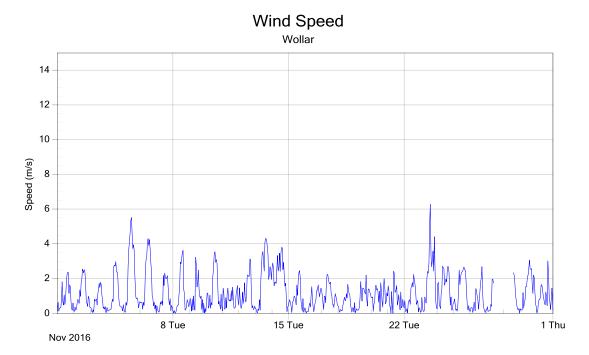


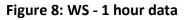


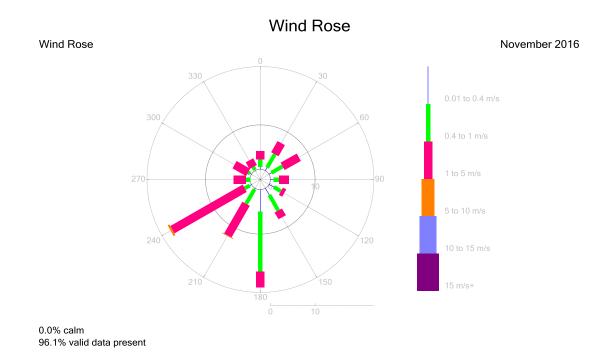
Report No: DAT11437

WORLD RECOGNISED


Figure 6: $H_2S - 1$ hour data


Report No: DAT11437



Report No: DAT11437

Report No: DAT11437

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/11/2016 02:05	30/11/2016 10:05	Instrument fault – intermittent unrealistic spikes BTX		RE	28/12/2016
01/11/2016 11:10	12/11/2016 01:30	Intermittent data transmission errors	Intermittent data transmission errors All parameters		28/12/2016
03/11/2016 05:55	12/11/2016 02:15	Intermittent power interruption and BTX BTX		RE	28/12/2016
04/11/2016 02:05	30/11/2016 01:05	Intermittent overnight spans out of acceptable limits. Data deemed valid		RE	28/12/2016
27/11/2016 11:00	28/11/2016 14:30	Maintenance – monthly tasks performed over 2 days	· ·		28/12/2016

Report No: DAT11437

Peabody Energy

8.0 Report Summary

The data capture for Wollar was below 95% for all measured parameters.

Please refer to Data Capture Percentage Table 9 on page 17 for details, and Table 10 on page 23 for valid data exceptions.

Note: Benzene, Toluene and *p-X*ylene data in this report has been included for reference only. The data for this instrument is pending further investigation into performance and calibration. The data will be reviewed following the completion of this investigation.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

Peabody Energy

Appendix 1 - Definitions & Abbreviations

втх	Benzene, Toluene and <i>p</i> -Xylene
H ₂ S	Hydrogen sulfide
m/s	Metres per second
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
ppb	Parts per billion
SO ₂	Sulphur dioxide
WD	Vector Wind Direction
WS	Vector Wind Speed

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT11437

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring

Validated Report

1st December – 31st December 2016

Report No.: DAT11508

Report issue date: 27th January 2017

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081 1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA Tel No: 1300 364 946 Fax No: 1300 668 763 Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT11508

Peabody Energy

Customer Details				
Customer Peabody Energy Australia				
Contact name Clark Potter				
Address	Locked Bag 2005, Mudgee 2850 NSW			
Email	cpotter@peabodyenergy.com			
Phone +61 (02) 6370 2527				

Revision History					
Revision	Report ID	Date	Analyst		
0	DAT11508	27/01/2017	Robyn Edwards		

Report by:

Robyn EDWARDS

REdwards

Approved Signatory:

Jon ALEXANDER

Report No: DAT11508

Peabody Energy

Table of Contents

Customer Details2	
Revision History2	
Table of Contents 3	
List of Figures4	
List of Tables5	
1.0 Executive Summary6	
2.0 Introduction	
3.0 Monitoring and Data Collection7	
3.1. Siting Details7	
3.2. Monitored Parameters9	
3.3. Data Collection Methods10	
3.3.1. Compliance with Standards11	
3.3.2. Data Acquisition	
3.4. Data Validation and Reporting11	
3.4.1. Validation11	
3.4.2. Reporting12	
4.0 Air Quality Goals	
4.1. Air Quality Summary13	
5.0 Calibrations and Maintenance14	
5.1. Units and Uncertainties14	
5.2. Automatic Checks15	
5.3. Maintenance	

Report No: DAT11508

Peabody Energy

5	5.3.1.	Calibration & Maintenance Summary Tables1	.5
6.0	Resul	ts1	.7
6.1.	Dat	ta Capture1	.7
6.2.	Gra	aphic Representations1	.8
7.0	Valid	Data Exception Tables2	23
8.0	Repo	rt Summary2	24
Apper	ndix 1 -	Definitions & Abbreviations2	25
Apper	ndix 2 -	Explanation of Exception Table2	26

List of Figures

igure 1: Wilpinjong Mine Monitoring Station Location	8
igure 2: NO - 1 hour data	
igure 3: NO ₂ - 1 hour data	
igure 4: NO _x - 1 hour data	
igure 5: SO ₂ - 1 hour data	.20
igure 6: H ₂ S - 1 hour data	.20
igure 7: BTX - 1 hour data	.21
igure 8: WS - 1 hour data	.21
igure 9: Wind Rose	.22

Report No: DAT11508

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H_2S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	23

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene, p-Xylene, wind speed and wind direction.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for December 2016. Data capture for the different pollutants is presented in Table 9.

Note: Benzene, Toluene and *p*-*X*ylene data in this report has been included for reference only. The data for this instrument is pending further investigation into performance and calibration. The data will be reviewed following the completion of this investigation.

Report No: DAT11508

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for December 2016.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)	
Wollar	Lat: -32.360105 Long: 149.949509	366	

Report No: DAT11508

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique		
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography		
H ₂ S	Ecotech EC9852 - fluorescence		
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence		
SO ₂	Ecotech EC9850 – fluorescence		
Wind Speed (horizontal, 10m)	Gill Windsonic		
Wind Direction (10m)	Gill Windsonic		

Peabody Energy

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method		
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method		
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence		
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method		
502	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence		
H₂S	H ₂ S Ecotech Laboratory Manual In-house method 6.5 Hydrogen sulfide by			
BTX Manufacturer's Instructions		Gas Chromatography Synspec CG955 Series Manual		
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications		
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer		
Vector Wind	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications		
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer		

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

• Measurement of benzene, toluene and *p*-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using Airodis[™] version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

Report No: DAT11508

Peabody Energy

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "*Wilpingjong Coal Validated Data Report Dec-16.xls*". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT11508

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence	
NO ₂	1 hour	-	-	
SO ₂	1 hour	-	-	
SO ₂	1 day	-	-	

Report No: DAT11508

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	1 ppb ± 16 ppb K factor of 2.01	
SO ₂ (EC9850)	ppm	1 ppb	1 ppb K factor of 2.01	
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p-</i> Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.01 m/s or 2.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 60 m/s
Vector Wind Direction	Deg	1 deg	±2 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

¹ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every night for NO, NO₂, NO_x and SO₂, every 2^{nd} night for H₂S and weekly for BTX.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)	
NO, NO ₂ , NO _x	00:45 to 01:40 every day	N/A	
SO ₂	00:45 to 01:40 every day	23:45 to 23:50 every day	
H ₂ S	01:35 to 02:35 every 2 nd day	23:45 to 23:50 every day	
ВТХ	02:45 to 04:45 every 7 th day	N/A	

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, H₂S and BTX

5.3. Maintenance

Scheduled monthly maintenance was performed 29th December.

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Report No: DAT11508

Peabody Energy

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	29/12/2016	Monthly	29/12/2016	Monthly
SO ₂	29/12/2016	Monthly	29/12/2016	Monthly
H ₂ S	29/12/2016	Monthly	29/12/2016	Monthly
втх	29/12/2016	Monthly	29/12/2016	Monthly
Wind Speed	29/12/2016	Monthly	21/05/2015	2-Yearly
Wind Direction	29/12/2016	Monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available.

Report No: DAT11508

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation: *Data capture = (Reported air quality data / Total data) x 100%* Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for December 2016. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Parameter	Data Capture %
NO, NO ₂ , NO _x	90.1
SO ₂	89.7
H ₂ S	59.1
Benzene	87.4
Toluene	87.4
<i>p</i> -Xylene	87.4
WS, WD	99.1

Table 9: Data Capture for Wilpinjong Wollar Station

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

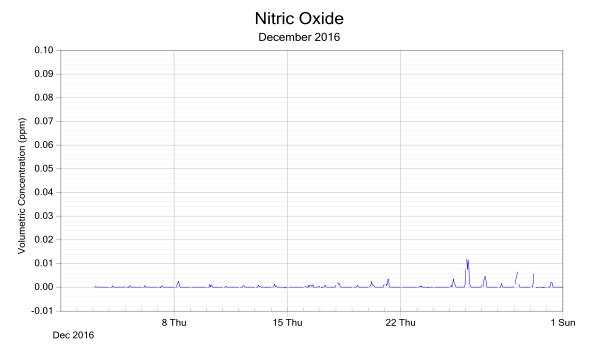
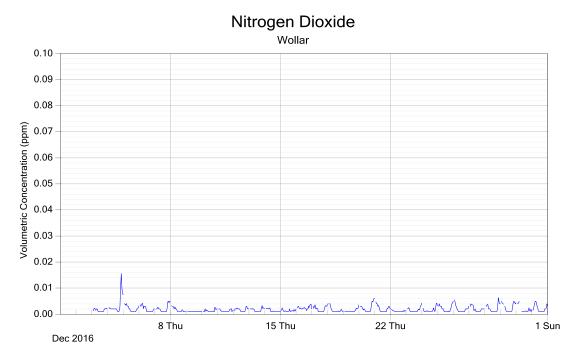
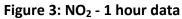




Figure 2: NO - 1 hour data

Report No: DAT11508

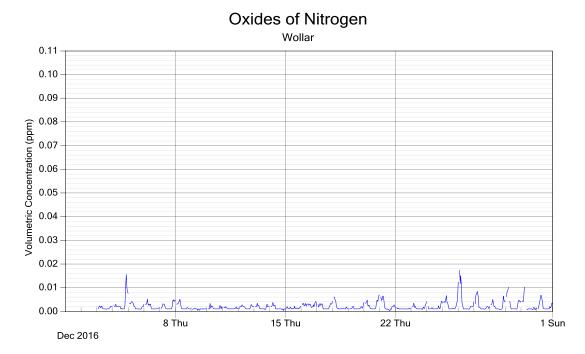
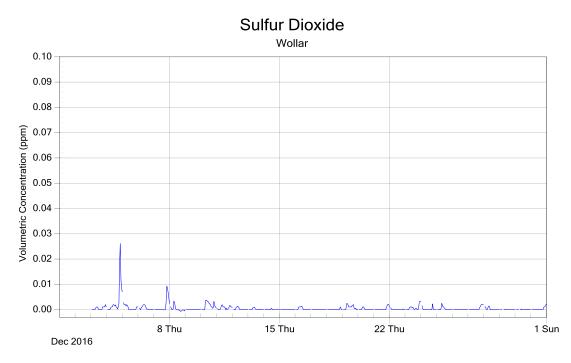
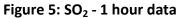




Figure 4: NO_x - 1 hour data

Report No: DAT11508

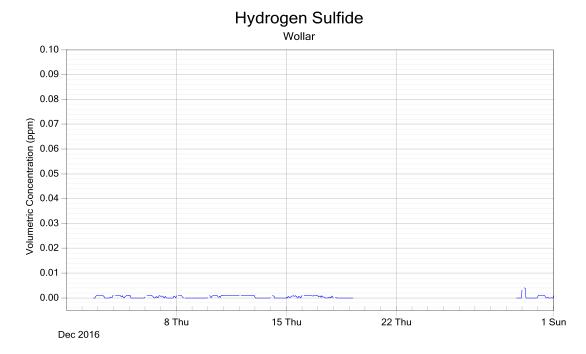
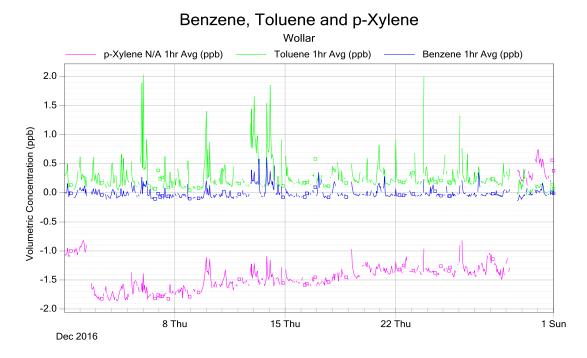
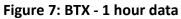




Figure 6: $H_2S - 1$ hour data

Report No: DAT11508

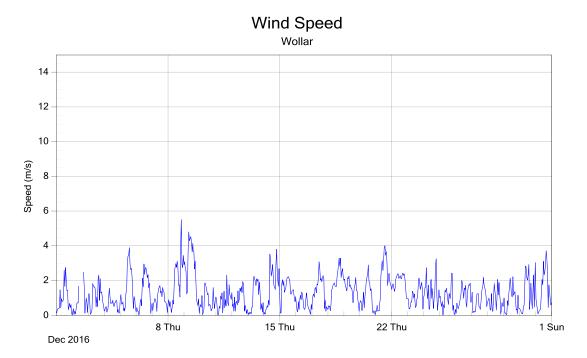
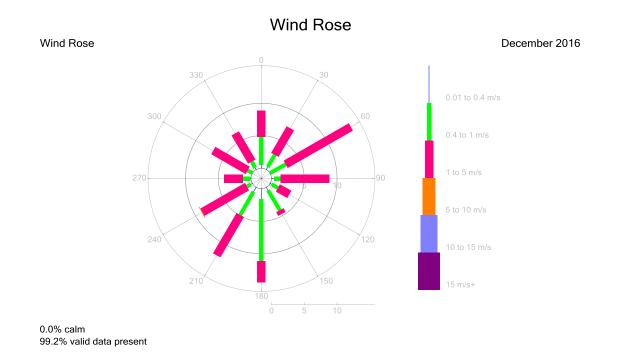



Figure 8: WS - 1 hour data

Report No: DAT11508

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/12/2016 00:00	03/12/2016 00:40	Overnight spans out of tolerance limits on 02/12/2016	NO, NO ₂ , NO _x and H ₂ S	RE	18/12/2016
01/12/2016 00:00	31/12/2016 23:55	Instrument fault – intermittent unrealistic spikes	втх	RE	18/12/2016
03/12/2016 00:45	06/12/2016 00:40	Static multiplier of 1.03 applied to correct out of tolerance span on 03/12/2016	NO, NO ₂ and NO _x	RE	18/12/2016
19/12/2016 07:20	29/12/2016 05:50	Instrument cooler fault – intermittent large blocks of data affected	H ₂ S	RE	18/12/2016
19/12/2016 19:40	23/12/2016 17:30	Intermittent short power interruptions and subsequent BTX instrument stabilisation	All parameters	RE	18/12/2016
29/12/2016 05:35	29/12/2016 06:25	Scheduled monthly maintenance	NO, NO ₂ , NO _x and SO ₂	RE	18/12/2016
29/12/2016 05:55	29/12/2016 09:25	Maintenance – faulty instrument replaced	H₂S	RE	18/12/2016
29/12/2016 06:40	29/12/2016 14:55	Scheduled monthly maintenance	втх	RE	18/12/2016
29/12/2016 13:05	29/12/2016 16:00	Maintenance – calibration performed on replacement instrument following stabilisation	H ₂ S	RE	18/12/2016
30/12/2016 05:55	30/12/2016 08:15	Maintenance – converter efficiency check performed on NO _x instrument	NO, NO ₂ , NO _x and SO ₂	RE	18/12/2016

Report No: DAT11508

Peabody Energy

8.0 Report Summary

The data capture for Wollar was below 95% for most measured parameters.

Please refer to Data Capture Percentage Table 9 on page 17 for details, and Table 10 on page 23 for valid data exceptions.

Note: Benzene, Toluene and *p-X*ylene data in this report has been included for reference only. The data for this instrument is pending further investigation into performance and calibration. The data will be reviewed following the completion of this investigation.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

Peabody Energy

Appendix 1 - Definitions & Abbreviations

втх	Benzene, Toluene and <i>p</i> -Xylene
H ₂ S	Hydrogen sulfide
m/s	Metres per second
NO	Nitric oxide
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
ppb	Parts per billion
SO ₂	Sulphur dioxide
WD	Vector Wind Direction
WS	Vector Wind Speed

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT11508

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.